Skip to main content

Type 2 Diabetes Mellitus: An Evidence-Based Approach to Practical Management

Noninsulin Pharmacological Therapies

  • Chapter
Type 2 Diabetes Mellitus

Part of the book series: Contemporary Endocrinology ((COE))

  • 3970 Accesses

Summary

This chapter reviews all available noninsulin hypoglycemic therapies and aims to provide a succinct, evidence-based reference for use of these agents in clinical practice. The cornerstone of type 2 diabetes (DM) treatment is dietary lifestyle modifications, exercise, and weight management. Though these measures should be part of every treatment regimen, the addition of pharmacologic treatment should be implemented soon after diagnosis if blood glucose control is not achieved. Early intervention with achievement of normoglycemia reduces long term complications and has the potential to slow progression of the disease. Combination therapy addressing the different pathophysiological pathways responsible for the development of type 2 diabetes represents a physiological approach to treatment, and usually yields higher rates of success. Failure of oral hypoglycemic agents occurs over time in the majority of patients, and insulin therapy is eventually needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koro CE, Bowlin SJ, Bourgeois N, Fedder DO. Glycemic control from 1988 to 2000 among U.S. adults diagnosed with type 2 diabetes: a preliminary report. Diabetes Care, 2004. 27(1) p. 17–20.

    PubMed  Google Scholar 

  2. Lebovitz HE, Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes, 2001. 109 Suppl 2: p. S135–48.

    PubMed  CAS  Google Scholar 

  3. Ferrannini E, Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev, 1998. 19(4) p. 477–490.

    PubMed  CAS  Google Scholar 

  4. Despres JP, Lamarche B, Mauriege P, et al., Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med, 1996. 334(15) p. 952–957.

    PubMed  CAS  Google Scholar 

  5. Bailey CJ, Turner RC. Metformin. N Engl J Med, 1996. 334(9) 574–579.

    PubMed  CAS  Google Scholar 

  6. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med, 1995. 333(9) 550–4.

    PubMed  CAS  Google Scholar 

  7. Hundal RS, Krssak M, Dufour S, et al., Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes, 2000. 49(12) 2063–9.

    PubMed  CAS  Google Scholar 

  8. Hundal HS, Ramlal T, Reyes R, Leiter LA, Klip A., Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells. Endocrinology, 1992. 131(3) 1165–73.

    PubMed  CAS  Google Scholar 

  9. Galuska D, Nolte LA, Zierath JR, Wallberg-Henriksson H. Effect of metformin on insulin-stimulated glucose transport in isolated skeletal muscle obtained from patients with NIDDM. Diabetologia, 1994. 37(8) 826–32.

    PubMed  CAS  Google Scholar 

  10. Inzucchi SE, Maggs DG, Spollett GR, et al., Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med, 1998. 338(13) p. 867–72.

    PubMed  CAS  Google Scholar 

  11. Perriello G, Misericordia P, Volpi E, et al., Acute antihyperglycemic mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production. Diabetes, 1994. 43(7) p. 920–8.

    PubMed  CAS  Google Scholar 

  12. Abbasi F, Carantoni M, Chen YD, Reaven GM. Further evidence for a central role of adipose tissue in the antihyperglycemic effect of metformin. Diabetes Care, 1998. 21(8) p. 1301–5.

    PubMed  CAS  Google Scholar 

  13. Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL, Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med, 1997. 103(6) p. 491–7.

    PubMed  CAS  Google Scholar 

  14. Riddle MC. Glycemic management of type 2 diabetes: an emerging strategy with oral agents, insulins, and combinations. Endocrinol Metab Clin North Am, 2005. 34(1) p. 77–98.

    PubMed  Google Scholar 

  15. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med, 1995. 333(9) p. 541–9.

    PubMed  CAS  Google Scholar 

  16. Grant PJ, The effects of high- and medium-dose metformin therapy on cardiovascular risk factors in patients with type II diabetes. Diabetes Care, 1996. 19(1) 64–6.

    PubMed  CAS  Google Scholar 

  17. Tessier D, Maheux P, Khalil A, Fulop T. Effects of gliclazide versus metformin on the clinical profile and lipid peroxidation markers in type 2 diabetes. Metabolism, 1999. 48(7) 897–903.

    PubMed  CAS  Google Scholar 

  18. Hermann LS, Schersten B Bitzen PO, Kjellstrom T, Lindgarde F, Melander A. Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. A double-blind controlled study. Diabetes Care, 1994. 17(10) p. 1100–9.

    PubMed  CAS  Google Scholar 

  19. 34, UKPDSG, Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet, 1998. 352(9131) 854–65.

    Google Scholar 

  20. DeFronzo RA, N Barzilai, and DC Simonson, Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. J Clin Endocrinol Metab, 1991. 73(6) 1294–301.

    PubMed  CAS  Google Scholar 

  21. 28, UKPDSG. A randomized trial of efficacy of early addition of metformin in sulfonylurea-treated type 2 diabetes. Diabetes Care, 1998. 21(1) 8792.

    Google Scholar 

  22. Aviles-Santa L, SindingJ, Raskin P Effects of metformin in patients with poorly controlled, insulin-treated type 2 diabetes mellitus. A randomized, double-blind, placebo-controlled trial. Ann Intern Med, 1999. 131(3) 182–8.

    PubMed  CAS  Google Scholar 

  23. Dandona P, Fonseca V, Mier A, Beckett AG. Diarrhea and metformin in a diabetic clinic. Diabetes Care, 1983. 6(5) 472–4.

    PubMed  CAS  Google Scholar 

  24. Berger W. Incidence of severe sideeffects during therapy with sulfonylureas and biguanides. Horm Metab Res Suppl, 1985. 15 111–5.

    PubMed  CAS  Google Scholar 

  25. Salpeter S, Greyber E, Pasternak G, Salpeter E. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane database of systematic reviews (Online), 2006(1) CD002967.

    Google Scholar 

  26. Bristol Myers Squibb, Glucophage (Package insert ) 2005.

    Google Scholar 

  27. Misbin RI, Green L, Stadel BV, Gueriguian JL, Gubbi A, Fleming GA. Lactic acidosis in patients with diabetes treated with metformin. New Engl J Med, 1998. 338(4) 265–6.

    PubMed  CAS  Google Scholar 

  28. Knowler WC, Hamman RF, Edelstein SL. et al., Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes, 2005. 54(4) 1150–6.

    PubMed  Google Scholar 

  29. Murphy EJ, Davern TJ, Shakil AO. et al., Troglitazone-induced fulminant hepatic failure. Acute Liver Failure Study Group. Dig Dis Sci, 2000. 45(3) 549–53.

    PubMed  CAS  Google Scholar 

  30. Watkin, PB, Whitcomb RW. Hepatic dysfunction associated with troglitazone. N Engl J Med, 1998. 338(13) 916–7.

    Google Scholar 

  31. Gitlin N, Julie NL, Spurr CL, Lim KN, Juarbe HM. Two cases of severe clinical and histologic hepatotoxicity associated with troglitazone. Ann Intern Med, 1998. 129(1) 36–8.

    PubMed  CAS  Google Scholar 

  32. Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care, 2002. 25(5) 815–21.

    PubMed  CAS  Google Scholar 

  33. Rosenstock J, Einhorn D, Hershon K, Glazer NB, Yu S. Efficacy and safety of pioglitazone in type 2 diabetes: a randomised, placebo-controlled study in patients receiving stable insulin therapy. Int J Clin Pract, 2002. 56(4) 251–7.

    PubMed  CAS  Google Scholar 

  34. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem, 1995. 270(22) 12953–6.

    PubMed  CAS  Google Scholar 

  35. Kliewer SA, Xu HE, Lambert MH, Willson TM, Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res, 2001. 56 239–63.

    PubMed  CAS  Google Scholar 

  36. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med, 2004. 351(11) 1106–18.

    PubMed  Google Scholar 

  37. Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem, 2000. 43(4) 527–50.

    PubMed  CAS  Google Scholar 

  38. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell, 1995. 83(5) 803–12.

    PubMed  CAS  Google Scholar 

  39. Tontonoz P, Hu E, Devine J, Beale EG, Spiegelman BM, PPAR gamma 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol, 1995. 15 (1): 351–7.

    PubMed  CAS  Google Scholar 

  40. Schoonjans K, Watanabe M, Suzuki H, et al., Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. J Biol Chem, 1995. 270(33) 19269–76.

    PubMed  CAS  Google Scholar 

  41. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al., PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. Embo J, 1996. 15(19) 5336–48.

    PubMed  CAS  Google Scholar 

  42. Kelly LJ, Vicario PP, Thompson GM. et al., Peroxisome proliferator-activated receptors gamma and alpha mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expression. Endocrinology, 1998. 139(12) 4920–7.

    PubMed  CAS  Google Scholar 

  43. Kallen CB, Lazar MA. Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes. Proc Natl Acad Sci U S A, 1996. 93(12) 5793–6.

