Skip to main content

The Role of BAFF and APRIL in Regulating Human B-Cell Behaviour: Implications for Disease Pathogenesis

  • Chapter
  • First Online:
BLyS Ligands and Receptors

Part of the book series: Contemporary Immunology ((CONTIM))

  • 460 Accesses

Abstract

B cells require signals from multiple sources for their development from precursor cells in the bone marrow and differentiation into effector cells. BAFF and APRIL are members of the TNF superfamily of cytokines and have been identified as critical regulators of B-cell development and differentiation. Defects in the production of BAFF and APRIL, and/or expression of their receptors, have been associated with a diverse array of human diseases characterised by perturbed B-cell function and behaviour, including autoimmunity, malignancy, and immunodeficiency. This chapter will discuss the role of BAFF and APRIL in normal B-cell physiology as well as the emerging evidence of their involvement in the pathogenesis of these human immunopathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uckun FM. Regulation of human B-cell ontogeny. Blood 1990;76:1908–23.

    CAS  PubMed  Google Scholar 

  2. Burrows PD, Cooper MD. B-cell development in man. Curr Opin Immunol 1993;5: 201–6.

    Article  CAS  PubMed  Google Scholar 

  3. Banchereau J, Rousset F. Human B lymphocytes: phenotype, proliferation, and differentiation. Adv Immunol 1992;52:125–262.

    Article  CAS  PubMed  Google Scholar 

  4. Allman D, Lindsley RC, DeMuth W, Rudd K, Shinton SA, Hardy RR. Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J Immunol 2001;167:6834–40.

    CAS  PubMed  Google Scholar 

  5. Carsetti R, Rosado MM, Wardmann H. Peripheral development of B cells in mouse and man. Immunol Rev 2004;197:179–91.

    Article  PubMed  Google Scholar 

  6. Liu YJ, Banchereau J. The paths and molecular controls of peripheral B-cell development. The Immunologist 1996;4:55–66.

    CAS  Google Scholar 

  7. Van Kooten C, Banchereau J. CD40-CD40 ligand: a multifunctional receptor-ligand pair. Adv Immunol 1996;61:1–77.

    Article  PubMed  Google Scholar 

  8. Agematsu K, Nagumo H, Oguchi Y, Nakazawa T, Fukushima K, Yasui K, Ito S, Kobata T, Morimoto C, Komiyama A. Generation of plasma cells from peripheral blood memory B cells: synergistic effect of interleukin-10 and CD27/CD70 interaction. Blood 1998;91: 173–80.

    CAS  PubMed  Google Scholar 

  9. Stuber E, Strober W. The T cell-B cell interaction via OX40-OX40L is necessary for the T cell-dependent humoral immune response. J Exp Med 1996;183:979–89.

    Article  CAS  PubMed  Google Scholar 

  10. Aversa G, Punnonen J, de Vries JE. The 26-kD transmembrane form of tumor necrosis factor alpha on activated CD4+ T cell clones provides a costimulatory signal for human B cell activation. J Exp Med 1993;177:1575–85.

    Article  CAS  PubMed  Google Scholar 

  11. Cerutti A, Schaffer A, Shah S, Zan H, Liou HC, Goodwin RG, Casali P. CD30 is a CD40-inducible molecule that negatively regulates CD40-mediated immunoglobulin class switching in non-antigen-selected human B cells. Immunity 1998;9:247–56.

    Article  CAS  PubMed  Google Scholar 

  12. Schattner EJ, Elkon KB, Yoo DH, Tumang J, Krammer PH, Crow MK, Friedman SM. CD40 ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/Fas pathway. J Exp Med 1995;182:1557–65.

    Article  CAS  PubMed  Google Scholar 

  13. Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, Ambrose C, Lawton P, Bixler S, Acha-Orbea H, Valmori D, Romero P, Werner-Favre C, Zubler RH, Browning JL, Tschopp J. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999;189:1747–56.

    Article  CAS  PubMed  Google Scholar 

  14. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, Soppet D, Charters M, Gentz R, Parmelee D, Li Y, Galperina O, Giri J, Roschke V, Nardelli B, Carrell J, Sosnovtseva S, Greenfield W, Ruben SM, Olsen HS, Fikes J, Hilbert DM. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1999;285:260–3.

    Article  CAS  PubMed  Google Scholar 

  15. Shu HB, Hu WH, Johnson H. TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. J Leukoc Biol 1999;65:680–3.

    CAS  PubMed  Google Scholar 

  16. Mukhopadhyay A, Ni J, Zhai Y, Yu GL, Aggarwal BB. Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-kappaB, and c-Jun NH2-terminal kinase. J Biol Chem 1999;274:15978–81.

    Article  CAS  PubMed  Google Scholar 

  17. Hahne M, Kataoka T, Schroter M, Hofmann K, Irmler M, Bodmer JL, Schneider P, Bornand T, Holler N, French LE, Sordat B, Rimoldi D, Tschopp J. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med 1998;188: 1185–90.

    Article  CAS  PubMed  Google Scholar 

  18. Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol 2002;2:465–75.

    Article  CAS  PubMed  Google Scholar 

  19. Mackay F, Schneider P, Rennert P, Browning JL. BAFF and APRIL: a tutorial on B cell survival. Ann Rev Immunol 2003;21:231–64.

    Article  CAS  Google Scholar 

  20. Tangye SG, Bryant VL, Cuss AK, Good KL. BAFF, APRIL and human B cell disorders. Semin Immunol 2006;18:305–17.

    Article  CAS  PubMed  Google Scholar 

  21. Nardelli B, Belvedere O, Roschke V, Moore PA, Olsen HS, Migone TS, Sosnovtseva S, Carrell JA, Feng P, Giri JG, Hilbert DM. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 2001;97:198–204.

    Article  CAS  PubMed  Google Scholar 

  22. Litinskiy MB, Nardelli B, Hilbert DM, He B, Schaffer A, Casali P, Cerutti A. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 2002;3:822–9.

    Article  CAS  PubMed  Google Scholar 

  23. Craxton A, Magaletti D, Ryan EJ, Clark EA. Macrophage- and dendritic cell-dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood 2003;101:4464–71.

    Article  CAS  PubMed  Google Scholar 

  24. Krumbholz M, Theil D, Derfuss T, Rosenwald A, Schrader F, Monoranu CM, Kalled SL, Hess DM, Serafini B, Aloisi F, Wekerle H, Hohlfeld R, Meinl E. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 2005;201:195–200.

    Article  CAS  PubMed  Google Scholar 

  25. Scapini P, Nardelli B, Nadali G, Calzetti F, Pizzolo G, Montecucco C, Cassatella MA. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med 2003;197:297–302.

    Article  CAS  PubMed  Google Scholar 

  26. Ng LG, Sutherland AP, Newton R, Qian F, Cachero TG, Scott ML, Thompson JS, Wheway J, Chtanova T, Groom J, Sutton IJ, Xin C, Tangye SG, Kalled SL, Mackay F, Mackay CR. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J Immunol 2004; 173:807–17.

    CAS  PubMed  Google Scholar 

  27. Kato A, Truong-Tran AQ, Scott AL, Matsumoto K, Schleimer RP. Airway epithelial cells produce B cell-activating factor of TNF family by an IFN-beta-dependent mechanism. J Immunol 2006;177:7164–72.

    CAS  PubMed  Google Scholar 

  28. Xu W, He B, Chiu A, Chadburn A, Shan M, Buldys M, Ding A, Knowles DM, Santini PA, Cerutti A. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat Immunol 2007;8:294–303.

    Article  CAS  PubMed  Google Scholar 

  29. He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, Shan M, Chadburn A, Villanacci V, Plebani A, Knowles DM, Rescigno M, Cerutti A. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 2007;26:812–26.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Park CS, Yoon SO, Li L, Hsu YM, Ambrose C, Choi YS. BAFF supports human B cell differentiation in the lymphoid follicles through distinct receptors. Int Immunol 2005;17:779–88.

    Article  CAS  PubMed  Google Scholar 

  31. Scapini P, Carletto A, Nardelli B, Calzetti F, Roschke V, Merigo F, Tamassia N, Pieropan S, Biasi D, Sbarbati A, Sozzani S, Bambara L, Cassatella MA. Proinflammatory mediators elicit secretion of the intracellular B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases. Blood 2005;105:830–7.

    Article  CAS  PubMed  Google Scholar 

  32. He B, Raab-Traub N, Casali P, Cerutti A. EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J Immunol 2003;171:5215–24.

    CAS  PubMed  Google Scholar 

  33. Fu L, Lin-Lee YC, Pham LV, Tamayo A, Youshimura L, Ford RJ. Constitutive NF-{kappa}B and NFAT activation leads to stimulation of The BLyS survival pathway in aggressive B cell lymphomas. Blood 2006;107:4540–8.

    Article  CAS  PubMed  Google Scholar 

  34. Thompson JS, Bixler SA, Qian F, Vora K, Scott ML, Cachero TG, Hession C, Schneider P, Sizing ID, Mullen C, Strauch K, Zafari M, Benjamin CD, Tschopp J, Browning JL, Ambrose C. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 2001;293:2108–11.

    Article  CAS  PubMed  Google Scholar 

  35. Yan M, Brady JR, Chan B, Lee WP, Hsu B, Harless S, Cancro M, Grewal IS, Dixit VM. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol 2001;11:1547–52.

    Article  CAS  PubMed  Google Scholar 

  36. Gross JA, Johnston J, Mudri S, Enselman R, Dillon SR, Madden K, Xu W, Parrish-Novak J, Foster D, Lofton-Day C, Moore M, Littau A, Grossman A, Haugen H, Foley K, Blumberg H, Harrison K, Kindsvogel W, Clegg CH. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 2000;404:995–9.

    Article  CAS  PubMed  Google Scholar 

  37. Marsters SA, Yan M, Pitti RM, Haas PE, Dixit VM, Ashkenazi A. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr Biol 2000;10:785–8.

    Article  CAS  PubMed  Google Scholar 

  38. Yu G, Boone T, Delaney J, Hawkins N, Kelley M, Ramakrishnan M, McCabe S, Qiu W-R, Kornuc M, Xia X-Z, Guo J, Stolina M, Boyle WJ, Sarosi I, Hsu H, Senaldi G, Theill LE. APRIL and TALL-1 and receptors BCMA and TACI: system for regulating humoral immunity. Nature Immunol. 2000;1:252–6.

    Article  CAS  Google Scholar 

  39. Xia XZ, Treanor J, Senaldi G, Khare SD, Boone T, Kelley M, Theill LE, Colombero A, Solovyev I, Lee F, McCabe S, Elliott R, Miner K, Hawkins N, Guo J, Stolina M, Yu G, Wang J, Delaney J, Meng SY, Boyle WJ, Hsu H. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J Exp Med 2000;192:137–43.

    Article  CAS  PubMed  Google Scholar 

  40. Thompson JS, Schneider P, Kalled SL, Wang L, Lefevre EA, Cachero TG, MacKay F, BixlerSA, Zafari M, Liu ZY, Woodcock SA, Qian F, Batten M, Madry C, Richard Y, Benjamin CD, Browning JL, Tsapis A, Tschopp J, Ambrose C. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J Exp Med 2000;192:129–35.

    Article  CAS  PubMed  Google Scholar 

  41. Ingold K, Zumsteg A, Tardivel A, Huard B, Steiner QG, Cachero TG, Qiang F, Gorelik L, Kalled SL, Acha-Orbea H, Rennert PD, Tschopp J, Schneider P. Identification of proteoglycans as the APRIL-specific binding partners. J Exp Med 2005;201:1375–83.

    Article  CAS  PubMed  Google Scholar 

  42. Gorelik L, Cutler AH, Thill G, Miklasz SD, Shea DE, Ambrose C, Bixler SA, Su L, Scott ML, Kalled SL. Cutting Edge: BAFF regulates CD21/35 and CD23 expression independent of its B cell survival function. J Immunol 2004;172:762–6.

    CAS  PubMed  Google Scholar 

  43. Hsu BL, Harless SM, Lindsley RC, Hilbert DM, Cancro MP. Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J Immunol 2002;168:5993–6.

    CAS  PubMed  Google Scholar 

  44. O’Connor BP, Raman VS, Erickson LD, Cook WJ, Weaver LK, Ahonen C, Lin L, Mantchev GT, Bram RJ, Noelle RJ. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 2004;199:91–7.

    Article  PubMed  CAS  Google Scholar 

  45. Avery DT, Kalled SL, Ellyard JI, Ambrose C, Bixler SA, Thien M, Brink R, Mackay F, Hodgkin PD, Tangye SG. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest 2003;112:286–97.

    CAS  PubMed  Google Scholar 

  46. Ellyard JI, Avery DT, Mackay CR, Tangye SG. Contribution of stromal cells to the migration, function and retention of plasma cells in human spleen: potential roles of CXCL12, IL-6 and CD54. Eur J Immunol 2005;35:699–708.

    Article  CAS  PubMed  Google Scholar 

  47. Novak AJ, Darce JR, Arendt BK, Harder B, Henderson K, Kindsvogel W, Gross JA, Greipp PR, Jelinek DF. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 2004;103:689–94.

    Article  CAS  PubMed  Google Scholar 

  48. Cuss AK, Avery DT, Cannons JL, Yu LJ, Nichols KE, Shaw PJ, Tangye SG. Expansion of functionally immature transitional B cells is associated with human-immunodeficient states characterized by impaired humoral immunity. J Immunol 2006;176:1506–16.

    CAS  PubMed  Google Scholar 

  49. Novak AJ, Bram RJ, Kay NE, Jelinek DF. Aberrant expression of B-lymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival. Blood 2002;100: 2973–9.

    Article  CAS  PubMed  Google Scholar 

  50. He B, Chadburn A, Jou E, Schattner EJ, Knowles DM, Cerutti A. Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. J Immunol 2004;172:3268–79.

    CAS  PubMed  Google Scholar 

  51. Darce JR, Arendt BK, Chang SK, Jelinek DF. Divergent effects of BAFF on human memory B cell differentiation into Ig-secreting cells. J Immunol 2007;178:5612–22.

    CAS  PubMed  Google Scholar 

  52. Darce JR, Arendt BK, Wu X, Jelinek DF. Regulated expression of BAFF-binding receptors during human B cell differentiation. J Immunol 2007;179:7276–86.

    CAS  PubMed  Google Scholar 

  53. Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE. Identification and characterization of circulating human transitional B cells. Blood 2005;105:4390–8.

    Article  CAS  PubMed  Google Scholar 

  54. Chiu A, Xu W, He B, Dillon SR, Gross JA, Sievers E, Qiao X, Santini P, Hyjek E, Lee JW, Cesarman E, Chadburn A, Knowles DM, Cerutti A. Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and APRIL. Blood 2007;109:729–39.

    Article  CAS  PubMed  Google Scholar 

  55. Avery DT, Ellyard JI, Mackay F, Corcoran LM, Hodgkin PD, Tangye SG. Increased expression of CD27 on activated human memory B cells correlates with their commitment to the plasma cell lineage. J Immunol 2005;174:4034–42.

    CAS  PubMed  Google Scholar 

  56. Moreaux J, Legouffe E, Jourdan E, Quittet P, Reme T, Lugagne C, Moine P, Rossi JF, Klein B, Tarte K. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004;103:3148–57.

    Article  CAS  PubMed  Google Scholar 

  57. Do RK, Hatada E, Lee H, Tourigny MR, Hilbert D, Chen-Kiang S. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J Exp Med 2000;192:953–64.

    Article  CAS  PubMed  Google Scholar 

  58. Mongini PK, Inman JK, Han H, Fattah RJ, Abramson SB, Attur M. APRIL and BAFF promote increased viability of replicating human B2 cells via mechanism involving cyclooxygenase 2. J Immunol 2006;176:6736–51.

    CAS  PubMed  Google Scholar 

  59. Amanna IJ, Clise-Dwyer K, Nashold FE, Hoag KA, Hayes CE. Cutting edge: A/WySnJ transitional B cells overexpress the chromosome 15 proapoptotic Blk gene and succumb to premature apoptosis. J Immunol 2001;167:6069–72.

    CAS  PubMed  Google Scholar 

  60. Craxton A, Draves KE, Gruppi A, Clark EA. BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway. J Exp Med 2005;202:1363–74.

    Article  CAS  PubMed  Google Scholar 

  61. Lesley R, Xu Y, Kalled SL, Hess DM, Schwab SR, Shu HB, Cyster JG. Reduced Competitiveness of Autoantigen-Engaged B Cells due to Increased Dependence on BAFF. Immunity 2004;20:441–53.

    Article  CAS  PubMed  Google Scholar 

  62. Bossen C, Cachero TG, Tardivel A, Ingold K, Willen L, Dobles M, Scott ML, Maquelin A, Belnoue E, Siegrist CA, Chevrier S, Acha-Orbea H, Leung H, Mackay F, Tschopp J, Schneider P. TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts. Blood 2008;111: 1004–12.

    Article  CAS  PubMed  Google Scholar 

  63. Gorelik L, Gilbride K, Dobles M, Kalled SL, Zandman D, Scott ML. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J Exp Med 2003;198:937–45.

    Article  CAS  PubMed  Google Scholar 

  64. von Bulow G-U, van Deursen JM, Bram RJ. Regulation of the T-independent humoral response by TACI. Immunity 2001;14:573–82.

    Article  Google Scholar 

  65. Yan M, Wang H, Chan B, Roose-Girma M, Erickson S, Baker T, Tumas D, Grewal IS, Dixit VM. Activation and accumulation of B cells in TACI-deficient mice. Nat Immunol 2001;2:638–43.

    Article  CAS  PubMed  Google Scholar 

  66. Xu S, Lam KP. B-cell maturation protein, which binds the tumor necrosis factor family members BAFF and APRIL, is dispensable for humoral immune responses. Molec Cell Biol 2001;21:4067–74.

    Article  CAS  PubMed  Google Scholar 

  67. Schneider P, Takatsuka H, Wilson A, Mackay F, Tardivel A, Lens S, Cachero TG, Finke D, Beermann F, Tschopp J. Maturation of marginal zone and follicular B cells requires B cell activating factor of the tumor necrosis factor family and is independent of B cell maturation antigen. J Exp Med 2001;194:1691–7.

    Article  CAS  PubMed  Google Scholar 

  68. Schiemann B, Gommerman JL, Vora K, Cachero TG, Shulga-Morskaya S, Dobles M, Frew E, Scott ML. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 2001;293:2111–4.

    Article  CAS  PubMed  Google Scholar 

  69. Shulga-Morskaya S, Dobles M, Walsh ME, Ng LG, MacKay F, Rao SP, Kalled SL, Scott ML. B cell-activating factor belonging to the TNF family acts through separate receptors to support B cell survival and T cell-independent antibody formation. J Immunol 2004;173:2331–41.

    CAS  PubMed  Google Scholar 

  70. Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol 2004;173:2245–52.

    CAS  PubMed  Google Scholar 

  71. Amanna IJ, Dingwall JP, Hayes CE. Enforced bcl-xL gene expression restored splenic B lymphocyte development in BAFF-R mutant mice. J Immunol 2003;170:4593–600.

    CAS  PubMed  Google Scholar 

  72. Batten M, Groom J, Cachero TG, Qian F, Schneider P, Tschopp J, Browning JL, Mackay F. BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 2000;192: 1453–66.

    Article  CAS  PubMed  Google Scholar 

  73. Harless-Smith S, Cancro MP. Cutting edge: B cell receptor signals regulate BLyS receptor levels in mature B cells and their immediate progenitors. J Immunol 2003;170:5820–3.

    Google Scholar 

  74. Walmsley MJ, Ooi SK, Reynolds LF, Smith SH, Ruf S, Mathiot A, Vanes L, Williams DA, Cancro MP, Tybulewicz VL. Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 2003;302:459–62.

    Article  CAS  PubMed  Google Scholar 

  75. Rolink AG, Tschopp J, Schneider P, Melchers F. BAFF is a survival and maturation factor for mouse B cells. Eur J Immunol 2002;32:2004–10.

    Article  CAS  PubMed  Google Scholar 

  76. Malaspina A, Moir S, Ho J, Wang W, Howell ML, O’Shea MA, Roby GA, Rehm CA, Mican JM, Chun TW, Fauci AS. Appearance of immature/transitional B cells in HIV-infected individuals with advanced disease: correlation with increased IL-7. Proc Natl Acad Sci USA 2006;103:2262–7.

    Article  CAS  PubMed  Google Scholar 

  77. Mongini PK, Inman JK, Han H, Kalled SL, Fattah RJ, McCormick S. Innate immunity and human B cell clonal expansion: effects on the recirculating B2 subpopulation. J Immunol 2005;175:6143–54.

    CAS  PubMed  Google Scholar 

  78. Baker KP, Edwards BM, Main SH, Choi GH, Wager RE, Halpern WG, Lappin PB, Riccobene T, Abramian D, Sekut L, Sturm B, Poortman C, Minter RR, Dobson CL, Williams E, Carmen S, Smith R, Roschke V, Hilbert DM, Vaughan TJ, Albert VR. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum 2003;48:3253–65.

    Article  CAS  PubMed  Google Scholar 

  79. Vugmeyster Y, Seshasayee D, Chang W, Storn A, Howell K, Sa S, Nelson T, Martin F, Grewal I, Gilkerson E, Wu B, Thompson J, Ehrenfels BN, Ren S, Song A, Gelzleichter TR, Danilenko DM. A soluble BAFF antagonist, BR3-Fc, decreases peripheral blood B cells and lymphoid tissue marginal zone and follicular B cells in cynomolgus monkeys. Am J Pathol 2006;168:476–89.

    Article  CAS  PubMed  Google Scholar 

  80. Martin F, Chan AC. B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol 2006;24:467–96.

    Article  CAS  PubMed  Google Scholar 

  81. Balazs M, Martin F, Zhou T, Kearney J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 2002;17:341–52.

    Article  CAS  PubMed  Google Scholar 

  82. Belnoue E, Pihlgren M, McGaha TL, Tougne C, Rochat AF, Bossen C, Schneider P, Huard B, Lambert PH, Siegrist CA. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 2008;111: 2755–64.

    Article  CAS  PubMed  Google Scholar 

  83. Badr G, Borhis G, Lefevre EA, Chaoul N, Deshayes F, Dessirier V, Lapree G, Tsapis A, Richard Y. BAFF enhances chemotaxis of primary human B cells: a particular synergy between BAFF and CXCL13 on memory B cells. Blood 2008;111:2744–54.

    Article  CAS  PubMed  Google Scholar 

  84. Honjo T, Kinoshita K, Muramatsu M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 2002;20:165–96.

    Article  CAS  PubMed  Google Scholar 

  85. Cerutti A. The regulation of IgA class switching. Nat Rev Immunol 2008;8:421–34.

    Article  CAS  PubMed  Google Scholar 

  86. Geha RS, Jabara HH, Brodeur SR. The regulation of immunoglobulin E class-switch recombination. Nat Rev Immunol 2003;3:721–32.

    Article  CAS  PubMed  Google Scholar 

  87. Xu LG, Wu M, Hu J, Zhai Z, Shu HB. Identification of downstream genes up-regulated by the tumor necrosis factor family member TALL-1. J Leukoc Biol 2002;72:410–6.

    CAS  PubMed  Google Scholar 

  88. He B, Qiao X, Cerutti A. CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. J Immunol 2004;173:4479–91.

    CAS  PubMed  Google Scholar 

  89. Xu W, Santini PA, Matthews AJ, Chiu A, Plebani A, He B, Chen K, Cerutti A. Viral double-stranded RNA triggers Ig class switching by activating upper respiratory mucosa B cells through an innate TLR3 pathway involving BAFF. J Immunol 2008;181:276–87.

    CAS  PubMed  Google Scholar 

  90. Castigli E, Scott S, Dedeoglu F, Bryce P, Jabara H, Bhan AK, Mizoguchi E, Geha RS. Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci USA 2004;101:3903–8.

    Article  CAS  PubMed  Google Scholar 

  91. Castigli E, Wilson SA, Scott S, Dedeoglu F, Xu S, Lam KP, Bram RJ, Jabara H, Geha RS. TACI and BAFF-R mediate isotype switching in B cells. J Exp Med 2005;201:35–9.

    Article  CAS  PubMed  Google Scholar 

  92. Sakurai D, Hase H, Kanno Y, Kojima H, Okumura K, Kobata T. TACI regulates IgA production by APRIL in collaboration with HSPG. Blood 2007;109:2961–7.

    CAS  PubMed  Google Scholar 

  93. Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, Geha RS. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 2005;37: 829–34.

    Article  CAS  PubMed  Google Scholar 

  94. Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, Schneider P, Tschopp J, Cachero TG, Batten M, Wheway J, Mauri D, Cavill D, Gordon TP, Mackay CR, Mackay F. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome. J Clin Invest 2002;109:59–68.

    CAS  PubMed  Google Scholar 

  95. Cheema GS, Roschke V, Hilbert DM, Stohl W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 2001;44:1313–9.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang J, Roschke V, Baker KP, Wang Z, Alarcon GS, Fessler BJ, Bastian H, Kimberly RP, Zhou T. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 2001;166:6–10.

    CAS  PubMed  Google Scholar 

  97. Mariette X, Roux S, Zhang J, Bengoufa D, Lavie F, Zhou T, Kimberly R. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren’s syndrome. Ann Rheum Dis 2003;62:168–71.

    Article  CAS  PubMed  Google Scholar 

  98. Jonsson MV, Szodoray P, Jellestad S, Jonsson R, Skarstein K. Association between circulating levels of the novel TNF family members APRIL and BAFF and lymphoid organization in primary Sjogren’s syndrome. J Clin Immunol 2005;25:189–201.

    Article  CAS  PubMed  Google Scholar 

  99. Szodoray P, Jonsson R. The BAFF/APRIL system in systemic autoimmune diseases with a special emphasis on Sjogren’s syndrome. Scand J Immunol 2005;62:421–8.

    Article  CAS  PubMed  Google Scholar 

  100. Koyama T, Tsukamoto H, Miyagi Y, Himeji D, Otsuka J, Miyagawa H, Harada M, Horiuchi T. Raised serum APRIL levels in patients with systemic lupus erythematosus. Ann Rheum Dis 2005;64:1065–7.

    Article  CAS  PubMed  Google Scholar 

  101. Seyler TM, Park YW, Takemura S, Bram RJ, Kurtin PJ, Goronzy JJ, Weyand CM. BLyS and APRIL in rheumatoid arthritis. J Clin Invest 2005;115:3083–92.

    Article  CAS  PubMed  Google Scholar 

  102. Roschke V, Sosnovtseva S, Ward CD, Hong JS, Smith R, Albert V, Stohl W, Baker KP, Ullrich S, Nardelli B, Hilbert DM, Migone TS. BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J Immunol 2002;169:4314–21.

    CAS  PubMed  Google Scholar 

  103. Matsushita T, Hasegawa M, Matsushita Y, Echigo T, Wayaku T, Horikawa M, Ogawa F, Takehara K, Sato S. Elevated serum BAFF levels in patients with localized scleroderma in contrast to other organ-specific autoimmune diseases. Exp Dermatol 2007;16:87–93.

    Article  CAS  PubMed  Google Scholar 

  104. Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum 2006;54:192–201.

    Article  CAS  PubMed  Google Scholar 

  105. Matsushita T, Fujimoto M, Hasegawa M, Tanaka C, Kumada S, Ogawa F, Takehara K, Sato S. Elevated serum APRIL levels in patients with systemic sclerosis: distinct profiles of systemic sclerosis categorized by APRIL and BAFF. J Rheumatol 2007;34:2056–62.

    CAS  PubMed  Google Scholar 

  106. Matsushita T, Fujimoto M, Echigo T, Matsushita Y, Shimada Y, Hasegawa M, Takehara K, Sato S. Elevated serum levels of APRIL, but not BAFF, in patients with atopic dermatitis. Exp Dermatol 2008;17:197–202.

    Article  CAS  PubMed  Google Scholar 

  107. Asashima N, Fujimoto M, Watanabe R, Nakashima H, Yazawa N, Okochi H, Tamaki K. Serum levels of BAFF are increased in bullous pemphigoid but not in pemphigus vulgaris. Br J Dermatol 2006;155:330–6.

    Article  CAS  PubMed  Google Scholar 

  108. Watanabe R, Fujimoto M, Yazawa N, Nakashima H, Asashima N, Kuwano Y, Tada Y, Maruyama N, Okochi H, Tamaki K. Increased serum levels of a proliferation-inducing ligand in patients with bullous pemphigoid. J Dermatol Sci 2007;46:53–60.

    Article  CAS  PubMed  Google Scholar 

  109. Krumbholz M, Specks U, Wick M, Kalled SL, Jenne D, Meinl E. BAFF is elevated in serum of patients with Wegener’s granulomatosis. J Autoimmun 2005;25:298–302.

    Article  CAS  PubMed  Google Scholar 

  110. Hever A, Roth RB, Hevezi P, Marin ME, Acosta JA, Acosta H, Rojas J, Herrera R, Grigoriadis D, White E, Conlon PJ, Maki RA, Zlotnik A. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. Proc Natl Acad Sci USA 2007;104:12451–6.

    Article  CAS  PubMed  Google Scholar 

  111. Lavie F, Miceli-Richard C, Quillard J, Roux S, Leclerc P, Mariette X. Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjogren’s syndrome. J Pathol 2004;202:496–502.

    Article  CAS  PubMed  Google Scholar 

  112. Thangarajh M, Gomes A, Masterman T, Hillert J, Hjelmstrom P. Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J Neuroimmunol 2004;152:183–90.

    Article  CAS  PubMed  Google Scholar 

  113. Banchereau J, Pascual V, Palucka AK. Autoimmunity through cytokine-induced dendritic cell activation. Immunity 2004;20:539–50.

    Article  CAS  PubMed  Google Scholar 

  114. Llorente L, Richaud-Patin Y. The role of interleukin-10 in systemic lupus erythematosus. J Autoimmun 2003;20:287–9.

    Article  CAS  PubMed  Google Scholar 

  115. Szodoray P, Alex P, Jonsson MV, Knowlton N, Dozmorov I, Nakken B, Delaleu N, Jonsson R, Centola M. Distinct profiles of Sjogren’s syndrome patients with ectopic salivary gland germinal centers revealed by serum cytokines and BAFF. Clin Immunol 2005;117: 168–76.

    Article  CAS  PubMed  Google Scholar 

  116. Llorente L, Richaud-Patin Y, Fior R, Alcocer-Varela J, Wijdenes J, Fourrier BM, Galanaud P, Emilie D. In vivo production of interleukin-10 by non-T cells in rheumatoid arthritis, Sjogren’s syndrome, and systemic lupus erythematosus. A potential mechanism of B lymphocyte hyperactivity and autoimmunity. Arthritis Rheum 1994;37:1647–55.

    Article  CAS  PubMed  Google Scholar 

  117. Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest 1996;97:2063–73.

    Article  CAS  PubMed  Google Scholar 

  118. Berek C, Kim HJ. B-cell activation and development within chronically inflamed synovium in rheumatoid and reactive arthritis. Semin Immunol 1997;9:261–8.

    Article  CAS  PubMed  Google Scholar 

  119. Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’Fallon WM, Goronzy JJ, Weyand CM. Lymphoid neogenesis in rheumatoid synovitis. J Immunol 2001;167:1072–80.

    CAS  PubMed  Google Scholar 

  120. Ansel KM, Cyster JG. Chemokines in lymphopoiesis and lymphoid organ development. Curr Opin Immunol 2001;13:172–9.

    Article  CAS  PubMed  Google Scholar 

  121. Kern C, Cornuel JF, Billard C, Tang R, Rouillard D, Stenou V, Defrance T, Ajchenbaum-Cymbalista F, Simonin PY, Feldblum S, Kolb JP. Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood 2004;103:679–88.

    Article  CAS  PubMed  Google Scholar 

  122. Briones J, Timmerman JM, Hilbert DM, Levy R. BLyS and BLyS receptor expression in non-Hodgkin’s lymphoma. Exp Hematol 2002;30:135–41.

    Article  CAS  PubMed  Google Scholar 

  123. Novak AJ, Grote DM, Stenson M, Ziesmer SC, Witzig TE, Habermann TM, Harder B, Ristow KM, Bram RJ, Jelinek DF, Gross JA, Ansell SM. Expression of BLyS and its receptors in B-cell non-Hodgkin lymphoma: correlation with disease activity and patient outcome. Blood 2004;104:2247–53.

    Article  CAS  PubMed  Google Scholar 

  124. Elsawa SF, Novak AJ, Grote DM, Ziesmer SC, Witzig TE, Kyle RA, Dillon SR, Harder B, Gross JA, Ansell SM. B-lymphocyte stimulator (BLyS) stimulates immunoglobulin production and malignant B-cell growth in Waldenstrom’s macroglobulinemia. Blood 2006;107:2882–8.

    Article  CAS  PubMed  Google Scholar 

  125. Moreaux J, Cremer FW, Reme T, Raab M, Mahtouk K, Kaukel P, Pantesco V, De Vos J, Jourdan E, Jauch A, Legouffe E, Moos M, Fiol G, Goldschmidt H, Rossi JF, Hose D, Klein B. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005;106:1021–30.

    Article  CAS  PubMed  Google Scholar 

  126. Nishio M, Endo T, Tsukada N, Ohata J, Kitada S, Reed JC, Zvaifler NJ, Kipps TJ. Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha. Blood 2005;106:1012–20.

    Article  CAS  PubMed  Google Scholar 

  127. Planelles L, Carvalho-Pinto CE, Hardenberg G, Smaniotto S, Savino W, Gomez-Caro R, Alvarez-Mon M, de Jong J, Eldering E, Martinez AC, Medema JP, Hahne M. APRIL promotes B-1 cell-associated neoplasm. Cancer Cell 2004;6:399–408.

    Article  CAS  PubMed  Google Scholar 

  128. Schwaller J, Schneider P, Mhawech-Fauceglia P, McKee T, Myit S, Matthes T, Tschopp J, Donze O, Le Gal FA, Huard B. Neutrophil-derived APRIL concentrated in tumor lesions by proteoglycans correlates with human B-cell lymphoma aggressiveness. Blood 2007;109:331–8.

    Article  CAS  PubMed  Google Scholar 

  129. Kuppers, R. B cells under influence: transformation of B cells by Epstein-Barr virus. Nature Rev Immunol 2003;3:801–12.

    Article  CAS  Google Scholar 

  130. Ogden CA, Pound JD, Batth BK, Owens S, Johannessen I, Wood K, Gregory CD. Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt’s lymphoma. J Immunol 2005;174:3015–23.

    CAS  PubMed  Google Scholar 

  131. Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol 1999;92:34–48.

    Article  CAS  PubMed  Google Scholar 

  132. Di Renzo M, Pasqui AL, Auteri A. Common variable immunodeficiency: a review. Clin Exp Med 2004;3:211–7.

    Article  CAS  PubMed  Google Scholar 

  133. Salzer U, Maul-Pavicic A, Cunningham-Rundles C, Urschel S, Belohradsky BH, Litzman J, Holm A, Franco JL, Plebani A, Hammarstrom L, Skrabl A, Schwinger W, Grimbacher B. ICOS deficiency in patients with common variable immunodeficiency. Clin Immunol 2004;113:234–40.

    Article  CAS  PubMed  Google Scholar 

  134. Warnatz K, Bossaller L, Salzer U, Skrabl-Baumgartner A, Schwinger W, van der Burg M, van Dongen JJM, Orlowska-Volk M, Knoth R, Durandy A, Draeger R, Schlesier M, Peter HH, Grimbacher B. Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood 2006;107: 3045–52.

    Article  CAS  PubMed  Google Scholar 

  135. Kanegane H, Agematsu K, Futatani T, Sira MM, Suga K, Sekiguchi T, van Zelm MC, Miyawaki T. Novel mutations in a Japanese patient with CD19 deficiency. Genes Immun 2007;8:663–70.

    Article  CAS  PubMed  Google Scholar 

  136. van Zelm MC, Reisli I, van der Burg M, Castano D, van Noesel CJM, van Tol MJD, Woellner C, Grimbacher B, Patino PJ, van Dongen JJM, Franco JL. An antibody-deficiency syndrome due to mutations in the CD19 gene. [see comment]. N Engl J Med 2006;354:1901–12.

    Article  PubMed  Google Scholar 

  137. Kanegane H. Tsukada S, Iwata T, Futatani T, Nomura K, Yamamoto J, Yoshida T, Agematsu K, Komiyama A, Miyawaki T. Detection of Bruton’s tyrosine kinase mutations in hypogammaglobulinaemic males registered as common variable immunodeficiency (CVID) in the Japanese Immunodeficiency Registry. Clin Exp Immunol 2000;120:512–7.

    Article  CAS  PubMed  Google Scholar 

  138. Weston SA, Prasad ML, Mullighan CG, Chapel H, Benson EM. Assessment of male CVID patients for mutations in the Btk gene: how many have been misdiagnosed? Clin Exp Immunol 2001;124:465–9.

    Article  CAS  PubMed  Google Scholar 

  139. Eastwood D, Gilmour KC, Nistala K, Meaney C, Chapel H, Sherrell Z, Webster AD, Davies EG, Jones A, Gaspar HB. Prevalence of SAP gene defects in male patients diagnosed with common variable immunodeficiency. Clin Exp Immunol 2004;137:584–8.

    Article  CAS  PubMed  Google Scholar 

  140. Morra M, Silander O, Calpe S, Choi M, Oettgen H, Myers L, Etzioni A, Buckley R, and Terhorst C. Alterations of the X-linked lymphoproliferative disease gene SH2D1A in common variable immunodeficiency syndrome. Blood 2001;98:1321–25.

    Article  CAS  PubMed  Google Scholar 

  141. Soresina A, Lougaris V, Giliani S, Cardinale F, Armenio L, Cattalini M, Notarangelo LD, Plebani A. Mutations of the X-linked lymphoproliferative disease gene SH2D1A mimicking common variable immunodeficiency. Eur J Pediatr 2002;161:656–9.

    Article  CAS  PubMed  Google Scholar 

  142. Salzer U, Chapel HM, Webster AD, Pan-Hammarstrom Q, Schmitt-Graeff A, Schlesier M, Peter HH, Rockstroh JK, Schneider P, Schaffer AA, Hammarstrom L, Grimbacher B. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 2005;37:820–8.

    Article  CAS  PubMed  Google Scholar 

  143. Castigli E, Wilson SA, Gariby L, Rachid R, Bonilla F, Schneider L, Geha RS. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 2005;37:829–34.

    Article  CAS  PubMed  Google Scholar 

  144. Pan-Hammarstrom Q, Salzer U, Du L, Bjorkander J, Cunningham-Rundles C, Nelson DL, Bacchelli C, Gaspar HB, Offer S, Behrens TW, Grimbacher B, Hammarstrom L. Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet 2007;39:429–30.

    Article  CAS  Google Scholar 

  145. Castigli E, Wilson S, Garibyan L, Rachid R, Bonilla F, Schneider L, Morra M, Curran J, Geha R. Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency. Nat Genet 2007;39:430–1.

    Article  CAS  Google Scholar 

  146. Salzer U, Bacchelli C, Buckridge S, Pan-Hammarström Q, Jennings S, Lougaris V, Hagena T, Birmelin J, Plebani A, Webster ADB, Peter H-H, Suez D, Chapel H, Maclean-Tooke A, Spickett GP, Anover-Sombke S, Ochs HD, Urschel S, Belohradsky BH, Kumararatne DS, Lawrence TC, Holm AM, Franco JL, Schulze I, Schneider P, Hammarström L, Thrasher AJ, Gaspar HB, Grimbacher B.Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease causing from disease modifying TNFRSF13B variants in common variable immunodeficiency. 2008;113:1967–76.

    Google Scholar 

  147. von Bulow GU, van JM Deursen, Bram RJ. Regulation of the T-independent humoral response by TACI. Immunity 2001;14:573–82.

    Article  Google Scholar 

  148. Seshasayee D, Valdez P, Yan M, Dixit VM, Tumas D, Grewal IS. Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity 2003;18:279–88.

    Article  CAS  PubMed  Google Scholar 

  149. Sakurai D, Kanno Y, Hase H, Kojima H, Okumura K, Kobata T. TACI attenuates antibody production costimulated by BAFF-R and CD40. Eur J Immunol 2007;37:110–8.

    Article  CAS  PubMed  Google Scholar 

  150. Garibyan L, Lobito AA, Siegel RM, Call ME, Wucherpfennig KW, Geha RS. Dominant-negative effect of the heterozygous C104R TACI mutation in common variable immunodeficiency (CVID). J Clin Invest 2007;117:1550–7.

    Article  CAS  Google Scholar 

  151. Zhang L, Radigan L, Salzer U, Behrens TW, Grimbacher B, Diaz G, Bussel J, Cunningham-Rundles C. Transmembrane activator and calcium-modulating cyclophilin ligand interactor mutations in common variable immunodeficiency: clinical and immunologic outcomes in heterozygotes. J Allergy Clin Immunol 2007;120:1178–85.

    Article  CAS  PubMed  Google Scholar 

  152. Siegel RM, Frederiksen JK, Zacharias DA, Chan FK, Johnson M, Lynch D, Tsien RY, Lenardo MJ. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 2000;288:2354–7.

    Article  Google Scholar 

  153. Durandy A, Taubenheim N, Peron S, Fischer A. Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies. Adv Immunol 2007;94:275–306.

    Google Scholar 

  154. Nimmanapalli R, Lyu MA, Du M, Keating MJ, Rosenblum MG, Gandhi V. The growth factor fusion construct containing B-lymphocyte stimulator (BLyS) and the toxin rGel induces apoptosis specifically in BAFF-R-positive CLL cells. Blood 2007;109:2557–64.

    Article  CAS  PubMed  Google Scholar 

  155. Lyu MA, Cheung LH, Hittelman WN, Marks JW, Aguiar RC, Rosenblum MG. The rGel/BLyS fusion toxin specifically targets malignant B cells expressing the BLyS receptors BAFF-R, TACI, and BCMA. Mol Cancer Ther 2007;6:460–70.

    Article  CAS  PubMed  Google Scholar 

  156. Lin WY, Gong Q, Seshasayee D, Lin Z, Ou Q, Ye S, Suto E, Shu J, Lee WP, Lee CW, Fuh G, Leabman M, Iyer S, Howell K, Gelzleichter T, Beyer J, Danilenko D, Yeh S, DeForge LE, Ebens A, Thompson JS, Ambrose C, Balazs M, Starovasnik MA, Martin F. Anti-BR3 antibodies: a new class of B-cell immunotherapy combining cellular depletion and survival blockade. Blood 2007;110:3959–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tangye, S.G., Fulcher, D.A. (2009). The Role of BAFF and APRIL in Regulating Human B-Cell Behaviour: Implications for Disease Pathogenesis. In: Cancro, M. (eds) BLyS Ligands and Receptors. Contemporary Immunology. Humana Press. https://doi.org/10.1007/978-1-60327-013-7_9

Download citation

Publish with us

Policies and ethics