Skip to main content

Unifying Hypothesis of Diabetic Complications

  • Chapter

Part of the book series: Contemporary Endocrinology ((COE))

Summary

Over the past four decades, several molecular mechanisms have been implicated in glucose-mediated vascular damage: increased flux through the polyol pathway, accumulation of advanced glycation endproduct precursors, activation of protein kinase C isoforms, and increased hexosamine pathway activity. Each of these mechanisms has been studied independently of the others, and there has been no apparent common element linking them. Recent discoveries have made clear that all of these seemingly unrelated mechanisms arise from a single, hyperglycemia-induced process: the overproduction of reactive oxygen species by the mitochondrial electron transport chain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Granger CB, Califf RM, Young S, Candela R, Samaha J, Worley S, Kereiakes DJ, Topol EJ. Outcome of patients with diabetes mellitus and acute myocardial infarction treated with thrombolytic agents. The Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) Study Group. J Am Coll Cardiol 21: 920–925, 1993.

    Article  PubMed  CAS  Google Scholar 

  2. Larsen J, Brekke M, Sandvik L, Arnesen H, Hanssen KF, Dahl-Jorgensen K. Silent coronary atheromatosis in type 1 diabetic patients and its relation to long-term glycemic control. Diabetes 51: 2637–2641, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977–86, 1993.

    Article  Google Scholar 

  4. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352: 837–53, 1998.

    Article  Google Scholar 

  5. Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 13: 23–30, 1999.

    PubMed  CAS  Google Scholar 

  6. Engerman RL, Kern TS, Larson ME. Nerve conduction and aldose reductase inhibition during 5 years of diabetes or galactosaemia in dogs. Diabetologia 37: 141–144, 1994.

    Article  PubMed  CAS  Google Scholar 

  7. Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol 150: 523–531, 1997.

    PubMed  CAS  Google Scholar 

  8. Horie K, Miyata T, Maeda K, Miyata S, Sugiyama S, Sakai H, van Ypersole de Strihou C, Monnier VM, Witztum JL, Kurokawa K. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J Clin Invest 100: 2995–3004, 1997.

    Google Scholar 

  9. Degenhardt TP, Thorpe SR, Baynes JW. Chemical modification of proteins by methylglyoxal. Cell Mol Biol (Noisy.-Le-Grand) 44: 1139–1145, 1998.

    CAS  Google Scholar 

  10. McLellan AC, Thornalley PJ, Benn J, Sonksen PH. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci (Lond) 87: 21–29, 1994.

    CAS  Google Scholar 

  11. Charonis AS, Reger LA, Dege JE, Kouzi-Koliakos K, Furcht LT, Wohlhueter RM, Tsilibary EC. Laminin alterations after in vitro nonenzymatic glycosylation. Diabetes 39: 807–814, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Li YM, Mitsuhashi T, Wojciechowicz D, Shimizu N, Li J, Stitt A, He C, Banerjee D, Vlassara H. Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc Natl Acad Sci USA 93: 11047–11052, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267: 14998–15004, 1992.

    PubMed  CAS  Google Scholar 

  14. Smedsrod B, Melkko J, Araki N, Sano H, Horiuchi S. Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem J 322: 567–573, 1997.

    PubMed  CAS  Google Scholar 

  15. Vlassara H, Li YM, Imani F, Wojciechowicz D, Yang Z, Liu FT, Cerami A. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGE-receptor complex. Mol Med 1: 634–646, 1995.

    PubMed  CAS  Google Scholar 

  16. Abordo EA, Thornalley PJ. Synthesis and secretion of tumour necrosis factor-alpha by human monocytic THP-1 cells and chemotaxis induced by human serum albumin derivatives modified with methylglyoxal and glucose-derived advanced glycation endproducts. Immunol Lett 58: 139–147, 1997.

    Article  PubMed  CAS  Google Scholar 

  17. Doi T, Vlassara H, Kirstein M, Yamada Y, Striker GE, Striker LJ. Receptorspecific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet derived growth factor. Proc Natl Acad Sci USA 89: 2873–2877, 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Kirstein M, Aston C, Hintz R, Vlassara H. Receptor-specific induction of insulin-like growth factor I in human monocytes by advanced glycosylation end product-modified proteins. J Clin Invest 90: 439–446, 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice: a potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 96: 1395–1403, 1995.

    Article  PubMed  CAS  Google Scholar 

  20. Skolnik EY, Yang Z, Makita Z, Radoff S, Kirstein M, Vlassara H. Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodelling and diabetic nephropathy. J Exp Med 174: 931–939, 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Vlassara H, Brownlee M, Manogue KR, Dinarello CA, Pasagian A. Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science 240: 1546–1548, 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Hammes HP, Martin S, Federlin K, Geisen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci USA 88: 11555–11558, 1991.

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura S, Makita Z, Ishikawa S, Yasumura K, Fujii W, Yanagisawa K, Kawata T, Koike T. Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes 46: 895–899, 1997.

    Article  PubMed  CAS  Google Scholar 

  24. Soulis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat. Diabetes 40: 1328–1334, 1991.

    Article  PubMed  CAS  Google Scholar 

  25. Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest 94: 110–117, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, Brownlee M. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest 101: 1142–1147, 1998.

    Article  PubMed  CAS  Google Scholar 

  27. Yao D, Taguchi T, Matsumura T, et al. (2007). Hyperglycemia Increases Angiopoietin-2 transcription in microvascular endothelial cell through methylglyoxal modification of mSin3A. J Biol Chem 2007, (in press).

    Google Scholar 

  28. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55–60, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes 47: 859–866, 1998.

    Article  PubMed  CAS  Google Scholar 

  30. Derubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes 43: 1–8, 1994.

    Article  PubMed  CAS  Google Scholar 

  31. Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes 43: 1122–1129, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 100: 115–126, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, Bursell SE, Kern TS, Ballas LM, Heath WF, Stramm LE, Feener EP, King GL. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 272: 728–731, 1996.

    Article  PubMed  CAS  Google Scholar 

  34. Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101: 676–681, 2000.

    PubMed  CAS  Google Scholar 

  35. Studer RK, Craven PA, Derubertis FR. Role for protein kinase C in the mediation of increased fibronectin accumulation by mesangial cells grown in high-glucose medium. Diabetes 42: 118–126, 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Feener EP, Xia P, Inoguchi T, Shiba T, Kunisaki M, King GL. Role of protein kinase C in glucose- and angiotensin II-induced plasminogen activator inhibitor expression. Contrib Nephrol 118: 180–187, 1996.

    PubMed  CAS  Google Scholar 

  37. Bishara NB, Dunlop ME, Murphy TV, Darby IA, Sharmini Rajanayagam MA, Hill MA. Matrix protein glycation impairs agonist-induced intracellular Ca2+ signaling in endothelial cells. J Cell Physiol 193: 80–92, 2002.

    Article  PubMed  CAS  Google Scholar 

  38. Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, Sugimoto T, Yasuda H, Kashiwagi A, Ways DK, King GL, Kikkawa R. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J 14: 439–447, 2000.

    PubMed  CAS  Google Scholar 

  39. Kolm-Litty V, Sauer U, Nerlich A, Lehmann R, Schleicher ED. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest 101: 160–169, 1998.

    Article  PubMed  CAS  Google Scholar 

  40. Sayeski PP, Kudlow JE. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-alpha gene transcription. J Biol Chem 271: 15237–15243, 1996.

    Article  PubMed  CAS  Google Scholar 

  41. Wells L, Hart G. O-GlcNAc turns twenty: functional implications for posttranslational modification of nuclear and cytosolic protein with a sugar. FEBS Lett 546: 154–158, 2003.

    Article  PubMed  CAS  Google Scholar 

  42. Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 97: 12222–12226, 2000.

    Google Scholar 

  43. Clark RJ, McDonough PM, Swanson E, Trost SU, Suzuki M, Fukuda M, Dillmann WH. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278: 44230–44237, 2003.

    Article  PubMed  CAS  Google Scholar 

  44. Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106: 466–472, 2002.

    Article  PubMed  CAS  Google Scholar 

  45. Nishikawa T, Edelstein D, Du, XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787–790, 2000.

    Article  PubMed  CAS  Google Scholar 

  46. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813–820, 2001.

    Article  PubMed  CAS  Google Scholar 

  47. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care 19: 257–267, 1996.

    Article  PubMed  CAS  Google Scholar 

  48. Wallace DC. Diseases of the mitochondrial DNA (Review). Annu Rev Biochem 61: 1175–1212, 1992.

    Article  PubMed  CAS  Google Scholar 

  49. Trumpower BL. The protonmotive Q cycle: energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J Biol Chem 265: 11409–11412, 1990.

    PubMed  CAS  Google Scholar 

  50. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416: 15–18, 1997.

    Article  PubMed  CAS  Google Scholar 

  51. Du, XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108: 1341–1348, 2001.

    Article  PubMed  CAS  Google Scholar 

  52. DeRubertis FR, Craven PA, Melhem MF, Salah EM. Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide–nitric oxide interaction. Diabetes 53: 762–768, 2004.

    Article  PubMed  CAS  Google Scholar 

  53. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112: 1049–1057, 2003.

    Article  PubMed  CAS  Google Scholar 

  54. Sawa A, Khan AA, Hester LD, Snyder SH. Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci USA 94: 11669 –11674, 1997.

    Article  PubMed  CAS  Google Scholar 

  55. Schmidtz HD. Reversible nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase upon serum depletion. Eur J Cell Biol 80: 419–427, 2001.

    Article  Google Scholar 

  56. Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest 116: 1071–1080, 2006.

    Article  PubMed  CAS  Google Scholar 

  57. Hofmann S, Brownlee M. Biochemistry and molecular cell biology of diabetic complications: a unifying mechanism. In Diabetes Mellitus: A Fundamental and Clinical Text. 3rd ed. LeRoith D, Taylor SI, Olefsky JM, Eds. Philadelphia, Lippincott Williams & Wilkins, pp. 1441–1457, 2004.

    Google Scholar 

  58. Hammes HP, Du, X, Edelstein D, Taguchi T, Matsumura T, Ju Q, Lin J, Bierhaus A, Nawroth P, Hannak D, Neumaier M, Bergfeld R, Giardino I, Brownlee M. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9: 294–299, 2003.

    Article  PubMed  CAS  Google Scholar 

  59. Salvemini D, Wang ZQ, Zweier JL, Samouilov A, Macarthur H, Misko TP, Currie MG, Cuzzocrea S, Sikorski JA, Riley DP. A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science 286: 304–306, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

MD, T.M., MD, M.B. (2008). Unifying Hypothesis of Diabetic Complications. In: LeRoith, D., Vinik, A.I. (eds) Controversies in Treating Diabetes. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-572-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-572-5_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-708-2

  • Online ISBN: 978-1-59745-572-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics