Skip to main content

BAFF Receptor Regulation of Peripheral B-Lymphocyte Survival and Development

  • Chapter
  • First Online:
Book cover BLyS Ligands and Receptors

Part of the book series: Contemporary Immunology ((CONTIM))

Abstract

B-lymphocyte homeostasis depends on exogenous signals for survival during development and in immune responses to invading pathogens. These signals are continually provided by either tonic or antigen-mediated BCR signals and other trophic factors. B-cell-activating factor (BAFF) has emerged as a key growth factor for B lymphocytes. Through its interaction with a TNF-R family member, BAFF-R or BR3, BAFF promotes survival of both immature and mature B cells. BAFF/BR3 interaction also facilitates BCR-induced B-cell proliferation. Thus, dysregulation of the signals emanating from these receptors leads to autoimmune disease, whereas interference with these signals leads to B-cell immunodeficiencies. Multiple signal transduction pathways, including those involving transcription factor NF-κB, appear to play critical roles in BAFF-mediated B-cell biological responses. Recent studies have revealed that BR3 and BCR are functionally linked and that Bruton’s cytoplasmic tyrosine kinase (Btk)/NF-κB signaling plays an essential role in this process. Therefore, the primary objective of this article is to discuss BR3-signaling pathways, and the cooperation with BCR signals, that regulate B-cell survival during development and activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meffre E, Casellas R, Nussenzweig MC. Antibody regulation of B cell development. Nat Immunol 2000;1(5):379–85.

    Article  CAS  PubMed  Google Scholar 

  2. Rajewsky K. Clonal selection and learning in the antibody system. Nature 1996;381:751–8.

    Article  CAS  PubMed  Google Scholar 

  3. Allman DM, Ferguson SE, Cancro MP. Peripheral B cell maturation. I. Immature peripheral B cells in adults are heat-stable antigenhi and exhibit unique signaling characteristics. J Immunol 1992;149(8):2533–40.

    CAS  PubMed  Google Scholar 

  4. Allman DM, Ferguson SE, Lentz VM, Cancro MP. Peripheral B cell maturation. II. Heat-stable antigen(hi) splenic B cells are an immature developmental intermediate in the production of long-lived marrow-derived B cells. J Immunol 1993;151(9):4431–44.

    CAS  PubMed  Google Scholar 

  5. Carsetti R, Kohler G, Lamers MC. Transitional B cells are the target of negative selection in the B cell compartment. J Exp Med 1995;181(6):2129–40.

    Article  CAS  PubMed  Google Scholar 

  6. Goodnow CC. Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires. Proc Natl Acad Sci USA 1996;93(6):2264–71.

    Article  CAS  PubMed  Google Scholar 

  7. Pillai S. Two lymphoid roads diverge––but does antigen bade B cells to take the road less traveled? Immunity 2005;23(3):242–4.

    Article  CAS  PubMed  Google Scholar 

  8. Rolink AG, Schaniel C, Andersson J, Melchers F. Selection events operating at various stages in B cell development. Curr Opin Immunol 2001;13(2):202–7.

    Article  CAS  PubMed  Google Scholar 

  9. Gay D, Saunders T, Camper S, Weigert M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med 1993;177(4):999–1008.

    Article  CAS  PubMed  Google Scholar 

  10. Goodnow CC, Crosbie J, Adelstein S, et al. Altered immunoglobulin expression and functional silencing of self- reactive B lymphocytes in transgenic mice. Nature 1988;334(6184):676–82.

    Article  CAS  PubMed  Google Scholar 

  11. Hartley SB, Crosbie J, Brink R, Kantor AB, Basten A, Goodnow CC. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 1991;353(6346):765–9.

    Article  CAS  PubMed  Google Scholar 

  12. Nemazee DA, Burki K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 1989;337(6207):562–6.

    Article  CAS  PubMed  Google Scholar 

  13. Radic MZ, Erikson J, Litwin S, Weigert M. B lymphocytes may escape tolerance by revising their antigen receptors. J Exp Med 1993;177(4):1165–73.

    Article  CAS  PubMed  Google Scholar 

  14. Tiegs SL, Russell DM, Nemazee D. Receptor editing in self-reactive bone marrow B cells. J Exp Med 1993;177(4):1009–20.

    Article  CAS  PubMed  Google Scholar 

  15. Pelanda R, Schwers S, Sonoda E, Torres RM, Nemazee D, Rajewsky K. Receptor editing in a transgenic mouse model: site, efficiency, and role in B cell tolerance and antibody diversification. Immunity 1997;7(6):765–75.

    Article  CAS  PubMed  Google Scholar 

  16. Cariappa A, Boboila C, Moran ST, Liu H, Shi HN, Pillai S. The recirculating B cell pool contains two functionally distinct, long-lived, posttransitional, follicular B cell populations. J Immunol 2007;179(4):2270–81.

    CAS  PubMed  Google Scholar 

  17. Allman D, Lindsley RC, DeMuth W, Rudd K, Shinton SA, Hardy RR. Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J Immunol 2001;167(12):6834–40.

    CAS  PubMed  Google Scholar 

  18. Allman D, Srivastava B, Lindsley RC. Alternative routes to maturity: branch points and pathways for generating follicular and marginal zone B cells. Immunol Rev 2004;197: 147–60.

    Article  CAS  PubMed  Google Scholar 

  19. Cancro MP. Peripheral B-cell maturation: the intersection of selection and homeostasis. Immunol Rev 2004;197:89–101.

    Article  CAS  PubMed  Google Scholar 

  20. Hoek KL, Antony P, Lowe J, et al. Transitional B cell fate is associated with developmental stage-specific regulation of diacylglycerol and calcium signaling upon B cell receptor engagement. J Immunol 2006;177(8):5405–13.

    CAS  PubMed  Google Scholar 

  21. Petro JB, Gerstein RM, Lowe J, Carter RS, Shinners N, Khan WN. Transitional type 1 and 2 B lymphocyte subsets are differentially responsive to antigen receptor signaling. J Biol Chem 2002;277(50):48009–19.

    Article  CAS  PubMed  Google Scholar 

  22. Su TT, Rawlings DJ. Transitional B lymphocyte subsets operate as distinct checkpoints in murine splenic B cell development. J Immunol 2002;168(5):2101–10.

    CAS  PubMed  Google Scholar 

  23. Cancro MP, Kearney JF. B cell positive selection: road map to the primary repertoire? J Immunol 2004;173(1):15–19.

    CAS  PubMed  Google Scholar 

  24. Su TT, Guo B, Wei B, Braun J, Rawlings DJ. Signaling in transitional type 2 B cells is critical for peripheral B-cell development. Immunol Rev 2004;197:161–78.

    Article  CAS  PubMed  Google Scholar 

  25. Pillai S, Cariappa A, Moran ST. Positive selection and lineage commitment during peripheral B-lymphocyte development. Immunol Rev 2004;197:206–18.

    Article  CAS  PubMed  Google Scholar 

  26. Loder F, Mutschler B, Ray RJ, et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J Exp Med 1999;190(1):75–89.

    Article  CAS  PubMed  Google Scholar 

  27. Melchers F. Anergic B cells caught in the act. Immunity 2006;25(6):864–7.

    Article  CAS  PubMed  Google Scholar 

  28. Melchers F, Rolink AR. B cell tolerance–how to make it and how to break it. Curr Top Microbiol Immunol 2006;305:1–23.

    Article  CAS  PubMed  Google Scholar 

  29. Teague BN, Pan Y, Mudd PA, et al. Cutting edge: transitional T3 B cells do not give rise to mature B cells, have undergone selection, and are reduced in murine lupus. J Immunol 2007;178(12):7511–5.

    CAS  PubMed  Google Scholar 

  30. Meyer-Bahlburg A, Andrews SF, Yu KO, Porcelli SA, Rawlings DJ. Characterization of a late transitional B cell population highly sensitive to BAFF-mediated homeostatic proliferation. J Exp Med 2008;205(1):155–68.

    Article  CAS  PubMed  Google Scholar 

  31. Srivastava B, Quinn WJ, III, Hazard K, Erikson J, Allman D. Characterization of marginal zone B cell precursors. J Exp Med 2005;202(9):1225–34.

    Article  CAS  PubMed  Google Scholar 

  32. Cariappa A, Tang M, Parng C, et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 2001;14(5):603–15.

    Article  CAS  PubMed  Google Scholar 

  33. Pillai S, Cariappa A, Moran ST. Marginal zone B cells. Annu Rev Immunol 2005;23:161–96.

    Article  CAS  PubMed  Google Scholar 

  34. Castro I, Wright JA, Damdinsuren B, Hoek KL, Carlesso G, Shinners NP, Gerstein RM, Woodland RT, Sen R, Khan WN. B cell receptor-mediated sustained c-Rel activation facilitates late transitional B cell survival through control of B cell activating factor receptor and NF-KappaB2. J Immunol. 2009 Jun 15;182(12):7729–37. PMID:19494297

    Google Scholar 

  35. King LB, Monroe JG. Immunobiology of the immature B cell: plasticity in the B-cell antigen receptor-induced response fine tunes negative selection. Immunol Rev 2000;176:86–104.

    Article  CAS  PubMed  Google Scholar 

  36. Monroe JG. B-cell antigen receptor signaling in immature-stage B cells: integrating intrinsic and extrinsic signals. Curr Top Microbiol Immunol 2000;245(2):1–29.

    CAS  PubMed  Google Scholar 

  37. Sandel PC, Monroe JG. Negative selection of immature B cells by receptor editing or deletion is determined by site of antigen encounter. Immunity 1999;10(3):289–99.

    Article  CAS  PubMed  Google Scholar 

  38. Claudio E, Brown K, Park S, Wang H, Siebenlist U. BAFF-induced NEMO-independent processing of NF-kappaB2 in maturing B cells. Nat Immunol 2002;3(10):958–65.

    Article  CAS  PubMed  Google Scholar 

  39. Hatada EN, Do RK, Orlofsky A, et al. NF-kappaB1 p50 is required for BLyS attenuation of apoptosis but dispensable for processing of NF-kappaB2 p100 to p52 in quiescent mature B cells. J Immunol 2003;171(2):761–8.

    CAS  PubMed  Google Scholar 

  40. Morrison MD, Reiley W, Zhang M, Sun SC. An atypical tumor necrosis factor (TNF) receptor-associated factor-binding motif of B cell-activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF-kappaB signaling pathway. J Biol Chem 2005;280(11):10018–24.

    Article  CAS  PubMed  Google Scholar 

  41. Ramakrishnan P, Wang W, Wallach D. Receptor-specific signaling for both the alternative and the canonical NF-kappaB activation pathways by NF-kappaB-inducing kinase. Immunity 2004;21(4):477–89.

    Article  CAS  PubMed  Google Scholar 

  42. Rolink AG, Tschopp J, Schneider P, Melchers F. BAFF is a survival and maturation factor for mouse B cells. Eur J Immunol 2002;32(7):2004–10.

    Article  CAS  PubMed  Google Scholar 

  43. Yan M, Brady JR, Chan B, et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol 2001;11(19):1547–52.

    Article  CAS  PubMed  Google Scholar 

  44. Zarnegar B, He JQ, Oganesyan G, Hoffmann A, Baltimore D, Cheng G. Unique CD40-mediated biological program in B cell activation requires both type 1 and type 2 NF-kappaB activation pathways. Proc Natl Acad Sci USA 2004;101(21):8108–13.

    Article  CAS  PubMed  Google Scholar 

  45. Hahne M, Kataoka T, Schroter M, et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med 1998;188(6):1185–90.

    Article  CAS  PubMed  Google Scholar 

  46. Huard B, Arlettaz L, Ambrose C, et al. BAFF production by antigen-presenting cells provides T cell co-stimulation. Int Immunol 2004;16(3):467–75.

    Article  CAS  PubMed  Google Scholar 

  47. Litinskiy MB, Nardelli B, Hilbert DM, et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 2002;3(9):822–9.

    Article  CAS  PubMed  Google Scholar 

  48. Mackay F, Groom JR, Tangye SG. An important role for B-cell activation factor and B cells in the pathogenesis of Sjogren’s syndrome. Curr Opin Rheumatol 2007;19(5):406–13.

    Article  CAS  PubMed  Google Scholar 

  49. Mackay F, Silveira PA, Brink R. B cells and the BAFF/APRIL axis: fast-forward on autoimmunity and signaling. Curr Opin Immunol 2007;19(3):327–36.

    Article  CAS  PubMed  Google Scholar 

  50. Mackay FS, Woods JA, Heringova P, et al. A potent cytotoxic photoactivated platinum complex. Proc Natl Acad Sci USA 2007;104(52):20743–8.

    Article  CAS  PubMed  Google Scholar 

  51. Moore JH, Parker JS, Olsen NJ, Aune TM. Symbolic discriminant analysis of microarray data in autoimmune disease. Genet Epidemiol 2002;23(1):57–69.

    Article  PubMed  Google Scholar 

  52. Nardelli B, Belvedere O, Roschke V, et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 2001;97(1):198–204.

    Article  CAS  PubMed  Google Scholar 

  53. Scapini P, Nardelli B, Nadali G, et al. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med 2003;197(3):297–302.

    Article  CAS  PubMed  Google Scholar 

  54. Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999;189(11):1747–56.

    Article  CAS  PubMed  Google Scholar 

  55. Gorelik L, Gilbride K, Dobles M, Kalled SL, Zandman D, Scott ML. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J Exp Med 2003;198(6):937–45.

    Article  CAS  PubMed  Google Scholar 

  56. Gavin AL, Ait-Azzouzene D, Ware CF, Nemazee D. DeltaBAFF, an alternate splice isoform that regulates receptor binding and biopresentation of the B cell survival cytokine, BAFF. J Biol Chem 2003;278(40):38220–8.

    Article  CAS  PubMed  Google Scholar 

  57. Gavin AL, Duong B, Skog P, et al. DeltaBAFF, a splice isoform of BAFF, opposes full-length BAFF activity in vivo in transgenic mouse models. J Immunol 2005;175(1):319–28.

    CAS  PubMed  Google Scholar 

  58. Kalled SL, Ambrose C, Hsu YM. The biochemistry and biology of BAFF, APRIL and their receptors. Curr Dir Autoimmun 2005;8:206–42.

    Article  CAS  PubMed  Google Scholar 

  59. Avery DT, Kalled SL, Ellyard JI, et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest 2003;112(2): 286–97.

    CAS  PubMed  Google Scholar 

  60. Gras MP, Laabi Y, Linares-Cruz G, et al. BCMAp: an integral membrane protein in the Golgi apparatus of human mature B lymphocytes. Int Immunol 1995;7(7):1093–106.

    Article  CAS  PubMed  Google Scholar 

  61. Ng LG, Sutherland AP, Newton R, et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J Immunol 2004;173(2):807–17.

    CAS  PubMed  Google Scholar 

  62. Chang SK, Arendt BK, Darce JR, Wu X, Jelinek DF. A role for BLyS in the activation of innate immune cells. Blood 2006;108(8):2687–94.

    Article  CAS  PubMed  Google Scholar 

  63. Klein B, Tarte K, Jourdan M, et al. Survival and proliferation factors of normal and malignant plasma cells. Int J Hematol 2003;78(2):106–13.

    Article  CAS  PubMed  Google Scholar 

  64. Smith SH, Cancro MP. Cutting edge: B cell receptor signals regulate BLyS receptor levels in mature B cells and their immediate progenitors. J Immunol 2003;170(12):5820–3.

    CAS  PubMed  Google Scholar 

  65. Miller DJ, Hayes CE. Phenotypic and genetic characterization of a unique B lymphocyte deficiency in strain A/WySnJ mice. Eur J Immunol 1991;21(5):1123–30.

    Article  CAS  PubMed  Google Scholar 

  66. Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol 2004;173(4):2245–52.

    CAS  PubMed  Google Scholar 

  67. Gross JA, Dillon SR, Mudri S, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. impaired B cell maturation in mice lacking BLyS. Immunity 2001;15(2):289–302.

    Article  CAS  PubMed  Google Scholar 

  68. Schneider P, Takatsuka H, Wilson A, et al. Maturation of marginal zone and follicular B cells requires B cell activating factor of the tumor necrosis factor family and is independent of B cell maturation antigen. J Exp Med 2001;194(11):1691–7.

    Article  CAS  PubMed  Google Scholar 

  69. Amanna IJ, Dingwall JP, Hayes CE. Enforced bcl-xL gene expression restored splenic B lymphocyte development in BAFF-R mutant mice. J Immunol 2003;170(9):4593–600.

    CAS  PubMed  Google Scholar 

  70. Tardivel A, Tinel A, Lens S, et al. The anti-apoptotic factor Bcl-2 can functionally substitute for the B cell survival but not for the marginal zone B cell differentiation activity of BAFF. Eur J Immunol 2004;34(2):509–18.

    Article  CAS  PubMed  Google Scholar 

  71. Mackay F, Woodcock SA, Lawton P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 1999;190(11): 1697–710.

    Article  CAS  PubMed  Google Scholar 

  72. Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol 2002;2(7):465–75.

    Article  CAS  PubMed  Google Scholar 

  73. Batten M, Groom J, Cachero TG, et al. BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 2000;192(10):1453–66.

    Article  CAS  PubMed  Google Scholar 

  74. Craxton A, Draves KE, Gruppi A, Clark EA. BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway. J Exp Med 2005;202(10): 1363–74.

    Article  CAS  PubMed  Google Scholar 

  75. Enzler T, Bonizzi G, Silverman GJ, et al. Alternative and classical NF-kappa B signaling retain autoreactive B cells in the splenic marginal zone and result in lupus-like disease. Immunity 2006;25(3):403–15.

    Article  CAS  PubMed  Google Scholar 

  76. Mecklenbrauker I, Kalled SL, Leitges M, Mackay F, Tarakhovsky A. Regulation of B-cell survival by BAFF-dependent PKCdelta-mediated nuclear signalling. Nature 2004;431(7007):456–61.

    Article  PubMed  CAS  Google Scholar 

  77. Patke A, Mecklenbrauker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. BAFF controls B cell metabolic fitness through a PKC{beta}- and Akt-dependent mechanism. J Exp Med 2006;203(11):2551–62.

    Article  CAS  PubMed  Google Scholar 

  78. Kanakaraj P, Migone TS, Nardelli B, et al. Blys binds to b cells with high affinity and induces activation of the transcription factors nf-kappab and elf-1. Cytokine 2001;13(1): 25–31.

    Article  CAS  PubMed  Google Scholar 

  79. Mukhopadhyay A, Ni J, Zhai Y, Yu GL, Aggarwal BB. Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-kappaB, and c-Jun NH2-terminal kinase. J Biol Chem 1999;274(23):15978–81.

    Article  CAS  PubMed  Google Scholar 

  80. Kayagaki N, Yan M, Seshasayee D, et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 2002;17(4):515–24.

    Article  CAS  PubMed  Google Scholar 

  81. Sasaki Y, Derudder E, Hobeika E, et al. Canonical NF-kappaB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity 2006;24(6):729–39.

    Article  CAS  PubMed  Google Scholar 

  82. Shinners NP, Carlesso G, Castro I, et al. Bruton’s tyrosine kinase mediates NF-kappaB activation and B cell survival by B cell-activating factor receptor of the TNF-R family. J Immunol 2007;179(6):3872–80.

    CAS  PubMed  Google Scholar 

  83. Conley ME, Cooper MD. Genetic basis of abnormal B cell development. Curr Opin Immunol 1998;10(4):399–406.

    Article  CAS  PubMed  Google Scholar 

  84. Tsukada S, Saffran DC, Rawlings DJ, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993;72:279–90.

    Article  CAS  PubMed  Google Scholar 

  85. Vetrie D, Vorchovsky I, Sideras P, et al. The gene involved in X-linked agammaglobulinemia is a member of the src family of protein-tyrosine kinases. Nature 1993;361:226–33.

    Article  CAS  PubMed  Google Scholar 

  86. Rawlings DJ. Bruton’s tyrosine kinase controls a sustained calcium signal essential for B lineage development and function. Clin Immunol 1999;91(3):243–53.

    Article  CAS  PubMed  Google Scholar 

  87. Rawlings DJ, Saffran DC, Tsukada S, et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science 1993;261(5119):358–61.

    Article  CAS  PubMed  Google Scholar 

  88. Thomas JD, Sideras P, Smith CI, Vorechovsky I, Chapman V, Paul WE. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 1993;261(5119):355–8.

    Article  CAS  PubMed  Google Scholar 

  89. Trescol-Biemont MC, Verschelde C, Cottalorda A, Bonnefoy-Berard N. Regulation of A1/Bfl-1 expression in peripheral splenic B cells. Biochimie 2004;86(4–5):287–94.

    Article  CAS  PubMed  Google Scholar 

  90. Woodland RT, Fox CJ, Schmidt MR, et al. Multiple signaling pathways promote B lymphocyte stimulator dependent B-cell growth and survival. Blood 2008;111(2):750–60.

    Article  CAS  PubMed  Google Scholar 

  91. Lesley R, Xu Y, Kalled SL, et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 2004;20(4):441–53.

    Article  CAS  PubMed  Google Scholar 

  92. Bouillet P, Metcalf D, Huang DC, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999;286(5445):1735–8.

    Article  CAS  PubMed  Google Scholar 

  93. Oliver PM, Vass T, Kappler J, Marrack P. Loss of the proapoptotic protein, Bim, breaks B cell anergy. J Exp Med 2006;203(3):731–41.

    Article  CAS  PubMed  Google Scholar 

  94. Ajiro K. Histone H2B phosphorylation in mammalian apoptotic cells. An association with DNA fragmentation. J Biol Chem 2000;275(1):439–43.

    Article  CAS  PubMed  Google Scholar 

  95. Brodie C, Blumberg PM. Regulation of cell apoptosis by protein kinase c delta. Apoptosis 2003;8(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  96. Cheung WL, Ajiro K, Samejima K, et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 2003;113(4):507–17.

    Article  CAS  PubMed  Google Scholar 

  97. Khare SD, Sarosi I, Xia XZ, et al. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc Natl Acad Sci USA 2000;97(7):3370–5.

    Article  CAS  PubMed  Google Scholar 

  98. Miyamoto A, Nakayama K, Imaki H, et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cdelta. Nature 2002;416(6883):865–9.

    Article  CAS  PubMed  Google Scholar 

  99. Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004;25(6):280–8.

    Article  CAS  PubMed  Google Scholar 

  100. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998;16:225–60.

    Article  CAS  PubMed  Google Scholar 

  101. Gerondakis S, Grumont R, Rourke I, Grossmann M. The regulation and roles of Rel/NF-kappa B transcription factors during lymphocyte activation. Curr Opin Immunol 1998;10(3):353–9.

    Article  CAS  PubMed  Google Scholar 

  102. Gerondakis S, Strasser A. The role of Rel/NF-kappaB transcription factors in B lymphocyte survival. Semin Immunol 2003;15(3):159–66.

    Article  CAS  PubMed  Google Scholar 

  103. Pasparakis M, Luedde T, Schmidt-Supprian M. Dissection of the NF-kappaB signalling cascade in transgenic and knockout mice. Cell Death Differ 2006;13(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  104. Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999;18:6853–66.

    Article  CAS  PubMed  Google Scholar 

  105. Sha WC. Regulation of immune responses by NF-kappa B/Rel transcription factor [published erratum appears in J Exp Med 1998 Feb 16;187(4):661]. J Exp Med 1998;187(2): 143–6.

    Article  CAS  PubMed  Google Scholar 

  106. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 2002;109(Suppl):S81–96.

    Article  CAS  PubMed  Google Scholar 

  107. Pomerantz JL, Baltimore D. Two pathways to NF-kappaB. Mol Cell 2002;10(4):693–5.

    Article  CAS  PubMed  Google Scholar 

  108. Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation [see comments]. Science 1999;284(5412):309–13.

    Article  CAS  PubMed  Google Scholar 

  109. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB [see comments]. Nature 1997;388(6642):548–54.

    Article  CAS  PubMed  Google Scholar 

  110. Mercurio F, et al. IKK-1 and IKK-2: cytokine-activated I kappaB kinses essential for NF-kappaB activation. Science 1997;278:860–6.

    Article  CAS  PubMed  Google Scholar 

  111. Woronicz JD, Gao X, Cao Z, Rothe M, Goeddel DV. IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 1997;278(5339):866–9.

    Article  CAS  PubMed  Google Scholar 

  112. Zandi E, Karin M. Bridging the gap: composition, regulation, and physiological function of the IkappaB kinase complex. Mol Cell Biol 1999;19(7):4547–51.

    CAS  PubMed  Google Scholar 

  113. Scherer DC, Brockman JA, Chen Z, Maniatis T, Ballard DW. Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci USA 1995;92(24):11259–63.

    Article  CAS  PubMed  Google Scholar 

  114. Brockman JA, Scherer DC, McKinsey TA, et al. Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol Cell Biol 1995;15(5):2809–18.

    CAS  PubMed  Google Scholar 

  115. Brown K, Gerstberger S, Carlson L, Franzoso G, Siebenlist U. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 1995;267(5203):1485–8.

    Article  CAS  PubMed  Google Scholar 

  116. Baldwin AS, Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996;14:649–83.

    Article  CAS  PubMed  Google Scholar 

  117. Tam WF, Sen R. IkappaB family members function by different mechanisms. J Biol Chem 2001;276(11):7701–4.

    Article  CAS  PubMed  Google Scholar 

  118. Tam WF, Wang W, Sen R. Cell-specific association and shuttling of IkappaBalpha provides a mechanism for nuclear NF-kappaB in B lymphocytes. Mol Cell Biol 2001;21(14):4837–46.

    Article  CAS  PubMed  Google Scholar 

  119. Endo T, Nishio M, Enzler T, et al. BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway. Blood 2007;109(2):703–10.

    Article  CAS  PubMed  Google Scholar 

  120. Li ZW, Omori SA, Labuda T, Karin M, Rickert RC. IKK beta is required for peripheral B cell survival and proliferation. J Immunol 2003;170(9):4630–7.

    CAS  PubMed  Google Scholar 

  121. Pasparakis M, Schmidt-Supprian M, Rajewsky K. IkappaB kinase signaling is essential for maintenance of mature B cells. J Exp Med 2002;196(6):743–52.

    Article  CAS  PubMed  Google Scholar 

  122. Schmidt-Supprian M, Bloch W, Courtois G, et al. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol Cell 2000;5(6):981–92.

    Article  CAS  PubMed  Google Scholar 

  123. Petro JB, Khan WN. Phospholipase C-gamma 2 Couples Bruton’s Tyrosine Kinase to the NF-kappa B signaling pathway in B lymphocytes. J Biol Chem 2001;276(3):1715–9.

    Article  CAS  PubMed  Google Scholar 

  124. Petro JB, Rahman SM, Ballard DW, Khan WN. Bruton’s tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. J Exp Med 2000;191(10):1745–54.

    Article  CAS  PubMed  Google Scholar 

  125. Humphries LA, Dangelmaier C, Sommer K, et al. Tec kinases mediate sustained calcium influx via site-specific tyrosine phosphorylation of the phospholipase Cgamma Src homology 2-Src homology 3 linker. J Biol Chem 2004;279(36):37651–61.

    Article  CAS  PubMed  Google Scholar 

  126. Kim YJ, Sekiya F, Poulin B, Bae YS, Rhee SG. Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma2. Mol Cell Biol 2004;24(22): 9986–99.

    Article  CAS  PubMed  Google Scholar 

  127. Thome M. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol 2004;4(5):348–59.

    Article  CAS  PubMed  Google Scholar 

  128. Hikida M, Johmura S, Hashimoto A, Takezaki M, Kurosaki T. Coupling between B cell receptor and phospholipase C-gamma2 is essential for mature B cell development. J Exp Med 2003;198(4):581–9.

    Article  CAS  PubMed  Google Scholar 

  129. Bishop GA. The multifaceted roles of TRAFs in the regulation of B-cell function. Nat Rev Immunol 2004;4(10):775–86.

    Article  CAS  PubMed  Google Scholar 

  130. Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 2001;20(44):6482–91.

    Article  CAS  PubMed  Google Scholar 

  131. Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 2003;14(3–4):193–209.

    Article  CAS  PubMed  Google Scholar 

  132. Ni CZ, Oganesyan G, Welsh K, et al. Key molecular contacts promote recognition of the BAFF receptor by TNF receptor-associated factor 3: implications for intracellular signaling regulation. J Immunol 2004;173(12):7394–400.

    CAS  PubMed  Google Scholar 

  133. Xu LG, Shu HB. TNFR-associated factor-3 is associated with BAFF-R and negatively regulates BAFF-R-mediated NF-kappa B activation and IL-10 production. J Immunol 2002;169(12):6883–9.

    CAS  PubMed  Google Scholar 

  134. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995;83(7):1243–52.

    Article  CAS  PubMed  Google Scholar 

  135. Haxhinasto SA, Bishop GA. Synergistic B cell activation by CD40 and the B cell antigen receptor: role of B lymphocyte antigen receptor-mediated kinase activation and tumor necrosis factor receptor-associated factor regulation. J Biol Chem 2004;279(4): 2575–82.

    Article  CAS  PubMed  Google Scholar 

  136. Hauer J, Puschner S, Ramakrishnan P, et al. TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs. Proc Natl Acad Sci USA 2005;102(8):2874–9.

    Article  CAS  PubMed  Google Scholar 

  137. He JQ, Zarnegar B, Oganesyan G, et al. Rescue of TRAF3-null mice by p100 NF-kappa B deficiency. J Exp Med 2006;203(11):2413–8.

    Article  CAS  PubMed  Google Scholar 

  138. Liao G, Zhang M, Harhaj EW, Sun SC. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 2004;279(25):26243–50.

    Article  CAS  PubMed  Google Scholar 

  139. He JQ, Saha SK, Kang JR, Zarnegar B, Cheng G. Specificity of TRAF3 in its negative regulation of the noncanonical NF-kappa B pathway. J Biol Chem 2007;282(6):3688–94.

    Article  CAS  PubMed  Google Scholar 

  140. Brown KD, Hostager BS, Bishop GA. Regulation of TRAF2 signaling by self-induced degradation. J Biol Chem 2002;277(22):19433–8.

    Article  CAS  PubMed  Google Scholar 

  141. Li X, Yang Y, Ashwell JD. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 2002;416(6878):345–7.

    Article  PubMed  Google Scholar 

  142. Hostager BS, Haxhinasto SA, Rowland SL, Bishop GA. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003;278(46):45382–90.

    Article  CAS  PubMed  Google Scholar 

  143. Qing G, Qu Z, Xiao G. Stabilization of basally translated NF-kappaB-inducing kinase (NIK) protein functions as a molecular switch of processing of NF-kappaB2 p100. J Biol Chem 2005;280(49):40578–82.

    Article  CAS  PubMed  Google Scholar 

  144. Xie P, Stunz LL, Larison KD, Yang B, Bishop GA. Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007;27(2):253–67.

    Article  PubMed  CAS  Google Scholar 

  145. Grech AP, Amesbury M, Chan T, Gardam S, Basten A, Brink R. TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 2004;21(5):629–42.

    Article  CAS  PubMed  Google Scholar 

  146. Grossmann M, Metcalf D, Merryfull J, Beg A, Baltimore D, Gerondakis S. The combined absence of the transcription factors rel and RelA leads to multiple hemopoietic cell defects [In Process Citation]. Proc Natl Acad Sci USA 1999;96(21):11848–53.

    Article  CAS  PubMed  Google Scholar 

  147. Grossmann M, O‘Reilly LA, Gugasyan R, Strasser A, Adams JM, Gerondakis S. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. Embo J 2000;19(23):6351–60.

    Article  CAS  PubMed  Google Scholar 

  148. Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol 2006;72(9):1161–79.

    Article  CAS  PubMed  Google Scholar 

  149. Liptay S, Schmid RM, Nabel EG, Nabel GJ. Transcriptional regulation of NF-kappa B2: evidence for kappa B-mediated positive and negative autoregulation. Mol Cell Biol 1994;14(12):7695–703.

    CAS  PubMed  Google Scholar 

  150. Petrie RJ, Schnetkamp PP, Patel KD, Awasthi-Kalia M, Deans JP. Transient translocation of the B cell receptor and Src homology 2 domain-containing inositol phosphatase to lipid rafts: evidence toward a role in calcium regulation. J Immunol 2000;165(3):1220–7.

    CAS  PubMed  Google Scholar 

  151. Treml LS, Carlesso G, Hoek KL, et al. TLR stimulation modifies BLyS receptor expression in follicular and marginal zone B cells. J Immunol 2007;178(12):7531–9.

    CAS  PubMed  Google Scholar 

  152. Gorelik L, Cutler AH, Thill G, et al. Cutting edge: BAFF regulates CD21/35 and CD23 expression independent of its B cell survival function. J Immunol 2004;172(2):762–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasif N. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Khan, W.N., Shinners, N.P., Castro, I., Hoek, K.L. (2009). BAFF Receptor Regulation of Peripheral B-Lymphocyte Survival and Development. In: Cancro, M. (eds) BLyS Ligands and Receptors. Contemporary Immunology. Humana Press. https://doi.org/10.1007/978-1-60327-013-7_2

Download citation

Publish with us

Policies and ethics