    PubMed  CAS  Google Scholar 

  44. Combs TP, Wagner JA, Berger J, et al., Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists: a potential mechanism of insulin sensitization. Endocrinology, 2002. 143(3) 998–1007.

    PubMed  CAS  Google Scholar 

  45. Yang WS, Jeng CY, Wu TJ, et al., Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care, 2002. 25(2) 376–80.

    PubMed  CAS  Google Scholar 

  46. Peraldi P, Xu M, Spiegelman BM, Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J Clin Invest, 1997. 100(7) 1863–9.

    PubMed  CAS  Google Scholar 

  47. Ribon V, Johnson JH, Camp HS, Saltiel AR, Thiazolidinediones and insulin resistance: peroxisome proliferatoractivated receptor gamma activation stimulates expression of the CAP gene. Proc Natl Acad Sci U S A, 1998. 95(25) 14751–6.

    PubMed  CAS  Google Scholar 

  48. Chao L, Marcus-Samuels B, Mason MM, et al., Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J Clin Invest, 2000. 106(10) 1221–8.

    PubMed  CAS  Google Scholar 

  49. Aronoff S, Rosenblatt S, Braithwaite S, Egan JW, Mathisen AL, Schneider RL. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care, 2000. 23(11) 1605–11.

    PubMed  CAS  Google Scholar 

  50. Schade DS, Jovanovic L, Schneider J, A placebo-controlled, randomized study of glimepiride in patients with type 2 diabetes mellitus for whom diet therapy is unsuccessful. J Clin Pharmacol, 1998. 38(7) 636–41.

    PubMed  CAS  Google Scholar 

  51. 33, U.K.P.D.S.G., Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 1998. 352(9131) 837–53.

    Google Scholar 

  52. Kahn SE, Haffner SM, Heise MA, et al., Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. New Engl J Med, 2006. 355(23) 2427–43.

    PubMed  Google Scholar 

  53. Goldberg RB, Kendall DM, Deeg MA, et al., A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care, 2005. 28(7) 1547–54.

    PubMed  Google Scholar 

  54. Zhang F, Sowers JR, Ram JL, Standley PR, Peuler JD. Effects of pioglitazone on calcium channels in vascular smooth muscle. Hypertension, 1994. 24(2) 170–5.

    PubMed  CAS  Google Scholar 

  55. Kotchen TA, Zhang HY, Reddy S, Hoffmann RG, Effect of pioglitazone on vascular reactivity in vivo and in vitro. Am J Physiol, 1996. 270(3 Pt 2): R660–6.

    Google Scholar 

  56. Cho DH, Choi YJ, Jo SA, Jo I. Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator-activated receptor (PPAR) gamma-dependent and PPARgamma-independent signaling pathways. J Biol Chem, 2004. 279(4) 2499–506.

    PubMed  CAS  Google Scholar 

  57. Marx N, Imhof A, Froehlich J, et al., Effect of rosiglitazone treatment on soluble CD40L in patients with type 2 diabetes and coronary artery disease. Circulation, 2003. 107(15) 1954–7.

    PubMed  CAS  Google Scholar 

  58. Mohanty P, Aljada A, Ghanim H, et al., Evidence for a potent antiinflammatory effect of rosiglitazone. J Clin Endocrinol Metab, 2004. 89(6) 2728–35.

    PubMed  CAS  Google Scholar 

  59. Kruszynska YT, Yu JG, Olefsky JM, Sobel BE, Effects of troglitazone on blood concentrations of plasminogen activator inhibitor 1 in patients with type 2 diabetes and in lean and obese normal subjects. Diabetes, 2000. 49(4) 633–9.

    PubMed  CAS  Google Scholar 

  60. Harte AL, McTernan PG, McTernan CL, Smith SA, Barnett AH, Kumar S, Rosiglitazone inhibits the insulin-mediated increase in PAI-1 secretion in human abdominal subcutaneous adipocytes. Diabetes Obes Metab, 2003. 5(5) 302–10.

    PubMed  CAS  Google Scholar 

  61. Dormandy, JA, B Charbonnel, DJ. Eckland, et al., Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet, 2005. 366(9493) 1279–89.

    PubMed  Google Scholar 

  62. Takeda Pharmaceutical, I., Actos (Package insert). 2005.

    Google Scholar 

  63. Nesto RW, D Bell, RO Bonow, et al., Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. October 7, 2003. Circulation, 2003. 108(23) 2941–8.

    PubMed  Google Scholar 

  64. Phillips LS, G Grunberger, E Miller, et al., Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care , 2001. 24(2) 308–15.

    PubMed  CAS  Google Scholar 

  65. Nakamura T, T Funahashi, S Yamashita, et al., Thiazolidinedione derivative improves fat distribution and multiple risk factors in subjects with visceral fat accumulation–double-blind placebo-controlled trial. Diabetes Res Clin Pract, 2001. 54(3) 181–90.

    PubMed  CAS  Google Scholar 

  66. Kelly IE, TS Han, K Walsh, and ME Lean, Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care, 1999. 22(2) 288–93.

    PubMed  CAS  Google Scholar 

  67. Bando Y, Y Ushiogi, K Okafuji, D Toya, N Tanaka, and M Fujisawa, Troglitazone combination therapy in obese type 2 diabetic patients poorly controlled with alpha-glucosidase inhibitors. J Int Med Res, 1999. 27(2) 53–64.

    PubMed  CAS  Google Scholar 

  68. Walker AB, EK Naderali, PD Chattington, RE Buckingham, and G Williams, Differential vasoactive effects of the insulin sensitizers rosiglitazone (BRL 49653) and troglitazone on human small arteries in vitro. Diabetes, 1998. 47(5) 810–4.

    PubMed  CAS  Google Scholar 

  69. Nissen SE and K Wolski, Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. New Engl J Med, 2007. 356(24) 2457–71.

    PubMed  Google Scholar 

  70. http://www.fda.gov/bbs/topics/NEWS/2007/New01683.html; accessed September 1st, 2007.

    Google Scholar 

  71. Home PD, NP Jones, SJ Pocock, et al., Rosiglitazone RECORD study: glucose control outcomes at 18 months. Diabetic Medicine, 2007. 24(6) 626–34.

    Google Scholar 

  72. Escher P and W Wahli, Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res, 2000. 448(2) 121–38.

    PubMed  CAS  Google Scholar 

  73. Martin G, K Schoonjans, AM Lefebvre, B Staels, and J Auwerx, Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem, 1997. 272(45) 28210–7.

    PubMed  CAS  Google Scholar 

  74. Motojima K, P Passilly, JM Peters, FJ Gonzalez, and N Latruffe, Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. J Biol Chem, 1998. 273(27) 16710–4.

    PubMed  CAS  Google Scholar 

  75. Rubins HB, SJ Robins, D Collins, et al., Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med, 1999. 341(6) 410–8.

    PubMed  CAS  Google Scholar 

  76. Uwaifo GI and RE Ratner, Novel pharmacologic agents for type 2 diabetes. Endocrinol Metab Clin North Am, 2005. 34(1) 155–97.

    PubMed  Google Scholar 

  77. Nissen SE, K Wolski, and EJ Topol, Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA, 2005. 294(20) 2581–6.

    PubMed  Google Scholar 

  78. Bell DS, Practical considerations and guidelines for dosing sulfonylureas as monotherapy or combination therapy. Clin Ther, 2004. 26(11) 1714–27.

    PubMed  CAS  Google Scholar 

  79. Gerich JE, Oral hypoglycemic agents. New Engl J Med, 1989. 321(18) 1231–45.

    PubMed  CAS  Google Scholar 

  80. Waldhausl W, Role of sulfonylureas in non-insulin-dependent diabetes mellitus: Part I–“The pros”. Hormone and metabolic research. Hormon- und Stoffwechselforschung, 1996. 28(9) 517–21.

    CAS  Google Scholar 

  81. Rosenstock J, E Samols, DB Muchmore, and J Schneider, Glimepiride, a new once-daily sulfonylurea. A double-blind placebo-controlled study of NIDDM patients. Glimepiride Study Group. Diabetes Care, 1996. 19(11) 1194–9.

    PubMed  CAS  Google Scholar 

  82. Simonson DC, IA Kourides, M Feinglos, H Shamoon, and CT Fischette, Efficacy, safety, and dose-response characteristics of glipizide gastrointestinal therapeutic system on glycemic control and insulin secretion in NIDDM. Results of two multicenter, randomized, placebo-controlled clinical trials. The Glipizide Gastrointestinal Therapeutic System Study Group. Diabetes Care, 1997. 20(4) 597–606.

    PubMed  CAS  Google Scholar 

  83. 24, U.K.P.D.S.G., A 6-year, randomized, controlled trial comparing sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy. Ann Intern Med, 1998. 128(3) 165–75.

    Google Scholar 

  84. Groop L, PH Groop, S Stenman, et al., Comparison of pharmacokinetics, metabolic effects and mechanisms of action of glyburide and glipizide during long-term treatment. Diabetes Care, 1987. 10(6) 71–8.

    PubMed  CAS  Google Scholar 

  85. Derosa G, AF Cicero, A Gaddi, et al., Metabolic effects of pioglitazone and rosiglitazone in patients with diabetes and metabolic syndrome treated with glimepiride: a twelve-month, multicenter, double-blind, randomized, controlled, parallel-group trial. Clin Ther, 2004. 26(5) 744–54.

    PubMed  CAS  Google Scholar 

  86. Charpentier G, F Fleury, M Kabir, L Vaur, and S Halimi, Improved glycaemic control by addition of glimepiride to metformin monotherapy in type 2 diabetic patients. Diabet Med, 2001. 18(10) 828–34.

    PubMed  CAS  Google Scholar 

  87. Jeppesen J, MY Zhou, YD Chen, and GM Reaven, Effect of glipizide treatment on postprandial lipaemia in patients with NIDDM. Diabetologia, 1994. 37(8) 781–7.

    PubMed  CAS  Google Scholar 

  88. Dills DG and J Schneider, Clinical evaluation of glimepiride versus glyburide in NIDDM in a double-blind comparative study. Glimepiride/Glyburide Research Group. Horm Metab Res, 1996. 28(9) 426–9.

    PubMed  CAS  Google Scholar 

  89. Leibowitz G and E Cerasi, Sulphonylurea treatment of NIDDM patients with cardiovascular disease: a mixed blessing? Diabetologia, 1996. 39(5) 503–14.

    PubMed  CAS  Google Scholar 

  90. Riddle MC, Editorial: sulfonylureas differ in effects on ischemic preconditioning–is it time to retire glyburide? J ClinEndocrinol Metabol, 2003. 88(2) 528–30.

    Google Scholar 

  91. Meinert CL, GL Knatterud, TE Prout, and CR Klimt, A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes, 1970. 19 Suppl:789–830.

    PubMed  Google Scholar 

  92. Jollis JG, RJ Simpson, Jr., WE Cascio, MK Chowdhury, JR Crouse, 3rd, and SC Smith, Jr., Relation between sulfonylurea therapy, complications, and outcome for elderly patients with acute myocardial infarction. Am Heart J, 1999. 138(5 Pt 1): S376–80.

    Google Scholar 

  93. Klepzig H, G Kober, C Matter, et al., Sulfonylureas and ischaemic preconditioning; a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur Heart J, 1999. 20(6) 439–46.

    PubMed  CAS  Google Scholar 

  94. Lee TM and TF Chou, Impairment of myocardial protection in type 2 diabetic patients. J Clinical Endocrinol Metabol, 2003. 88(2) 531–7.

    CAS  Google Scholar 

  95. Tomai F, F Crea, A Gaspardone, et al., Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation, 1994. 90(2) 700–5.

    PubMed  CAS  Google Scholar 

  96. Maedler K, RD Carr, D Bosco, RA Zuellig, T Berney, and MY Donath, Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab, 2005. 90(1) 501–6.

    Google Scholar 

  97. Hu S, Interaction of nateglinide with K(ATP) channel in beta-cells underlies its unique insulinotropic action. Eur J Pharmacol, 2002. 442(1–2): 163–71.

    PubMed  CAS  Google Scholar 

  98. Quast U, D Stephan, S Bieger, and U Russ, The impact of ATP-sensitive K+ channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium. Diabetes, 2004. 53 Suppl 3: S156–64.

    PubMed  CAS  Google Scholar 

  99. Hu S, S Wang, B Fanelli, et al., Pancreatic beta-cell K(ATP) channel activity and membrane-binding studies with nateglinide: A comparison with sulfonylureas and repaglinide. J Pharmacol Experimental Therapeutics, 2000. 293(2) 444–52.

    CAS  Google Scholar 

  100. Weaver ML, BA Orwig, LC Rodriguez, et al., Pharmacokinetics and metabolism of nateglinide in humans. Drug Metab Dispos, 2001. 29(4 Pt 1): 415–21.

    PubMed  CAS  Google Scholar 

  101. Saloranta C, K Hershon, M Ball, S Dickinson, and D Holmes, Efficacy and safety of nateglinide in type 2 diabetic patients with modest fasting hyperglycemia. J Clin Endocrinol Metab, 2002. 87(9) 4171–6.

    PubMed  CAS  Google Scholar 

  102. Hanefeld M, KP Bouter, S Dickinson, and C Guitard, Rapid and short-acting mealtime insulin secretion with nateglinide controls both prandial and mean glycemia. Diabetes Care, 2000. 23(2) 202–7.

    PubMed  CAS  Google Scholar 

  103. Rosenstock J, DR Hassman, RD Madder, et al., Repaglinide versus nateglinide monotherapy: a randomized, multicenter study. Diabetes Care, 2004. 27(6) 1265–70.

    PubMed  CAS  Google Scholar 

  104. Raskin P, L Klaff, J McGill, et al., Efficacy and safety of combination therapy: repaglinide plus metformin versus nateglinide plus metformin. Diabetes Care, 2003. 26(7) 2063–8.

    PubMed  CAS  Google Scholar 

  105. Gerich J, P Raskin, L Jean-Louis, D Purkayastha, and MA Baron, PRESERVE-beta: two-year efficacy and safety of initial combination therapy with nateglinide or glyburide plus metformin. Diabetes Care, 2005. 28(9) 2093–9.

    PubMed  Google Scholar 

  106. Mori Y, G Kuriyama, and N Tajima, Effects of nateglinide on the elevation of postprandial remnant-like particle triglyceride levels in Japanese patients with type 2 diabetes assessment by meal tolerance test. Endocrine, 2004. 25(3) 203–6.

    PubMed  Google Scholar 

  107. Shimabukuro M, N Higa, N Takasu, T Tagawa, and S Ueda, A single dose of nateglinide improves post-challenge glucose metabolism and endothelial dysfunction in Type 2 diabetic patients. Diabet Med, 2004. 21(9) 983–6.

    PubMed  CAS  Google Scholar 

  108. Esposito K, D Giugliano, F Nappo, and R Marfella, Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation, 2004. 110(2) 214–9.

    PubMed  CAS  Google Scholar 

  109. Morita Y, T Ueno, N Sasaki, et al., Nateglinide is useful for nonalcoholic steatohepatitis (NASH) patients with type 2 diabetes. Hepatogastroenterology, 2005. 52(65) 1338–43.

    PubMed  Google Scholar 

  110. Padwal R., SR Majumdar, JA Johnson, J Varney, and FA McAlister, A systematic review of drug therapy to delay or prevent type 2 diabetes. Diabetes Care, 2005. 28(3) 736–44.

    PubMed  Google Scholar 

  111. Horton ES, JE Foley, SG Shen, and MA Baron, Efficacy and tolerability of initial combination therapy with nateglinide and metformin in treatment-naive patients with type 2 diabetes. Curr Med Res Opin, 2004. 20(6) 883–9.

    PubMed  CAS  Google Scholar 

  112. Fonseca V, G Grunberger, S Gupta, S Shen, and JE Foley, Addition of nateglinide to rosiglitazone monotherapy suppresses mealtime hyperglycemia and improves overall glycemic control. Diabetes Care, 2003. 26(6) 1685–90.

    PubMed  CAS  Google Scholar 

  113. Van de Laar FA, PL Lucassen, RP Akkermans, EH Van de Lisdonk, GE Rutten, and C Van Weel, Alpha-glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev, 2005(2) CD003639.

    Google Scholar 

  114. Goke B, Improved glycemic control and lipid profile in a randomized study of pioglitazone compared with acarbose in patients with type 2 diabetes mellitus. Treat Endocrinol, 2002. 1(5) 329–36.

    PubMed  Google Scholar 

  115. Standl E, HJ Baumgartl, M Fuchtenbusch, and J Stemplinger, Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diabetes Obes Metab, 1999. 1(4) 215–20.

    PubMed  CAS  Google Scholar 

  116. Hermanns N, A Burkert, and T Haak, The addition of acarbose to insulin lispro reduces acute glycaemic responses in patients with type-2 diabetes. Exp Clin Endocrinol Diabetes, 2004. 112(6) 310–4.

    PubMed  CAS  Google Scholar 

  117. Chiasson JL and L Naditch, The synergistic effect of miglitol plus metformin combination therapy in the treatment of type 2 diabetes. Diabetes Care, 2001. 24(6) 989–94.

    PubMed  CAS  Google Scholar 

  118. Phillips P, J Karrasch, R Scott, D Wilson, and R Moses, Acarbose improves glycemic control in overweight type 2 diabetic patients insufficiently treated with metformin. Diabetes Care, 2003. 26(2) 269–73.

    PubMed  CAS  Google Scholar 

  119. Chiasson JL, RG Josse, R Gomis, M Hanefeld, A Karasik, and M Laakso, Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA, 2003. 290(4) 486–94.

    PubMed  CAS  Google Scholar 

  120. Chiasson JL, RG Josse, R Gomis, M Hanefeld, A Karasik, and M Laakso, Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet, 2002. 359(9323) 2072–7.

    PubMed  CAS  Google Scholar 

  121. Sonmez AS, L Yasar, K Savan, et al., Comparison of the effects of acarbose and metformin use on ovulation rates in clomiphene citrate-resistant polycystic ovary syndrome. Hum Reprod, 2005. 20(1) 175–9.

    PubMed  CAS  Google Scholar 

  122. Penna IA, PR Canella, RM Reis, MF Silva de Sa, and RA Ferriani, Acarbose in obese patients with polycystic ovarian syndrome: a double-blind, randomized, placebo-controlled study. Hum Reprod, 2005. 20(9) 2396–401.

    PubMed  CAS  Google Scholar 

  123. Peter S, Acarbose and idiopathic reactive hypoglycemia. Horm Res, 2003. 60(4) 166–7.

    PubMed  CAS  Google Scholar 

  124. Imhof A, M Schneemann, A Schaffner, and M Brandle, Reactive hypoglycaemia due to late dumping syndrome: successful treatment with acarbose. Swiss Med Wkly, 2001. 131(5–6): 81–3.

    Google Scholar 

  125. Creutzfeldt W and R Ebert, New developments in the incretin concept. Diabetologia, 1985. 28(8) 65–73.

    Google Scholar 

  126. Holst JJ and C Orskov, The incretin approach for diabetes treatment: modulation of islet hormone release by GLP-1 agonism. Diabetes, 2004. 53 Suppl 3: S197–204.

    PubMed  CAS  Google Scholar 

  127. Eissele R, R Goke, S Willemer, et al., Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest, 1992. 22(4) 283–91.

    PubMed  CAS  Google Scholar 

  128. Meier JJ and MA Nauck, Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab Res Rev, 2005. 21(2) 91–117.

    PubMed  Google Scholar 

  129. Meier JJ, B Gallwitz, S Salmen, et al., Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab, 2003. 88(6) 2719–25.

    PubMed  CAS  Google Scholar 

  130. Drucker DJ, Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol, 2003. 17(2) 161–71.

    PubMed  CAS  Google Scholar 

  131. Egan JM, A Bulotta, H Hui, and R Perfetti, GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells. Diabetes Metab Res Rev, 2003. 19(2) 115–23.

    PubMed  CAS  Google Scholar 

  132. Kieffer TJ, CH McIntosh, and RA Pederson, Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology, 1995. 136(8) 3585–96.

    PubMed  CAS  Google Scholar 

  133. Amylin Pharmaceutical, I., Package insert for Byetta (TM) 2005.

    Google Scholar 

  134. DeFronzo RA, RE Ratner, J Han, DD Kim, MS Fineman, and AD Baron, Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care, 2005. 28(5) 1092–100.

    PubMed  Google Scholar 

  135. Fineman MS, TA Bicsak, LZ Shen, et al., Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care, 2003. 26(8) 2370–7.

    PubMed  CAS  Google Scholar 

  136. Deacon CF, TE Hughes, and JJ Holst, Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes, 1998. 47(5) 764–9.

    PubMed  CAS  Google Scholar 

  137. Kim D, L Wang, M Beconi, et al., (2R)-4-oxo-4-(3-(trifluoromethyl)-5,6-dihydro(1,2,4)triazolo(4,3-a)pyrazin -7(8H)-yl)-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem, 2005. 48(1) 141–51.

    PubMed  CAS  Google Scholar 

  138. Co., M., Package insert for Januvia 2006.

    Google Scholar 

  139. Raz I, M Hanefeld, L Xu, C Caria, D Williams-Herman, and H Khatami, Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia, 2006. 49(11) 2564–71.

    PubMed  CAS  Google Scholar 

  140. Nauck MA, G Meininger, D Sheng, L Terranella, and PP Stein, Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: a randomized, double-blind, non-inferiority trial. Diabetes, Obesity Metabol, 2007. 9(2) 194–205.

    CAS  Google Scholar 

  141. Hermansen K, M Kipnes, E Luo, D Fanurik, H Khatami, and P Stein, Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, in patients with type 2 diabetes mellitus inadequately controlled on glimepiride alone or on glimepiride and metformin. Diabetes, Obesity Metabol, 2007. 9(5) 733–45.

    CAS  Google Scholar 

  142. Scott R, M Wu, M Sanchez, and P Stein, Efficacy and tolerability of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy over 12 weeks in patients with type 2 diabetes. Int J Clin Practice, 2007. 61(1) 171–80.

    Google Scholar 

  143. Aschner P, MS Kipnes, JK Lunceford, M Sanchez, C Mickel, and DE Williams-Herman, Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care, 2006. 29(12) 2632–7.

    PubMed  Google Scholar 

  144. Charbonnel B, A Karasik, J Liu, M Wu, and G Meininger, Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care, 2006. 29(12) 2638–43.

    PubMed  Google Scholar 

  145. Ahren B, R Gomis, E Standl, D Mills, and A Schweizer, Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care, 2004. 27(12) 2874–80.

    PubMed  CAS  Google Scholar 

  146. Pi-Sunyer FX, A Schweizer, D Mills, and S Dejager, Efficacy and tolerability of vildagliptin monotherapy in drug-naive patients with type 2 diabetes. Diabetes Res Clin Practice, 2007. 76(1) 132–8.

    Google Scholar 

  147. Dejager S, S Razac, JE Foley, and A Schweizer, Vildagliptin in drug-naive patients with type 2 diabetes: a 24-week, double-blind, randomized, placebo-controlled, multiple-dose study. Hormone Metabolic Res. Hormon- und Stoffwechselforschung, 2007. 39(3) 218–23.

    CAS  Google Scholar 

  148. Garber AJ, A Schweizer, MA Baron, E Rochotte, and S Dejager, Vildagliptin in combination with pioglitazone improves glycaemic control in patients with type 2 diabetes failing thiazolidinedione monotherapy: a randomized, placebo-controlled study. Diabetes, Obesity Metabol, 2007. 9(2) 166–74.

    CAS  Google Scholar 

  149. Schweizer A, A Couturier, JE Foley, and S Dejager, Comparison between vildagliptin and metformin to sustain reductions in HbA(1c) over 1 year in drug-naive patients with Type 2 diabetes 2007.

    Google Scholar 

  150. Bosi E, RP Camisasca, C Collober, E Rochotte, and AJ Garber, Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care, 2007. 30(4) 890–5.

    PubMed  Google Scholar 

  151. Rosenstock J, MA Baron, S Dejager, D Mills, and A Schweizer, Comparison of vildagliptin and rosiglitazone monotherapy in patients with type 2 diabetes: a 24-week, double-blind, randomized trial. Diabetes Care, 2007. 30(2) 217–23.

    PubMed  Google Scholar 

  152. Amylin Pharmaceuticals, I., Symilin (package insert) 2005.

    Google Scholar 

  153. Scherbaum WA, The role of amylin in the physiology of glycemic control. Exp Clin Endocrinol Diabetes, 1998. 106(2) 97–102.

    PubMed  CAS  Google Scholar 

  154. Vella A, JS Lee, M Camilleri, LA Szarka, RA Rizza, and PD Klein, Effects of pramlintide, an amylin analogue, on gastric emptying in type 1 and 2 diabetes mellitus. Neurogastroenterol Motil, 2002. 14(2) 123–31.

    PubMed  CAS  Google Scholar 

  155. Fineman M, C Weyer, DG. Maggs, S Strobel, and OG Kolterman, The human amylin analog, pramlintide, reduces postprandial hyperglucagonemia in patients with type 2 diabetes mellitus. Horm Metab Res, 2002. 34(9) 504–8.

    PubMed  CAS  Google Scholar 

  156. Maggs DG, M Fineman, J Kornstein, et al., Pramlintide reduces postprandial glucose excursions when added to insulin lispro in subjects with type 2 diabetes: a dose-timing study. Diabetes Metab Res Rev, 2004. 20(1) 55–60.

    PubMed  CAS  Google Scholar 

  157. Hollander PA, P Levy, MS Fineman, et al., Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes: a 1-year randomized controlled trial. Diabetes Care, 2003. 26(3) 784–90.

    PubMed  CAS  Google Scholar 

  158. Hollander P, DG Maggs, JA Ruggles, et al., Effect of pramlintide on weight in overweight and obese insulin-treated type 2 diabetes patients. Obes Res, 2004. 12(4) 661–8.

    PubMed  CAS  Google Scholar 

  159. Chapman I, B Parker, S Doran, et al., Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia, 2005. 48(5) 838–48.

    PubMed  CAS  Google Scholar 

  160. Ratner RE, LL Want, MS Fineman, et al., Adjunctive therapy with the amylin analogue pramlintide leads to a combined improvement in glycemic and weight control in insulin-treated subjects with type 2 diabetes. Diabetes Technol Ther, 2002. 4(1) 51–61.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lingvay, I., Rhee, C., Raskin, P. (2008). Type 2 Diabetes Mellitus: An Evidence-Based Approach to Practical Management. In: Feinglos, M.N., Bethel, M.A. (eds) Type 2 Diabetes Mellitus. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60327-043-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-043-4_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-794-5

  • Online ISBN: 978-1-60327-043-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics