Skip to main content

Cell Cycle Regulation in Myogenesis

  • Chapter
  • First Online:

Abstract

Skeletal myoblasts differentiation begins with irreversible withdrawal of myoblasts from the cell cycle. This growth arrest is mediated and maintained by the Rb protein, together with p21 and other inhibitors of cell cycle progression. The subsequent activation of muscle-specific promoters at the onset of differentiation is regulated by myogenic bHLH transcription factors, such as MyoD. MyoD protein binds DNA and recruits coactivators and corepressors of transcription to specific promoters and orchestrates the early differentiation events that lead to the fusion of myoblasts into myotubes and the formation of skeletal muscle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadalginard B (1993) Interaction of myogenic factors and the retinoblastoma protein mediates muscle-cell commitment and differentiation. Cell 72(3):309–324

    Article  PubMed  CAS  Google Scholar 

  2. Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 57(1):16–25

    Article  PubMed  CAS  Google Scholar 

  3. Lassar AB, Davis RL, Wright WE, Kadesch T, Murre C, Voronova A et al (1991) Functional-activity of myogenic Hlh proteins requires hetero-oligomerization with E12/E47-like proteins invivo. Cell 66(2):305–315

    Article  PubMed  CAS  Google Scholar 

  4. Shirakata M, Friedman FK, Wei Q, Paterson BM (1993) Dimerization Specificity of myogenic helix-loop-helix DNA-binding factors directed by nonconserved hydrophilic residues. Genes Development 7(12A):2456–2470

    Article  PubMed  CAS  Google Scholar 

  5. Lindon C, Montarras D, Pinset C (1998) Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts. J Cell Biol 140(1):111–118

    Article  PubMed  CAS  Google Scholar 

  6. Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L (2003) ERKMAPK activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK) Cancer Res 63(7):1684–1695

    PubMed  CAS  Google Scholar 

  7. Evan GI, Wyllie AH, Gilbert CS et al (1993) Hot papers - biochemistry - induction of apoptosis in fibroblasts by C-Myc protein. Scientist 7(14):15

    Google Scholar 

  8. Geng Y, Yu QY, Whoriskey W, Dick F, Tsai KY, Ford HL et al (2001) Expression of cyclins E1 and E2 during mouse development and in neoplasia. Proc Natl Acad Sci U S Am 98(23):13138–13143

    Article  CAS  Google Scholar 

  9. Jackman M, Firth M, Pines J (1995) Human cyclins B1 and B2 are localized to strikingly different structures - B1 to microtubules, B2 primarily to the Golgi-apparatus. Embo J 14(8):1646–1654

    PubMed  CAS  Google Scholar 

  10. Stacey DW, Gu Y, Yang K, Hitomi M (2004) Image analysis reveals cyclin D1 role in cell cycle control. Cytometry Part A 59A(1):70

    Google Scholar 

  11. Lees E, Tsai LH, Faha BF, Riabowol K, Harlow E (1993) Cyclin-e displays properties appropriate for A G1-cyclin. J Cell Biochem 1993:294

    Google Scholar 

  12. Lundberg AS, Weinberg RA (1999) Control of the cell cycle and apoptosis. Eur J Cancer 35(4):531–539

    Article  PubMed  CAS  Google Scholar 

  13. Weinberg RA (1995) The molecular-basis of oncogenes and tumor-suppressor genes. Ann NY Acad Sci 758:331–338

    Article  PubMed  CAS  Google Scholar 

  14. Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25(38):5220–5227

    Article  PubMed  CAS  Google Scholar 

  15. Luo RX, Postigo AA, Dean DC (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92(4):463–473

    Article  PubMed  CAS  Google Scholar 

  16. Dahiya A, Wong S, Gonzalo S, Gavin M, Dean DC (2001) Linking the Rb and polycomb pathways. Mol Cell 8(3):557–568

    Article  PubMed  CAS  Google Scholar 

  17. Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O'Carroll D et al (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412(6846):561–565

    Article  PubMed  CAS  Google Scholar 

  18. Adams PD, Kaelin WG (1995) Transcriptional control by E2F. Sem Cancer Biol 6(2):99–108

    Article  CAS  Google Scholar 

  19. Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G(1) cyclin-dependent kinases. Genes Dev 9(10):1149–1163

    Article  PubMed  CAS  Google Scholar 

  20. Matsushime H, Roussel MF, Ashmun RA, Sherr CJ (1991) Colony-stimulating factor-I regulates novel cyclins during the G1 phase of the cell-cycle. Cell 65(4):701–713

    Article  PubMed  CAS  Google Scholar 

  21. Resnitzky D, Gossen M, Bujard H, Reed SI (1994) Acceleration of the G(1)/S phase-transition by expression of cyclin-D1 and cyclin-e with an inducible system. Mol Cell Biol 14(3):1669–1679

    PubMed  CAS  Google Scholar 

  22. Neuhold LA, Wold B (1999) Myod tethered to Itf-1 activates a muscle-specific enhancer in undifferentiated myoblast. J Cell Biochem 1993:203

    Google Scholar 

  23. Benezra R, Davis RL, Lassar A, Tapscott S, Thayer M, Lockshon D et al (1990) Id - a negative regulator of helix-loop-helix dna-binding proteins - control of terminal myogenic differentiation. Ann NY Acad Sci 599:1–11

    Article  PubMed  CAS  Google Scholar 

  24. Puri PL, Sartorelli V, Yang XJ, Hamamori Y, Ogryzko VV, Howard BH et al (1997) Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell 1(1):35–45

    Article  PubMed  CAS  Google Scholar 

  25. Li L, James G, Hellerharrison R, Czech MP, Olson EN (1992) Fgf inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein-kinase-C site in their dna-binding domains. Cell 71(7):1181–1194

    Article  PubMed  CAS  Google Scholar 

  26. Zhang JM, Chen LS, Krause M, Fire A, Paterson BM (1999) Evolutionary conservation of MyoD function and differential utilization of E proteins. Dev Biol 208(2):465–472

    Article  PubMed  CAS  Google Scholar 

  27. Skapek SX, Rhee J, Spicer DB, Lassar AB (1994) Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science 267(5200):1022–1024

    Article  Google Scholar 

  28. Diehl JA, Sherr CJ (1997) A dominant-negative cyclin D1 mutant prevents nuclear import of cyclin-dependent kinase 4 (CDK4) and its phosphorylation by CDK-activating kinase. Molecular and Cellular Biology 17(12):7362–7374

    PubMed  CAS  Google Scholar 

  29. Miner JH, Wold BJ (1991) C-Myc inhibition of myod and myogenin-initiated myogenic differentiation. Mol Cell Biol 11(5):2842–2851

    PubMed  CAS  Google Scholar 

  30. Herschman HR (1991) Primary response genes induced by growth-factors and tumor promoters. Ann Rev Biochem 60:281–319

    Article  PubMed  CAS  Google Scholar 

  31. Endo T, Goto S (1992) Retinoblastoma gene-product Rb accumulates during myogenic differentiation and is deinduced by the expression of Sv40 large T-antigen. J Biochem 112(4):427–430

    PubMed  CAS  Google Scholar 

  32. Cenciarelli C, De Santa F, Puri PL, Mattei E, Ricci L, Bucci F et al (1999) Critical role played by cyclin D3 in the MyoD-mediated arrest of cell cycle during myoblast differentiation. Mol Cell Biol 19(7):5203–5217

    PubMed  CAS  Google Scholar 

  33. Gu W, Schneider J, Mahdavi V, Nadalginard B (1993) Down-regulation of tumor-suppressor pocket proteins reverses the terminally differentiated state of muscle-cells. Circulation 88(4):190

    Google Scholar 

  34. Walsh K, Perlman H (1997) Cell cycle exit upon myogenic differentiation. Cur Opin Gen Dev 7(5):597–602

    Article  CAS  Google Scholar 

  35. Puri PL, Balsano C, Burgio VL, Chirillo P, Natoli G, Ricci L et al (1997) MyoD prevents cyclin A cdk2 containing E2F complexes formation in terminally differentiated myocytes. Oncogene 14(10):1171–1184

    Article  PubMed  CAS  Google Scholar 

  36. Franklin DS, Xiong Y (1996) Induction of p18(INK4c) and its predominant association with CDK4 and CDK6 during myogenic differentiation. Mol Biol Cell 7(10):1587–1599

    PubMed  CAS  Google Scholar 

  37. Simone C, Giordano A (2001) New insight in Cdk9 function: from Tat to MyoD. Front Biosci 6:D1074–D1082

    Article  Google Scholar 

  38. Giacinti C, Bagella L, Puri PL, Giordano A, Simone C (2006) MyoD recruits the cdk9/cyclin T2 complex on myogenic-genes regulatory regions. J Cell Physiol 206(3):807–813

    Article  PubMed  CAS  Google Scholar 

  39. Simone C, Stiegler P, Bagella L, Pucci B, Bellan C, De Falco G et al (2002) Activation of MyoD-dependent transcription by cdk9/cyclin T2. Oncogene 21(26):4137–4148

    Article  PubMed  CAS  Google Scholar 

  40. Bagella L, MacLachlan TK, Buono RJ, Pisano MM, Giordano A, De Luca A (1998) Cloning of murine CDK9/PITALRE and its tissue-specific expression in development. J Cell Physiol 177(2):206–213

    Article  PubMed  CAS  Google Scholar 

  41. De Luca A, Tosolini A, Russo P, Severino A, Baldi A, de Luca L et al (2001) Cyclin T2A gene maps on human chromosome 2q21. J Histochem Cytochem 49(6):693–697

    Article  PubMed  Google Scholar 

  42. Grana X, Deluca A, Sang N, Fu Y, Claudio PP, Rosenblatt J et al (1994) Pitalre, a nuclear Cdc2-related protein-kinase that phosphorylates the retinoblastoma protein in-vitro. Proc Natl Acad Sci U S A 91(9):3834–3838

    Article  PubMed  CAS  Google Scholar 

  43. Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL (2004) p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Gen 36(7):738–743

    Article  CAS  Google Scholar 

  44. Magenta A, Cenciarelli C, De Santa F, Fuschi P, Martelli F, Caruso M et al (2003) MyoD stimulates RB promoter activity via the CREB/p300 nuclear transduction pathway. Mol Cell Biol 23(8):2893–2906

    Article  PubMed  CAS  Google Scholar 

  45. Puri PL, Avantaggiati ML, Balsano C, Sang NL, Graessmann A, Giordano A et al (1997) P300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. Embo J16(2):369–383

    Google Scholar 

  46. Sartorelli V, Puri PL, Hamamori Y, Ogryzko V, Chung G, Nakatani Y et al (1999) Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol Cell 4(5):725–734

    Article  PubMed  CAS  Google Scholar 

  47. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391(6667):597–601

    Article  PubMed  CAS  Google Scholar 

  48. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G(1)-phase progression. Genes Dev 13(12):1501–1512

    Article  PubMed  CAS  Google Scholar 

  49. Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ et al (1995) Correlation of terminal cell-cycle arrest of skeletal-muscle with induction of P21 by Myod. Science 267(5200):1018–1021

    Article  PubMed  CAS  Google Scholar 

  50. Zhang PM, Wong C, Liu D, Finegold M, Harper JW, Elledge SJ (1999) p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev 13(2):213–224

    Article  PubMed  CAS  Google Scholar 

  51. Lee MH, Reynisdottir I, Massague J (1995) Cloning Or P57(Kip2), a cyclin-dependent kinase inhibitor with unique domain-structure and tissue distribution. Genes Dev 9(6):639–649

    Article  PubMed  CAS  Google Scholar 

  52. Lu KP, Means AR (1993) Regulation of the cell-cycle by calcium and calmodulin. Endocr Rev 14(1):40–58

    PubMed  CAS  Google Scholar 

  53. Taules M, Rius E, Talaya D, Lopez-Girona A, Bachs O, Agell N (1998) Calmodulin is essential for cyclin-dependent kinase 4 (Cdk4) activity and nuclear accumulation of cyclin D1-Cdk4 during G(1) J Biol Chem 273(50):33279–33286

    Article  PubMed  CAS  Google Scholar 

  54. Andres V, Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132(4):657–666

    Article  PubMed  CAS  Google Scholar 

  55. Kiess M, Gill RM, Hamel PA (1995) Expression and activity of the retinoblastoma protein (Prb)-family proteins, P107 and P130, during L(6) myoblast differentiation. Cell Growth Differ 6(10):1287–1298

    PubMed  CAS  Google Scholar 

  56. Puri PL, Bhakta K, Wood LD, Costanzo A, Zhu JY, Wang JYJ (2002) A myogenic differentiation checkpoint activated by genotoxic stress. Nat Genet 32(4):585–593

    Article  PubMed  CAS  Google Scholar 

  57. Liu ZG, Baskaran R, LeaChou ET, Wood LD, Chen Y, Karin M et al (1996) Three distinct signalling responses by murine fibroblasts to genotoxic stress. Nature 384(6606):273–276

    Article  PubMed  CAS  Google Scholar 

  58. Deshpande A, Sicinski P, Hinds PW (2005) Cyclins and cdks in development and cancer: a perspective. Oncogene 24(17):2909–2915

    Article  PubMed  CAS  Google Scholar 

  59. Gartel AL, Goufman E, Tevosian SG, Shih H, Yee AS, Tyner AL (1998) Activation and repression of p21(WAF1/CIP1) transcription by RB binding proteins. Oncogene 17(26):3463–3469

    Article  PubMed  CAS  Google Scholar 

  60. Ostrovsky O, Bengal E (2003) The mitogen-activated protein kinase cascade promotes myoblast cell survival by stabilizing the cyclin-dependent kinase inhibitor, p21(WAF1) protein. J Biol Chem 278(23):21221–21231

    Article  PubMed  CAS  Google Scholar 

  61. Tapscott SJ, Thayer MJ, Weintraub H (1993) Deficiency in rhabdomyosarcomas of a factor required for myod activity and myogenesis. Science 259(5100):1450–1453

    Article  PubMed  CAS  Google Scholar 

  62. Barr FG (2001) Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20(40):5736–5746

    Article  PubMed  CAS  Google Scholar 

  63. Keleti J, Quezado MM, Abaza MM, Raffeld M, Tsokos M (1996) The MDM2 oncoprotein is overexpressed in rhabdomyosarcoma cell lines and stabilizes wild-type p53 protein. Am J Pathol 149(1):143–151

    PubMed  CAS  Google Scholar 

  64. Knudsen ES, Pazzagli C, Born TL, Bertolaet BL, Knudsen KE, Arden KC et al (1998) Elevated cyclins and cyclin-dependent kinase activity in the rhabdomyosarcoma cell line RD1. Cancer Res 58(9):2042–2049

    PubMed  CAS  Google Scholar 

  65. Otten AD, Firpo EJ, Gerber AN, Brody LL, Roberts JM, Tapscott SJ (1997) Inactivation of MyoD-mediated expression of p21 in tumor cell lines. Cell Growth Differ 8(11):1151–1160

    PubMed  CAS  Google Scholar 

  66. Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O et al (1999) Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 18(3):813–822

    Article  PubMed  CAS  Google Scholar 

  67. Bennett AM, Tonks NK (1997) Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278(5341):1288–1291

    Article  PubMed  CAS  Google Scholar 

  68. Tombes RM, Auer KL, Mikkelsen R, Valerie K, Wymann MP, Marshall CJ et al (1998) The mitogen-activated protein (MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic. Biochem J 330:1451–1460

    PubMed  CAS  Google Scholar 

  69. Todd DE, Densham RM, Molton SA, Balmanno K, Newson C, Weston CR et al (2004) ERK1/2 and p38 cooperate to induce a p21(CIP1)-dependent G(1) cell cycle arrest. Oncogene 23(19):3284–3295

    Article  PubMed  CAS  Google Scholar 

  70. Ciccarelli C, Marampon F, Scoglio A, Mauro A, Giacinti C, De Cesaris P et al (2005) p21(WAF1) Expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells. Mol Cancer 4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Giacinti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giacinti, C., Giordano, A. (2010). Cell Cycle Regulation in Myogenesis. In: Giordano, A., Galderisi, U. (eds) Cell Cycle Regulation and Differentiation in Cardiovascular and Neural Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-153-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-153-0_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-152-3

  • Online ISBN: 978-1-60327-153-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics