Skip to main content

The Liver, Glucose Homeostasis, and Insulin Action in Type 2 Diabetes Mellitus

  • Chapter
  • 1737 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Diabetes, and in particular type 2 diabetes (T2DM), is considered clinically unequivocal when fasting hyperglycemia supervenes. However, it has long been clear that this is a final manifestation of a process that has evolved over a long period of time, perhaps even from early fetal development (1). More proximally, fasting hyperglycemia is preceded by impaired glucose tolerance (2). These lesions in tum are foreshadowed by a variety of cellularlbiochemical abnormalities (deviations) that can be detected in subjects (or animal models) who are at risk for the development of diabetes. It has been noted that if science had focused on lipid instead of glucose metabolism in addressing the etiology of diabetes, a similar spectrum of deficiencies would have been detected in these pathways (3). Similarly, early lesions in insulin secretion have also been described by a number of investigators (e.g., 46). This serves to point out, not the difficulty of the detection of the first step in the development of diabetes, but rather the (network of) linkages that exist between all aspects of metabolism at the systemic level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hales CN, Barker DJP, Clark PMS et al. Fetal and infant growth and impaired glucose tolerance at age 64. In Fetal and Infant Origins of Adult Disease, Barker DJP (ed.), BMJ Publications, London, 1992, pp. 253–257.

    Google Scholar 

  2. DeFronzo RA. The triumvirate—beta-cell, muscle, and liver: A collusion responsible for NIDDM. Diabetes 1988; 37:667–687.

    CAS  PubMed  Google Scholar 

  3. McGarry JD. What if Minkowski had been ageusic? An alternative angle on diabetes. Science 1992; 258:755–770.

    Google Scholar 

  4. Efendic S, Grill V, Luft R, Wajngot A. Low insulin response: A marker of prediabetes. Adv Exp Med Biol 1988; 246:167–174.

    CAS  PubMed  Google Scholar 

  5. Mitrakou A, Kelley D, Mokan M, Veneman T, Pangburn T, Reilly J, Gerich J. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N Engl J Med 1992; 326:22–29.

    CAS  PubMed  Google Scholar 

  6. Reaven GM, Shen SW, Silvers A, Farquhar JW. Is there a delay in the plasma insulin response of patients with chemical diabetes mellitus? Diabetes 1971; 20:416.

    CAS  PubMed  Google Scholar 

  7. Himsworth HP. Diabetes mellitus: Its differentiation into insulin-sensitive and insulin-insensitive types. Lancet 1936; 1:127.

    Google Scholar 

  8. Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Graziadei L, Pedrinelli R, Brandt L, Bevilacqua S. Insulin resistance in essential hypertension. N Engl J Med 1987; 317:350–357.

    CAS  PubMed  Google Scholar 

  9. Bjorntorp P. Abdominal obesity and the development of noninsulin dependent diabetes mellitus. Diabetes Metab Rev 1988; 4:615–622.

    CAS  PubMed  Google Scholar 

  10. Stout RW. Insulin and atheroma: 20 yr perspective. Diabetes Care 1990; 13:631–654.

    CAS  PubMed  Google Scholar 

  11. Laws W, Reaven GM. Insulin resistance and coronary heart disease risk factors. Bailliere’s Clin Endocrinol Metab 1993; 4:1063–1078.

    Google Scholar 

  12. Juhan-Vague I, Alessi MC, Vague P. Increased plasma plasminogen activator inhibitor 1 levels: A possible link between insulin resistance and atherothrombosis. Diabetologia 1991; 34:457–462.

    CAS  PubMed  Google Scholar 

  13. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore IN. Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001; 120:1183–192.

    CAS  PubMed  Google Scholar 

  14. DeFronzo R, Bonadonna R, Ferrannini E. Pathogenesis of NIDDM: A balanced overview. Diabetes Care 1992; 15:318.

    CAS  PubMed  Google Scholar 

  15. Bruning JC, Michael MD, Winnay IN, Hayashi T, Horsch D, Accilli D, Goodyear L, Kahn CR. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 1998; 2:559–569.

    CAS  PubMed  Google Scholar 

  16. Kulkarni RN, Bruning JC, Winnay IN, Postic C, Magnuson MA, Kahn CR. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 1999; 96:329–339.

    CAS  PubMed  Google Scholar 

  17. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000; 6:87–97.

    CAS  PubMed  Google Scholar 

  18. Häring H, Mehnert H. Pathogenesis of type 2 (non-insulin-dependent) diabetes mellitus: Candidates for a signal transmitter defect causing insulin resistance of the skeletal muscle. Diabetologia 1993; 36: 176–182.

    PubMed  Google Scholar 

  19. Minokoshi Y, Kahn CR, Kahn BB. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J Biol Chem 2003; 278:33609–33612.

    CAS  PubMed  Google Scholar 

  20. She P, Burgess SC, Shiota M, Flakoll P, Donahue EP, Malloy CR, Sherry AD, Magnuson MA. PEPCK knockout mice preserve euglycemia during starvation. Diabetes 2003; 52:1649–1654.

    CAS  PubMed  Google Scholar 

  21. Froguel P, Vaxillaire M, Sun F. Close linkage of glucosekinase locus on chromosome 7p to early-onset noninsulin dependent diabetes mellitus. Nature 1992; 36:162–164.

    Google Scholar 

  22. Miller SP, Gulshan RA, Karschina EJ, Bell GI, LaPorte DC, Lange AJ. Characterization of glucokinase mutations associated with maturity-onset diabetes of the young type 2 (MODY-2): Different glucokinase defects lead to a common phenotype. Diabetes 1999; 48:1645–1651.

    CAS  PubMed  Google Scholar 

  23. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352:854–865.

    Google Scholar 

  24. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylurease or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352:837–853.

    Google Scholar 

  25. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346:393–403.

    Google Scholar 

  26. Commerford SR, Bizeau M, McRae H, Jampolis A, Thresher JS, Pagliassotti MJ. Hyperglycemia compensates for diet-induced insulin resistance in liver and skeletal muscle of rats. Am J Physiol 2001; 281:RI380–1389.

    Google Scholar 

  27. Rossetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care 1990; 13:610–630.

    CAS  PubMed  Google Scholar 

  28. Baron AD, Zhu JS, Zhu JH et al. Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle: Implications for glucose toxicity. J Clin Invest 1995; 96:2792–2801.

    CAS  PubMed  Google Scholar 

  29. Boden G, Ruiz J, Kim CJ, Chen X. Effects of prolonged glucose infusion on insulin secretion, clearance and action in normal subjects. Amer J Physiol 1995; 270:E251–258.

    Google Scholar 

  30. Rossetti L. Perspective: Hexosamines and nutrient sensing. Endocrinology 2000; 141:1922–1925.

    CAS  PubMed  Google Scholar 

  31. Beisswenger PJ, Wood ME, Scott KH, Touchette AD, O’Dell RM, Szwergold BS. Alpha-dicarbonyls increase in the postprandial period and reflect degree of hyperglycemia. Diabetes Care 2001; 24:726–732.

    CAS  PubMed  Google Scholar 

  32. Radziuk J, Pye S. Tracers in the analysis of glucose metabolism in health and diabetes: Basal conditions. Bailliere’s Best Practice and Research. Clin Endocrinol Metab 2003; 17:323–342.

    CAS  Google Scholar 

  33. Radziuk J, Pye S. Quantitation of basal endogenous glucose production in type 2 diabetes: Importance of the volume of distribution. Diabetologia 2002; 45:1053–1084.

    CAS  PubMed  Google Scholar 

  34. Chen IY-D, Jeng C-Y, Hollenbeck CB, Wu M-S, Reaven GM. Relationship between plasma glucose and insulin concentration, glucose production, and glucose disposal in normal subjects and patients with non-insulin-dependent diabetes. J Clin Invest 1988; 82:21–25.

    CAS  PubMed  Google Scholar 

  35. Hother-Nielsen O, Beck-Nielsen H. On the determination of basal glucose production rate in patients with type 2 (non-insulin dependent) diabetes mellitus using primed-continuous 3-3H-glucose infusion. Diabetologia 1990; 33:603–610.

    CAS  PubMed  Google Scholar 

  36. Hother-Nielsen O, Beck-Nielsen H. Insulin resistance but normal basal rates of glucose production in patients with newly diagnosed mild diabetes mellitus. Acta Endocrinol (Copenh) 1991; 124: 637–645.

    CAS  Google Scholar 

  37. Beck-Nielsen H, Hother-Nielsen O, Vaag A, Alford F. Pathogenesis of type 2 (non-insulindependent) diabetes mellitus: The role of skeletal muscle glucose uptake and hepatic glucose production in the development of hyperglycemia—a critical comment. Diabetologia 1994; 37:217–221.

    CAS  PubMed  Google Scholar 

  38. Jeng C-Y, Sheu WH-H, Fuh MM-T, Chen IY-D, Reaven GM. Relationship between hepatic glucose production and fasting plasma glucose concentration in patients with NIDDM. Diabetes 1994; 43:1440–1444.

    CAS  PubMed  Google Scholar 

  39. Rigalleau V, Beylot M, Laville M, Guillot C, Deleris G, Aubertin J, Gin H. Measurement of postabsorptive glucose kinetics in non-insulin-dependent diabetic patients: Methodological aspects. Eur J Clin Invest 1996; 26:231–236.

    CAS  PubMed  Google Scholar 

  40. Firth RG, Bell PM, Marsh HM, Hansen I, Rizza RA. Postprandial hyperglycemia in patients with non-insulin-dependent diabetes mellitus: Role of hepatic and extra-hepatic tissues. J Clin Invest 1986; 77:1525–1532.

    CAS  PubMed  Google Scholar 

  41. Baron AD, Schaeffer L, Shragg P, Kolterman OG. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetes. Diabetes 1987; 36:274–283.

    CAS  PubMed  Google Scholar 

  42. Glauber H, Wallace P, Brechtel G. Effects of fasting on plasma glucose and prolonged tracer measurement of hepatic glucose output in NIDDM. Diabetes 1987; 36:1187–1194.

    CAS  PubMed  Google Scholar 

  43. DeFronzo R. The triumvirate—beta cell, muscle, liver: A collusion responsible for NIDDM. Diabetes 1988; 37:667–687.

    CAS  PubMed  Google Scholar 

  44. Consoli A, Nurjhan N, Capani F, Gerich J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 1989; 38:550–557.

    CAS  PubMed  Google Scholar 

  45. DeFronzo R. Pathogenesis of type 2 (non-insulin-dependent) diabetes mellitus: A balanced overview. Diabetologia 1992; 35:389–397.

    CAS  PubMed  Google Scholar 

  46. Dineen S, Gerich J, Rizza R. Carbohydrate metabolism in non-insulin-dependent diabetes mellitus. New Engl J Med 1992; 327:707–713.

    Google Scholar 

  47. Fery F. Role of hepatic glucose production and glucose uptake in the pathogenesis of fasting hyperglycemia in type 2 diabetes: Normalization of glucose kinetics by short-term fasting. J Clin Endocrinol Metab 1994; 7:536–542.

    Google Scholar 

  48. Steele R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann NY Acad Sci 1959; 82:420–430.

    CAS  PubMed  Google Scholar 

  49. Hother-Nielsen O, Beck-Nielsen H. On the determination of basal glucose production rate in patients with type 2 (non-insulin-dependent) diabetes mellitus using primed-continuous 3-3H-glucose infusion. Diabetologia 1990; 33:603–610.

    CAS  PubMed  Google Scholar 

  50. Radziuk J, Pye S. Production and metabolic clearance of glucose under basal conditions in type 2 diabetes. Diabetologia 2001; 44:983–991.

    CAS  PubMed  Google Scholar 

  51. Sacca L, Hendler PE, Sherwin RS. Hyperglycemia inhibits glucose production in man independent of changes in glucoregulatory hormones. J Clin Endocrinol Metab 1979; 47:1160–1163.

    Google Scholar 

  52. Rossetti L, Giaccari A, Barzilai N, Howard K, Sebel G, Hu M. Mechanisms by which hyperglycemia inhibits hepatic glucose production in conscious rats. Implications for the pathophysiology of fasting hyperglycemia in diabetes. J Clin Invest 92:1126–1134.

    Google Scholar 

  53. Basu A, Caumo A, Bettini F, Gelisio A, Alzaid A, Cobelli C, Rizza RA. Impaired basal glucose effectiveness in NIDDM: Contribution of defects in glucose disappearance and production, measured using an optimized minimal model independent protocol. Diabetes 1997; 46:421–432.

    CAS  PubMed  Google Scholar 

  54. Radziuk J, Pye S. Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycemia in type 2 diabetes: Suprachiasmatic defect or limit cycle behaviour. Diabetologia 2005; 49:1619–1628.

    Google Scholar 

  55. Boden G, Chen X, Urbain JL. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes 1996; 45:1044–1050.

    CAS  PubMed  Google Scholar 

  56. Wajngot A, Chandramouli V, Schumann WC, Ekberg K, Jones PK, Efendic S, Landau B. Quantitative contributions of gluconeogenesis to glucose production during fasting in type 2 diabetes mellitus. Metabolism 2001; 50:47–52.

    CAS  PubMed  Google Scholar 

  57. Consoli A, Nurijhan N, Capani F, Gerich J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 1989; 38:550–557.

    CAS  PubMed  Google Scholar 

  58. Boden G, Chen X, Stein TP. Gluconeogenesis in moderately and severely hyperglycemic patients with type 2 diabetes mellitus. Am J Physiol 2001; 280:E23–30.

    CAS  Google Scholar 

  59. Gastaldelli A, Baldi S, Pettiti M, Toschi S, Camastra S, Natali A, Landau B, Ferrannini E. Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: A quantitative study. Diabetes 2000; 49:1367–1373.

    CAS  PubMed  Google Scholar 

  60. Lam TKT, Carpentier A, Lewis GF, van de Werve G, Fantus IG, Gaicca A. Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol Endocrino Metab 2003; 284: E8683–E873.

    Google Scholar 

  61. Boden G, Cheung P, Stein TP, Kresge K, Mozzoli M. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab 2002; 283: EI2–EI9.

    Google Scholar 

  62. Nemecz M, Preininger K, Englisch R, Furnsinn C, Schneider B, Waldhausl W, Roden M. Acute effects of leptin on hepatic glycogenolysis and gluconeogenesis in perfused rat liver. Hepatology 1999; 29:166–172.

    CAS  PubMed  Google Scholar 

  63. Anderwald C, Muller G, Koca G, Furnsinn C, Waldhausl W, Roden M. Short-term leptin-dependent inhibition of hepatic gluconeogenesis is mediated by insulin receptor substrate-2. Mol Endocrinol 2002; 16:1612–1628.

    CAS  PubMed  Google Scholar 

  64. Liu L, Karkanias GB, Morales JC, Hawkins M, Barzilai N, Wang J, Rossetti L. Intracerebroventricular leptin regulates hepatic but not peripheral glucose fluxes. J Biol Chem 1998; 273:31160–31167.

    CAS  PubMed  Google Scholar 

  65. Ruitger M, la Fleur SE, van Heijningen C, van der Vliet J, Kalsbeek A, Buijs RM. The daily rhythm in plasma glucose concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes 2003; 52:1709–1715.

    Google Scholar 

  66. Paquot N, Scheen AJ, Dirlewanger M, Lefebvre PJ, Tappy L. Hepatic insulin resistance in obese non-diabetic subjects and in type 2 diabetic patients. Obesity Res 2002; 10:129–134.

    CAS  Google Scholar 

  67. Bavenholm PN, Pigon J, Ostenson C-G, Efendic S. Insulin sensitivity of suppression of endogenous glucose production is the single most important determinant of glucose tolerance. Diabetes 2001; 50:1449–1454.

    CAS  PubMed  Google Scholar 

  68. Staehr P, Hother-Nielsen O, Levin K, Holst JJ, Beck-Nielsen H. Assessment of hepatic insulin action in obese type 2 diabetic patients. Diabetes 2001; 50:1363–1370.

    CAS  PubMed  Google Scholar 

  69. Boden G, Cheung P, Homko C. Effects of acute insulin excess and deficiency on gluconeogenesis and glycogenolysis in type 1 diabetes. Diabetes 2003; 52:133–137.

    CAS  PubMed  Google Scholar 

  70. Gastaldelli A, Toschi E, Pettiti M, Frascerra S, Quinones-Galvan A, Sironi A, Natali A, Ferrannini E. Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes 2001; 50:1807–1812.

    CAS  PubMed  Google Scholar 

  71. Dallman MF, Akana SF, Bhatnagar S, Bell ME, Choi S, Chu A, Horsley C, Levin N, Meijer AJ, Soriano LR, Strack AM, Viau V. Starvation: Early signals, sensors and sequelae. Endocrinology 1999; 140:4015–4023.

    CAS  PubMed  Google Scholar 

  72. Dineen S, Alzaid A, Miles J, Rizza R. Effects of normal nocturnal rise in cortisol on carbohydrate and fat metabolism in IDDM. Am J Physiol 1995; 268:E595–E603.

    Google Scholar 

  73. Bolli GB, Gerich JE. The “dawn phenomenon”: A common occurrence in both insulin-dependent and non-insulin-dependent diabetes mellitus. New Engl J Med 1984; 310:746–750.

    CAS  PubMed  Google Scholar 

  74. Basu R, Singh RJ, Basu A, Chitilapilly EG, Johnson CM, Toffolo G, Cobelli C, Rizza RA. Splanchnic cortisol production occurs in humans: Evidence for conversion of cortisone to cortisol via the 11-[ beta]hydroxysteroid dehydrogenase (11(beta)-HSD) type 1 pathway. Diabetes 2004; 53:2051–2059.

    CAS  PubMed  Google Scholar 

  75. Jacobson PB, von Geldern TW, Ohman L, Ostrland M, Wang J, Zinker B, Wilcox D, Nguyen PH, Mika A, Fung S, Fey T, Goos-Nilsson A, Grynfarb M, Barkhem T et al. Hepatic glucocorticoid receptor antagonism is sufficient to reduce elevated hepatic glucose output and improve glucose control in animal models of type 2 diabetes. J Pharmacol Exp Therap 2005; 314:191–200.

    CAS  Google Scholar 

  76. Shamoon H, Hendler R, Sherwin RS. Altered responsiveness to cortisol, epinephrine, and glucagon in insulin-infused juvenile-onset diabetics: A mechanism for diabetic instability. Diabetes 1980:29:284–291.

    CAS  PubMed  Google Scholar 

  77. Van Cauter E, Blackman JD, Roland D, Spire JP, Refetoff S, Polonsky KS. Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Invest 1991; 88:934–942.

    PubMed  Google Scholar 

  78. LaFleur SE, Kalsbeek A, Wortel J, Buijs RM. A suprachiasmatic nucleus generated rhythm in basal glucose concentrations. J Neuroendocrinol 1999; 11:643–652.

    CAS  Google Scholar 

  79. Goncharuk VD, Van Heerikhuize J, Dai J-P, Swaab D, Buijs RM. Neuropeptide changes in the suprachiasmatic nucleus in primary hypertension indicate functional impairment in the biological clock. J Comp Neurol 2001; 431:320–330.

    CAS  PubMed  Google Scholar 

  80. Staels B. When the clock stops ticking, metabolic syndrome explodes. Nature Med 2006; 12:54–55.

    CAS  PubMed  Google Scholar 

  81. LaFleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM. A daily rhythm in glucose tolerance: A role for the suprachiasmatic nucleus. Diabetes 2001; 50:1237–1243.

    CAS  Google Scholar 

  82. Pocal A, Lam TKT, Gutierrez-Juarez R, Obici S, Schwartz G, Bryan J, Aguilar-Bryan L, Rossetti L. Hypothalamic KATP channels control hepatic glucose production. Nature 2005; 434:1026–1031.

    Google Scholar 

  83. Kalsbeek A, LaFleur SE, Van Heijningen C, Buijs RM. Suprachiasmatic GABAergic inputs to the paraventricular nucleus control plasma glucose concentrations in the rat via sympathetic innervation of the liver. J Neurosci 2004; 24:7604–7613.

    CAS  PubMed  Google Scholar 

  84. Moore RY. Neural control of the pineal gland. Behavioural Brain Res 1996; 73:125–130.

    CAS  Google Scholar 

  85. Ishikawa K, Shimazu T. Daily rhythms of glycogen synthase and phosphorylase activities in rat liver: Influence of food and light. Life Sci 1976; 19:1873–1878.

    CAS  PubMed  Google Scholar 

  86. Chu C, Sindelar DK, Neal DW, Allen EJ, Donahue EP, Cherrington AD. Effect of a selective rise in sinusoidal norephrine on HGP is due to an increase in glycogenolysis. Am J Physiol Endocrinol Metab 1998; 274:E162–E171.

    CAS  Google Scholar 

  87. International Diabetes Federation IGTIIFG Consensus Statement. Report of an Expert Consensus Workshop, 1–4 August 2001, Stoke Poges, UK. Impaired glucose tolerance and impaired fasting glycaemia: The current status on definition and intervention. Diab Med 2002; 19:708–723.

    Google Scholar 

  88. Schianca GP, Maduli E, Rossi A, Bartoli E, Sainaghi PP. The significance of impaired fasting versus impaired glucose tolerance: Importance of insulin secretion and resistance. Diabetes Care 2003; 26:1333–1337.

    Google Scholar 

  89. Haffner SM. The importance of hyperglycemia in the nonfasting state to the development of cardiovascular disease. Endocr Rev 1998; 19:583–592.

    CAS  PubMed  Google Scholar 

  90. Bonora E, Muggeo M. Postprandial blood glucose as a risk factor for cardiovascular disease in type II diabetes: The epidemiological evidence. Diabetologia 2001; 44:2107–2114.

    CAS  PubMed  Google Scholar 

  91. Firth RG, Bell PM, Marsh HM, Hansen I, Rizza RA. Postprandial hyperglycemia in patients with non-insulin-dependent diabetes mellitus: Role of hepatic and extra-hepatic tissues. J Clin Invest 1986; 77:1525–1532.

    CAS  PubMed  Google Scholar 

  92. Mitrakou A, Kelley D, Veneman T, Jenssen T, Pangburn T, Reilly J, Gerich J._Contribution of abnormal muscle and liver metabolism to postprandial hyperglycemia in noninsulin-dependent-diabetes mellitus. Diabetes 1990; 39:1381–1390.

    CAS  PubMed  Google Scholar 

  93. Ferrannini E, Simonson D, Katz L, Reichard G, Bevilacqua S, Barrett E, Olsson M, DeFronzo RA. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism 1988; 47:79–85.

    Google Scholar 

  94. Alzaid AA, Dinneen SF, Turk DJ, Caumo A, Cobelli C, Rizza RA. Assessment of insulin action and glucose effectiveness in diabetic and nondiabetic humans. J Clin Invest 1994; 94:2341–2348.

    CAS  PubMed  Google Scholar 

  95. Osei K. The role of splanchnic glucose output in determining glycemic responses after mixed meal in Type 2 diabetic patients and normal subjects. Pancreas 1987; 2:386–392.

    CAS  PubMed  Google Scholar 

  96. Mevorach M, Giacca A, Aharon Y, Hawkins M, Shamoon H, Rossetti L. Regulation of endogenous glucose production by glucose per se is impaired in type 2 diabetes mellitus. J Clin Invest 1998; 102:744–753.

    CAS  PubMed  Google Scholar 

  97. Singhal P, Caumo A, Carey PE, Cobelli C, Taylor R. Regulation of endogenous glucose production after a mixed meal in type 2 diabetes. Am J Physiol Endocrinol Metab 2002; 283:E275–E283.

    CAS  PubMed  Google Scholar 

  98. Brehm ARW, Krssak M, Anderwald C, Bernroider E, Shulman GI, Cobelli C, Hofer A, Nowotny P, Waldhausl W, Roden M. Hepatic glucose metabolism in type 2 diabetes after mixed meal ingestion. Diabetologia 2002; 45(suppl 2):A188.

    Google Scholar 

  99. Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Dalla Man C, Cobelli C, Cline GW, Shulman GI, Waldhausl W, Roden M. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 2004; 53:3048–3056.

    CAS  PubMed  Google Scholar 

  100. Fery F, Melot C, Balasse EO. Glucose fluxes and oxidation after an oral glucose load in patients with non-insulin-dependent diabetes mellitus of variable severity. Metabolism 1993; 42:522–530.

    CAS  PubMed  Google Scholar 

  101. Staehr P, Hother-Nielsen O, Levin K, Holst JJ, Beck-Nielsen H. Assessment of hepatic insulin action in obese type 2 diabetic patients. Diabetes 2001; 50:1363–1370.

    CAS  PubMed  Google Scholar 

  102. Firth R, Bell P, Rizza R. Insulin action in non-insulin-dependent diabetes mellitus: the relationship between hepatic and extrahepatic insulin resistance and obesity. Metab Clin Exper 1987; 36:10911095.

    Google Scholar 

  103. Katz H, Homan M, Jensen M, Caumo A, Cobelli C, Rizza R. Assessment of insulin action in NIDDM in the presence of dynamic changes in insulin and glucose concentration. Diabetes 1994; 43:28996.

    Google Scholar 

  104. Turk D, Alzaid A, Dinneen S, Nair KS, Rizza R. The effects of non-insulin-dependent diabetes mellitus on the kinetics of onset of insulin action in hepatic and extrahepatic tissues. J Clin Invest 1995; 95:755–762.

    CAS  PubMed  Google Scholar 

  105. Basu A, Basu R, Shah P, Vella A, Johnson M, Jensen M, Nair KS, Schwenk F, Rizza RA. Type 2 diabetes impairs splanchnic uptake of glucose but does not alter intestinal glucose absorption during enteral glucose feeding: Additional evidence for a defect in hepatic glucokinase activity. Diabetes 2001; 50:1351–1362.

    CAS  PubMed  Google Scholar 

  106. Nielsen MF, Nyholm B, Caumo A, Chandramouli V, Schumann WC, Cobelli C, Landau BR, Rizza RA, Schmitz O. Prandial glucose effectiveness and fasting gluconeogenesis in insulin-resistant firstdegree relatives of patients with type 2 diabetes. Diabetes 2000; 49:2135–2141.

    CAS  PubMed  Google Scholar 

  107. Radziuk I, Norwich KH, Vranic M. Measurement and validation of non-steady turnover rates with application to the insulin and glucose systems. Fed Proc 1974; 33:1855–1864.

    CAS  PubMed  Google Scholar 

  108. Radziuk I, McDonald TI, Rubenstein D, Dupre J. Initial splanchnic extraction of ingested glucose in normal man. Metabolism 1978; 27:657–669.

    CAS  PubMed  Google Scholar 

  109. Radziuk I. Mathematical basis for the measurement of the rates of glucose appearance and synthesis in vivo. In: Methods in Diabetes Research: Vol II. Clinical Methods, Clarke WL, Lamer I, Pohl SL (eds.), Wiley, New York, 1986, pp. 143–164.

    Google Scholar 

  110. Radziuk J. Tracer methods and the metabolic disposal of a carbohydrate load in man. Diab/Metab Rev 1987; 3:231–267.

    CAS  Google Scholar 

  111. Radziuk J. Assessment methods of carbohydrate metabolism in the liver (glycogenolysis, gluconeo-genesis, and glycogen synthesis). In: Clinical Research in Diabetes and Obesity: Part I. Methods, Assessment, and Metabolic Regulation, Draznin B, Rizza R (eds.), Humana Press, Totowa NI, 1997, pp. 171–201.

    Google Scholar 

  112. Radziuk I, Pye S. Endogenous glucose production in type 2 diabetes—basal and postprandial: Role of diurnal rhythms. J Invest Med 2004; 52:379–388.

    CAS  Google Scholar 

  113. Lauro D, Kido Y, Castle AL, Zamowski MI, Hayashi H, Ebina Y, Accili D. Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nat Genet 1998; 294–298.

    Google Scholar 

  114. Gerich IE. Is muscle the major site of insulin resistance in Type 2 (non-insulin-dependent) diabetes mellitus? Diabetologia 1991; 34:607–610.

    CAS  PubMed  Google Scholar 

  115. Consoli A. Role of liver in pathophysiology of NIDDM. Diabetes Care 1992; 15:430–441.

    CAS  PubMed  Google Scholar 

  116. Beck-Nielsen H, Hother-Nielsen O, Vaag A, Alford F. Pathogenesis of Type 2 (non-insulindependent) diabetes mellitus: The role of skeletal muscle glucose uptake and hepatic glucose production in the development of hyperglycaemia-a critical comment. Diabetologia 1994; 37:217–221.

    CAS  PubMed  Google Scholar 

  117. Insulin-mediated reduction of whole body protein breakdown. J Clin Invest 1985; 76:2306–2311.

    Google Scholar 

  118. Ader M, Bergman R. Peripheral effects of insulin dominate suppression of fasting hepatic glucose production. Am J Physiol 1990; 258:EI020–EI032.

    Google Scholar 

  119. Sindelar DK et al. The role of fatty acids in mediating the effects of peripheral insulin on hepatic glucose production in the conscious dog. Diabetes 1997; 46:187–196.

    CAS  PubMed  Google Scholar 

  120. Lewis GF, Sinman B, Groenwoud Y, Vranic M, Giacca A. Hepatic glucose production is regulated both by direct hepatic and extrahepatic effects of insulin in humans. Diabetes 1996; 45:454–462

    CAS  PubMed  Google Scholar 

  121. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 2002; 5:566–572.

    CAS  PubMed  Google Scholar 

  122. Obici S, Shang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 2002; 8:1376–1382.

    CAS  PubMed  Google Scholar 

  123. Burcelin R, Munoz MC, Guillam M-T, Thorens B. Liver hyperplasia and paradoxical regulation of glycogen metabolism and glucose-sensitive gene expression in GLUT2-null hepatocytes. J Biol Chem 2000; 275:10930–10936.

    CAS  PubMed  Google Scholar 

  124. Hetenyi G Jr, Kopstick FX, Retlstorf LI. The effect of insulin on the distribution of glucose between the blood plasma and the liver in alloxan-diabetic and adrenalectomized rats. Can J Biochem Physiol 1963; 41:2431–2439.

    CAS  PubMed  Google Scholar 

  125. Pilkis SI, Claus TH. Hepatic gluconeogenesis/glycolysis: Regulation and structure/function relationships of substrate cycle enzymes. Ann Rev Nutr 1990; 11:465–515.

    Google Scholar 

  126. Newsholme EA, Crabtree B. Substrate cycles in metabolic regulation and heat generation. Biochem Soc Symp 1976; 41:61–110.

    CAS  PubMed  Google Scholar 

  127. Hers HG. Biochem Soc Trans 1976; 4:985–988.

    CAS  PubMed  Google Scholar 

  128. Katz I, Rognstad R. Curr Top Cell Regul 1976; 10:238–289.

    Google Scholar 

  129. Hellerstein MK, Neese RA, Linfoot P, Christiansen M, Turner S, Letscher A. Hepatic gluconeogenic fluxes and glycogen turnover during fasting in humans: A stable isotope study. J Clin Invest 1997; 100:1305–1319.

    CAS  PubMed  Google Scholar 

  130. David M, Petit W, Laughlin M, Shulman R, King J, Barrett E. Simultaneous synthesis and degradation of rat liver glycogen. J Clin Invest 1990; 86:612–617.

    CAS  PubMed  Google Scholar 

  131. Shulman GI, Rothman DL, Chung Y, Rossetti L, Petit WA, Barrett EJ, Shulman RG. 13C NMR studies of glycogen turnover in the perfused rat liver. J Biol Chem 1988; 263:5027–5029.

    CAS  PubMed  Google Scholar 

  132. Zhang Z, Radziuk J. Insulin effects on hepatic glucose production: Extent and pathways. Diabetologia 1997; 40(supp 1)979:A249.

    Google Scholar 

  133. Radziuk J, Pye S. The liver, insulin action and resistance. In: Contemporary Endocrinology: Insulin Resistance, Reaven G, Laws A (eds.), Humana Press, Totowa, Nl, 1999, pp. 197–231.

    Google Scholar 

  134. Radziuk J, Pye S. Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diab Metab Res Rev 2001; 17:250–272.

    CAS  Google Scholar 

  135. Radziuk J. Hepatic glycogen formation by direct uptake of glucose following oral glucose loading in man. Can J Physiol Pharmacol 1979; 57: 1196–1199.

    Google Scholar 

  136. Radziuk J. Glucose and glycogen metabolism following glucose ingestion: A turnover approach. In: Carbohydrate Metabolism: Quantitative Physiology and Modelling, Cobelli C, Bergman R (eds.), Wiley, London, 1981, pp. 239–266.

    Google Scholar 

  137. Radziuk J. Source of carbon in hepatic glycogen synthesis during absorption of an oral glucose load in humans. Fed Proc 1982; 41:88–90.

    CAS  PubMed  Google Scholar 

  138. Radziuk J. Hepatic glycogen in humans: I. Direct formation after oral and intravenous glucose or after a 24-hr fast. Am J Physiol 1989; 257:E145–157.

    CAS  PubMed  Google Scholar 

  139. Radziuk J. Hepatic glycogen in humans: II. Gluconeogenetic formation after oral and intravenous glucose. Am J Physiol 1989; 257:EI58–169.

    Google Scholar 

  140. Hems DA, Whitton PO, Taylor EA. Glycogen synthesis in the perfused liver of the starved rat. Biochem J 1972; 129:529–538.

    CAS  PubMed  Google Scholar 

  141. Sugden MC, Watts DI, Palmer TN, Myles DD. Direction of carbon flux in starvation and after refeeding: In vitro and in vivo effects of 3-mercaptopicolinate. Biochem Intern 1983; 7:329–337.

    CAS  Google Scholar 

  142. Newgard CB, Moore SV, Foster DW, McGarry JD. Efficient hepatic glycogen synthesis in refeeding rats requires continued carbon flow through the gluconeogenic pathway. J Biol Chem 1984; 259:6958–6963.

    CAS  PubMed  Google Scholar 

  143. lungermann K, Thurman RG. Hepatocyte heterogeneity in the metabolism of carbohydrates. Enzyme 1992; 46:33–58.

    Google Scholar 

  144. lungermann K, Kietzmann T. Role of oxygen in the zonation of carbohydrate metabolism and gene expression in the liver. Kidney Int 1997; 51:402–412.

    Google Scholar 

  145. Zhang Z, Radziuk J. Effects of lactate on pathways of glycogen formation in the perfused rat liver. Biochem J 1991; 280:419–425.

    Google Scholar 

  146. Zhang Z, Radziuk J. The coordinated regulation of hepatic glycogen formation in the perfused rat liver by glucose and lactate. Am J Physiol 1994; 266:E583–E591.

    CAS  PubMed  Google Scholar 

  147. Radziuk J, Zhang Z, Wiernsperger N, Pye S. Effects of metformin on lactate uptake and gluconeogenesis in the perfused rat liver. Diabetes 1997; 46:1406–1413.

    CAS  PubMed  Google Scholar 

  148. Song S, Andrikopoulos S, Filippis C, Thorburn AW, Khan D, Proietto J. Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin. Am J Physiol Endocrinol Metab 2001; 281:E275–E282.

    CAS  PubMed  Google Scholar 

  149. Otto M, Breinholt J, Westergaard N. Metformin inhibits glycogen synthesis and gluconeogenesis in cultured rat hepatocytes. Diab Obes Metab 2003; 5:189–194.

    CAS  Google Scholar 

  150. Agius L, Peak M, Newgard CB, Gomez-Foix AM, Guinovart JJ. Evidence for a role of glucoseinduced translocation of glucokinase in the control of glycogen synthesis. J Biol Chem 1996; 48:30479–33048.

    Google Scholar 

  151. Towle HC. Metabolic regulation of gene transcription in mammals. J Biol Chem 1995; 270:23235–23238.

    CAS  PubMed  Google Scholar 

  152. Argaud O, Kirby TL, Newgard CB, Lange AJ. Stimulation of glucose-6-phosphatase gene expression by glucose and fructose-2,6-bisphosphate. J Biol Chem 1997; 272:12854–12861.

    CAS  PubMed  Google Scholar 

  153. Newgard CB, Foster DW, McGarry ID. Evidence for suppression of hepatic glucose-6-phosphatase activity with carbohydrate feeding. Diabetes 1984; 33:192–195.

    CAS  PubMed  Google Scholar 

  154. Minassian C, Daniele N, Bordet J-C, Zitoun C, Mithieux G. Liver glucose-6-phosphatase activity is inhibited by refeeding in rats. J Nutr 1995; 125:2727–2732.

    CAS  PubMed  Google Scholar 

  155. Gardner L, Liu Z, Barrett E. The role of glucose-6-phosphatase in the action of insulin on hepatic glucose production in the rat. Diabetes 1984; 42:192–195.

    Google Scholar 

  156. Mithieux G. New knowledge regarding glucose-6-phosphatase gene and protein and their roles in the regulation of glucose metabolism. Eur J Endocrinol 1997; 136:137–145.

    CAS  PubMed  Google Scholar 

  157. Hers HG. The control of glycogen metabolism in the liver. Ann Rev Biochem 1976; 45:167–189.

    CAS  PubMed  Google Scholar 

  158. van de Werve G, leanrenaud B. Liver glycogen metabolism: An overview. Diab/Metab Rev 1987; 3:47–78.

    Google Scholar 

  159. Nutall FQ, Gilboe DP, Gannon MC, Niewohner CB, Tan AWH. Regulation of glycogen synthesis in the liver. Am J Med 1988; 85(suppl 5A):77–85.

    Google Scholar 

  160. O’Doherty RM, Lehman DL, Seoane J, Gomez-Foix AM, Guinovart JJ, Newgard CB. Differential metabolic effects of adenovirus-mediated glucokinase and hexokinase I overexpression in rat primary hepatocytes. J Biol Chem 1997; 271:20524–20530.

    Google Scholar 

  161. Ortmeyer H, Bodkin N, Hansen B. Insulin regulates liver glycogen synthase and glycogen phosphorylase activity reciprocally in rhesus monkeys. Am J Physiol 1997; 272:E133–E138.

    CAS  PubMed  Google Scholar 

  162. Kruszynska YT, Home PD, Albert KGMM. In vivo regulation of liver and skeletal muscle glycogen synthase activity by glucose and insulin. Diabetes 1986; 35:662–667.

    CAS  PubMed  Google Scholar 

  163. Terrettaz J, Assimacopoulos-Jeannet F, Jeanrenaud B. Inhibition of hepatic glucose production by insulin in vivo in rats: Contribution of glycolysis. Am J Physiol 1986; 250:E346–E351.

    CAS  PubMed  Google Scholar 

  164. Liu Z, Gardner L, Barrett E. Insulin and glucose suppress hepatic glycogenolysis by distinct enzymatic mechanisms. Metabolism 1993; 42:1546–1551.

    CAS  PubMed  Google Scholar 

  165. Fernandez-Novell JM, Roca A, Bellido D, Vilaró S, Guinovart JJ. Translocation and aggregation of hepatic glycogen synthase during the fasted to refed transition in rats. Eur J Biochem 1996; 238:570–575.

    CAS  PubMed  Google Scholar 

  166. Soskin S. The liver and carbohydrate metabolism. Endocrinology 1940; 26:297–308.

    CAS  Google Scholar 

  167. Parkes JL, Grieninger G. Insulin, not glucose, controls hepatocellular glycogen deposition. J Biol Chem 1985; 260:8090–8097.

    CAS  PubMed  Google Scholar 

  168. Gitzelman R, Spycher MA, Feil G, Muller J, Seilnacht B, Stahl M, Bosshard NU. Liver glycogen synthase deficiency: A rarely diagnosed entity. Eur J Ped 1996; 155:561–567.

    Google Scholar 

  169. Consoli A. Role of liver in pathophysiology of NIDDM. Diabetes Care 1992; 15:430–441.

    CAS  PubMed  Google Scholar 

  170. Stumvoll M, Perriello G, Nurjhan N, Bucci A, Welle S, Jansson PA, Dailey G, Bier D, Jenssen T, Gerich J. Glutamine and alanine metabolism in NIDDM. Diabetes 1996; 45:863–888.

    PubMed  Google Scholar 

  171. Perriello G, Pampanelli S, Del Sindaco P, Lalli C, Ciofetta M, Volpi E, Santeusanio F, Brunetti P, Bolli GB. Evidence of increased systemic glucose production and gluconeogenesis in early stages of NIDDM. Diabetes 1997; 46:1010–1016.

    CAS  PubMed  Google Scholar 

  172. Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus: A 13C nuclear magnetic resonance study. J Clin Invest 1992; 86:489–497.

    Google Scholar 

  173. Hellerstein MK. Isotopic studies of carbohydrate metabolism in non-insulin-dependent diabetes mellitus. Curr Op Endocrinol Diab 1995; 2:518–529.

    CAS  Google Scholar 

  174. Magnusson I, Rothman DL, Jucker B, Cline GW, Shulman RG, Shulman GI. Liver glycogen turnover in fed and fasted humans. Am J Physiol 1994; 266:E796–803.

    CAS  PubMed  Google Scholar 

  175. Clore IN, Post EP, Bailey J, Nestler JE, Blackard WG. Evidence for increased liver glycogen in patients with noninsulin-dependent diabetes mellitus after a 3-day fast. J Clin Endocrinol Metab 1992; 74:660–666.

    CAS  PubMed  Google Scholar 

  176. Muller C, Assimacopoulos-Jeannet F, Mosimam F, Schneiter Ph, Riou JP, Pachiaudi C, Felber JP, Jequier E, Jeanrenaud B, Tappy L. Endogenous glucose production, gluconeogenesis and liver glycogen concentration in obese non-diabetic patients. Diabetologia 1997; 40.

    Google Scholar 

  177. Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus: A 13C nuclear magnetic resonance study. J Clin Invest 1992; 86:489–497.

    Google Scholar 

  178. Llado I, Palou A, Pons A. Hepatic glycogen and lactate handling in dietary obese rats. Ann Nutr Metabol 1998; 42:181–188.

    CAS  Google Scholar 

  179. Chen YD, Varasteh BB, Reaven GM. Plasma lactate concentration in obesity and type 2 diabetes. Diabete et Metabolisme 1993; 19:348–354.

    CAS  PubMed  Google Scholar 

  180. Lovejoy J, Newby FD, Gebhart SS, DiGirolamo M. Insulin resistance in obesity is associated with elevated basal lactate levels and diminished lactate appearance following intravenous glucose and insulin. Metabolism 1992; 41:22–27.

    CAS  PubMed  Google Scholar 

  181. King JL, DiGirolamo M. Lactate production from glucose and response to insulin in perfused adipocytes from mesenteric and epididymal regions of lean and obese rats. Obes Res 1998; 6:69–75.

    CAS  PubMed  Google Scholar 

  182. Giaccari A, Rossetti L. Predominant role of gluconeogenesis in the hepatic glycogen repletion of diabetic rats. J Clin Invest 1992; 89:36–45.

    CAS  PubMed  Google Scholar 

  183. Watanabe RM, Lovejoy J, Steil GM, Digirolamo M, Bergman RN. Insulin sensitivity accounts for glucose and lactate kinetics after intravenous glucose. Diabetes 1995; 44:954–962.

    CAS  PubMed  Google Scholar 

  184. Madison LL, Mebane D, Lecocq F, Combes B. Physiological significance of the secretion of endogenous insulin into the portal circulation: V. The quantitative importance of the liver in the disposition of glucose loads. Diabetes 1963; 12:8–15.

    CAS  Google Scholar 

  185. Barrett E, Liu Z. Hepatic glucose metabolism and insulin resistance in NIDDM and obesity. Bailliere’s Clin Endocrinol Metab 1993; 7:875–901.

    CAS  Google Scholar 

  186. Barrett EJ, Ferrannini E, Gusberg R, Bevilacqua S, DeFronzo RA. Hepatic and extrahepatic splanchnic glucose metabolism in the postabsorptive and glucose fed dog. Metabolism 1985; 34:410–420.

    CAS  PubMed  Google Scholar 

  187. Maheux P, Chen Y-D, Polonsky K, Reaven G. Evidence that insulin can directly inhibit hepatic glucose production. Diabetologia 1997; 40:1300–1306.

    CAS  PubMed  Google Scholar 

  188. Cherrington AD, Edgerton D, Sindalar DK. The direct and indirect effects of insulin on hepatic glucose production in vivo. Diabetologia 1998; 41:987–996.

    CAS  PubMed  Google Scholar 

  189. Lewis GF, Carpentier A, Vranic M, Giacca A. Resistance to insulin’s acute direct hepatic effect in suppressing steady-state glucose production in individuals with type 2 diabetes. Diabetes 1999; 48:570–576.

    CAS  PubMed  Google Scholar 

  190. Basu A, Basu R, Shah P, Vella A, Johnson M, Nair KS, Jensen MD, Schwenk F, Rizza RA. Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism: Evidence for a defect in hepatic glucokinase activity. Diabetes 2000; 49:272–283.

    CAS  PubMed  Google Scholar 

  191. Gastadelli A, Toschi E, Pettiti M, Frascerra S, Quinones-Galvan A, Sironi AM, Natali A, Ferrannini E. Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes 2001; 50:1807–1812.

    Google Scholar 

  192. Rebrin K, Steil GM, Getty L, Bergman RN. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes 1995; 44:1038–1045.

    CAS  PubMed  Google Scholar 

  193. Vaag A, Alford F, Henriksen FL, Christopher M, Beck-Nielsen H. Multiple defects of both hepatic and peripheral intracellular glucose processing contribute to the hyperglycemia of diabetes. Diabetologia 1995; 38:326–336.

    CAS  PubMed  Google Scholar 

  194. Pigon J, Giacca A, Ostenson C-G, Lam L, Vranic M, Efendic S. Normal hepatic insulin sensitivity in lean, mild noninsulin-dependent diabetic patients. J Clin Endocrinol Metab 1996; 81:3702–3708.

    CAS  PubMed  Google Scholar 

  195. Wise SD, Nielsen MF, Cryer PE, Rizza RA. Overnight normalization of glucose concentrations improves hepatic but not extrahepatic insulin action in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 1998; 83:2461–2469.

    CAS  PubMed  Google Scholar 

  196. Radziuk J, Inculet R. The effects of ingested and intravenous glucose on forearm uptake of glucose and glucogenic substrate in normal man. Diabetes 1983; 32:977–981.

    CAS  PubMed  Google Scholar 

  197. Luzi L, DeFronzo RA. Effect of loss of first-phase secretion on hepatic glucose production and tissue glucose disposal in humans. Am J Physiol 1989; 257:E241–246.

    CAS  PubMed  Google Scholar 

  198. Del Prato S, Tiengo A. The importance of first-phase insulin secretion: Implications for the therapy of type 2 diabetes mellitus. Diab/Metab Res Rev 2001; 17:164–174.

    Google Scholar 

  199. Boden G. Gluconeogenesis and glycogenolysis in health and diabetes. J Invest Med 2004; 52:375–378.

    Google Scholar 

  200. Gastaldelli A, Toschi E, Pettiti M et al. Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and type 2 diabetic patients. Diabetes 2001; 50:1807–1812

    CAS  PubMed  Google Scholar 

  201. Boden G, Cheung P, Stein TP et al. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol 2002; 283:EI2–19.

    Google Scholar 

  202. Edgerton DS, Carin S, Emschwiller M et al. Small increases in insulin inhibit hepatic glucose production solely caused by an effect of glycogen metabolism. Diabetes 2001; 50:1872–1882.

    CAS  PubMed  Google Scholar 

  203. Perley MJ, Kipnis DM. Plasma insulin response to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest 1967; 46:1954–1962.

    CAS  PubMed  Google Scholar 

  204. Felig P, Wahren J, Hendler R. Influence of maturity-onset diabetes on splanchnic glucose balance after oral glucose ingestion. Diabetes 1978; 27:121–126.

    CAS  PubMed  Google Scholar 

  205. Wahren J, Hagenfeldt L, Felig P. Splanchnic and leg exchange of glucose, amino acids, and free fatty acids during exercise in diabetes mellitus. J Clin Invest 1975; 55:1303–1314.

    CAS  PubMed  Google Scholar 

  206. Ferrannini E, Bjorkman O, Reichard GA, Pilo A, Olsson M, Wahren J, DeFronzo RA. The disposal of an oral glucose load in healthy subjects. Diabetes 1985; 34:580–588.

    CAS  PubMed  Google Scholar 

  207. Pehling G, Tessari P, Gerich JE, Haymond MW, Service FJ, Rizza RA. Abnormal meal carbohydrate disposition in insulin-dependent diabetes. J Clin Invest 1984; 74:985–991.

    CAS  PubMed  Google Scholar 

  208. McMahon M, Marsh M, Rizza RA. Effects of basal insulin supplementation on disposition of mixed meal in obese patients with NIDDM. Diabetes 1989; 38:291–303.

    CAS  PubMed  Google Scholar 

  209. Ferrannini E, Wahren J, Felig P, DeFronzo RA. The role of fractional glucose extraction in the regulation of splanchnic glucose metabolism in normal and diabetic man. Metabolism 1980; 29:28–35.

    CAS  PubMed  Google Scholar 

  210. Ludvik B, Nolan JJ, Roberts A, Baloga J, Joyce M, Bell JM, Olefsky JM. Evidence for decreased splanchnic glucose uptake after oral glucose administration in non-insulin-dependent diabetes mellitus. J Clin Invest 1997; 100:2354–2361.

    CAS  PubMed  Google Scholar 

  211. DeFronzo RA, Ferrannini E, Hendler R, Felig P, Wahren J. Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia in man. Diabetes 1983; 32:35–45.

    CAS  PubMed  Google Scholar 

  212. McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51:7–18.

    CAS  PubMed  Google Scholar 

  213. Zammit VA, Waterman IJ, Topping D, McKay G. Insulin stimulation of hepatic triacylglycerol secretion and the etiology of insulin resistance. J Nutr 2001; 131:2074–2077.

    CAS  PubMed  Google Scholar 

  214. Ginsberg HN, Zhang Y-L, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 2005; 36:232–240.

    CAS  PubMed  Google Scholar 

  215. Horton J D, Goldstein JL, Brown MS. SREBPs: Activators of complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109:1125–1131.

    CAS  PubMed  Google Scholar 

  216. Foufelle F, Ferre P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: A role for the transcription factor sterol regulatory element binding protein-Ic. Biochem J 2002; 366:377–391.

    CAS  PubMed  Google Scholar 

  217. Hellerstein MK. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur J Clin Nutr 1999; 53(suppl 1):S53–S65.

    PubMed  Google Scholar 

  218. Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int J Obes 2004; 28:S12–S21.

    CAS  Google Scholar 

  219. Randle PI. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diab Metab Rev 1998; 14:263–283.

    CAS  Google Scholar 

  220. Rosella G, Zajac J, Kaczmarczyk S, Andrikopoulos S, Proietto I. Impaired suppression of gluconeogenesis induced by overexpression of a noninsulin-responsive phosphoenolpyruvate carboxykinase gene. Met Endoc 1993; 7:1456–1462.

    CAS  Google Scholar 

  221. Rosella G, Zajac JD, Baker L, Kaczmarczyk SJ, Andrikopoulos S, Adams TE, Proietto J. Impaired glucose tolerance and increased weight gain in transgenic rats overexpressing a non-insulinresponsive phosphoenolpyruvate carboxykinase gene. Mol Endoc 1995; 9(10):1396–1404.

    CAS  Google Scholar 

  222. O’Doherty RM, Lehman DL, Telemaque-Potts S, Newgard CB. Metabolic impact of glucokinase overexpression in liver: Lowering blood glucose in fed rats is accompanied by hyperlipidemia.

    Google Scholar 

  223. Boden G, Chen X, Capulong E, Mozzoli M. Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes 2001; 50:810–816.

    CAS  PubMed  Google Scholar 

  224. Gustafson LA, Neeft M, Reijngoud D-J, Kuipers F, Sauerwein HP, Romijn JA, Herling AW, Burger H-J, Meijer AI. Fatty acid and amino acid modulation of glucose cycling in isolated rat hepatocytes. Biochem J 2001; 358:665–671.

    CAS  PubMed  Google Scholar 

  225. Gabriely I, Barzilai N. Surgical removal of visceral adipose tissue: Effects on insulin action. Curr Diab Repts 2003; 3:201–206.

    Google Scholar 

  226. Kim JK, Fillmore JJ, Chen Y, Yu C, Moore IK, Pypaert M, Lutz EP, Kako Y, Velez-Carrasco W, Goldberg IJ, Breslow JL, Shulman GI. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA 2001; 98:7522–7527.

    CAS  PubMed  Google Scholar 

  227. Oakes N, Cooney G, Camilleri S, Chisholm D, Kraegen E. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes 1997; 46:1768–1774.

    CAS  PubMed  Google Scholar 

  228. Andrikopoulos S, Proietto J. The biochemical basis of increased hepatic glucose production in a mouse model of type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1995; 38:1389–1396.

    CAS  PubMed  Google Scholar 

  229. Wu C, Okar DA, Newgard CB, Lange AI. Increasing fructose 2,6-bisphosphate overcomes hepatic insulin resistance of type 2 diabetes. Am J Physiol 2002; 282:E38–E45.

    CAS  Google Scholar 

  230. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002; 346:1221–1231.

    CAS  PubMed  Google Scholar 

  231. Robertson G, Leclerq I, Farrell GC. Nonalcoholic steatosis and steatohepatitis: II. Cytochrome P-450 enzymes and oxidative stress. Am J Physiol Gastrointest Liver Physiol 2001; 281:GI135–G1139.

    Google Scholar 

  232. den Boer M, Voshol PJ, Kuipers F, Havekes LM, Romijn JA. Hepatic steatosis: A mediator of the metabolic syndrome, lessons from animal models. Arterioscler Thromb Vase Biol 2004; 24: 644–649.

    Google Scholar 

  233. Song S. The role of increased liver triglyceride content: A culprit of diabetic hyperglycemia? Diab Metab Res Rev 2002; 18:5–12.

    CAS  Google Scholar 

  234. Zhang W, Patil S, Chauhan B, Guo S, Powell DR, Le J, Klotsas A, Matika R, Xiao X, Franks R, Heidenreich KA, Sajan MP, Farese RV, Stolz DB, Tso P, Koo SH, Montminy M, Unterman TG. FoxO 1 regulates multiple metabolic pathways in the liver: Effects on gluconeogenic, glycolytic, and lipogenic expression. J Biol Chem 2006; 281: 10105–10117.

    CAS  PubMed  Google Scholar 

  235. Hardie DG. AMP-activated protein kinase: a master switch in glucose and lipid metabolism. Rev Endoc Metab Disord 2004; 5:119–125.

    CAS  Google Scholar 

  236. Role of peroxisome prolfierator-activated receptor-γ in the glucose-sensing apparatus of liver and beta cells. Diabetes 2004; 53(suppl 1):S60–S65.

    Google Scholar 

  237. Zhou XY, Shibusawa N, Naik K, Porras D, Temple K, Ou H, Kaihara K, Roe MW, Brady MJ, Wondisford FE. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREBbinding protein. Nature Med 2004; 10:633–637.

    CAS  PubMed  Google Scholar 

  238. Duran-Sandoval D, Caiou B, Percevault F, Hennuyer N, Grefhorst A, van Dijk TH, Gonzalez FJ, Fruchart J-C, Kuipers F, Staels B. The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition. J Biol Chem 2005; 280:29971–29979.

    CAS  PubMed  Google Scholar 

  239. Rodgers JT, Lerin C, Haas W, Gygl SP, Spiegelman B, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-la and SIRT1. Nature 2005; 434:113–118.

    CAS  PubMed  Google Scholar 

  240. Cao W, Collins QF, Becker TC, Robidoux J, Lupo EG Jr, Xiong Y, Daniel KW, Floerling L, Collins S. p38 mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J Biol Chem 2005; 280:42731–42737.

    CAS  PubMed  Google Scholar 

  241. Taniguchi CM, Ueki K, Kahn CR. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest 2005; 115:718–727.

    CAS  PubMed  Google Scholar 

  242. Makowski L, Hotamisligil GS. Fatty acid binding proteins: The evolutionary crossroads of inflammatory and metabolic responses. J Nutr 2004; 134:2464S–2468S.

    CAS  PubMed  Google Scholar 

  243. Schilling CH, Letscher D, Palsson BO. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 2000; 203:229–248.

    CAS  PubMed  Google Scholar 

  244. Schilling CH, Edwards JS, Letscher D, Palsson BO. Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol Bioeng 2001; 71:286–306.

    CAS  Google Scholar 

  245. Savageau MA. Biochemical systems theory: Alternative views of metabolic control. In: Control of Metabolic Processes, Cornish-Bowden A, Cardenas ML (eds.), Plenum Press, New York, 1990, p. 69.

    Google Scholar 

  246. Hofmeyr JH, Cornish-Bowden A. Quantitative assessment of regulation in metabolic systems. Eur J Biochem 1991; 200:2231.

    Google Scholar 

  247. Brand MD. Regulation analysis of energy metabolism. J Exp Biol 1997; 200:193.

    CAS  PubMed  Google Scholar 

  248. Minorsky N. Nonlinear Oscillations, Princeton NJ, Van Nostrand, 1962.

    Google Scholar 

  249. Ferrannini E, Nannipieri M, Williams K, Gonzales C, Haffner SM, Stem MP. Mode of onset of type 2 diabetes from normal or impaired glucose tolerance. Diabetes 2004; 53:160–165.

    CAS  PubMed  Google Scholar 

  250. Mackey MC, Glass L. Oscillations and chaos in physiological control systems. Science 1977; 197:287–289.

    CAS  PubMed  Google Scholar 

  251. Glass L, Mackey MC. Pathological oscillations resulting from instabilities in physiological control systems. Ann NY Acad Sci 1979; 316:214–235.

    CAS  PubMed  Google Scholar 

  252. Guyton AC, Crowell JW, Moore JW. Basic oscillating mechanism of Cheyne-Stokes breathing. Am J Physiol 1956; 187:395–398.

    PubMed  Google Scholar 

  253. Guevara MR, Shrier A, Glass L. Phase-locked rhythms in periodically stimulated heart cell aggregates. Am J Physiol 1988; 254:H1–H10.

    CAS  PubMed  Google Scholar 

  254. Lasota A, Mackey MC, Wazewska-Czyzewska M. Minimizing therapeutically induced anemia. J Math Biol 1981; 13:149–158.

    CAS  PubMed  Google Scholar 

  255. Freiesleben De Blasio B, Bak P, Pociot F, Karlsen AE, Nerup 1. Onset of type 1 diabetes: A dynamical instability. Diabetes 1999; 48:1677–1685.

    CAS  PubMed  Google Scholar 

  256. Kahn R, Buse J, Ferrannini E, Stern M. The metabolic syndrome: time for critical appraisal. Joint statement form the American Diabetes Association and the European Association for the study of diabetes. Diabetologia 2005; 48:1684–1699.

    CAS  PubMed  Google Scholar 

  257. Gale EAM. The myth of the metabolic syndrome. Diabetologia 2005; 48:1679–1683.

    PubMed  Google Scholar 

  258. Pietropaolo M, Barinas-Mitchell E, Kuller LH. The heterogeneity of diabetes: unraveling a dispute: is systemic inflammation related to islet autoimmunity? Diabetes 2007; 56(5):1189–1197.

    CAS  PubMed  Google Scholar 

  259. Yudkin JS. Insulin resistance and the metabolic syndrome-or the pitfalls of epidemiology. Diabetologia 2007; 50(8):1576–1586.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Radziuk, J., Pye, S. (2008). The Liver, Glucose Homeostasis, and Insulin Action in Type 2 Diabetes Mellitus. In: Hansen, B.C., Bray, G.A. (eds) The Metabolic Syndrome. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60327-116-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-116-5_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-738-9

  • Online ISBN: 978-1-60327-116-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics