Skip to main content

Expression of the MtrC-MtrD-MtrE Efflux Pump in Neisseria gonorrhoeae and Bacterial Survival in the Presence of Antimicrobials

  • Conference paper

Part of the book series: Infectious Disease ((ID))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shafer WM, Folster JP (2006) Towards an understanding of chromosomally mediated penicillin resistance in Neisseria gonorrhoeae : Evidence for a porin-efflux pump collaboration. J Bacteriol 188:2297–2299.

    Article  PubMed  CAS  Google Scholar 

  2. Phillips I, (1976) Beta-lactamase producing penicillin- resistant gonococcus. Lancet 11:656–657.

    Article  Google Scholar 

  3. Gill MJ, Sinjee S, Al-Hatawi K, Robertson D, Easmon S, Ison CA (1998) Gonococcal resistance to beta-lactams and tetracy-clines involves mutations in loop 3 of the porin encoded at the penB locus. Antimicrob Agents Chemother 42:2799–2803.

    PubMed  CAS  Google Scholar 

  4. Olesky M, Hobbs M, Nicholas RA (2002) Identification and analysis of amino acid mutations in porin IB that mediate intermediate-level resistance to penicillin and tetracycline in Neisseria gonorrhoeae. Antimicrob Agents Chemother 46:2811–2820.

    Article  PubMed  CAS  Google Scholar 

  5. Olesky M, Zhao S, Rosenberg RL, Nicholas RA (2006) Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations. J Bacteriol 188:2300–2308.

    Article  PubMed  CAS  Google Scholar 

  6. Roop PA, Hu M, Olesky M, Nicholas RA (2002) Mutations in ponA, the gene encoding penicillin-binding protein 1, and a novel locus penC, are required for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 46:769–777.

    Article  Google Scholar 

  7. Veal WL, Nicholas RA, Shafer WM (2002) Overexpression of the MtrC-MtrD-MtrE efflux pump due to an mtrR mutation is required for the chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol 184:5619–5624.

    Article  PubMed  CAS  Google Scholar 

  8. Spratt BG (1988) Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature 332:173–176.

    Article  PubMed  CAS  Google Scholar 

  9. Faruki H, Kohmescher RN, McKinney WP, Sparling PF (1985) A community-based outbreak of infection with penicillin-resistant Neisseria gonorrhoeae not producing penicillinase (chromosomally-mediated resistance). N Engl J Med 313:607–611.

    Article  PubMed  CAS  Google Scholar 

  10. Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388.

    Article  PubMed  CAS  Google Scholar 

  11. Maness MJ, Sparling PF (1973) Multiple antibiotic resistance due to a single mutation in Neisseria gonorrhoeae. J Infect Dis 128:321–330.

    PubMed  CAS  Google Scholar 

  12. Guymon LF, Sparling PF (1975) Altered crystal violet permeability and lytic behavior in antibiotic-resistant and -sensitive strains of Neisseria gonorrhoeae. J Bacteriol 124:757–763.

    PubMed  CAS  Google Scholar 

  13. Guymon LF, Walstad DL, Sparling PF (1978) Cell envelope alterations in antibiotic-sensitive and -resistant strains of Neisseria gonorrhoeae. J Bacteriol 136:391–401.

    PubMed  CAS  Google Scholar 

  14. Sarubbi FA, Sparling PF, Blackman E, Lewis E (1975) Loss of low-level antibiotic resistance in Neisseria gonorrhoeae due to env mutations. J Bacteriol 124:750–756.

    PubMed  CAS  Google Scholar 

  15. Gottesman MM, Ling V (2006) The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett 580:998–1009.

    Article  PubMed  CAS  Google Scholar 

  16. McMurray L, Petrucci RE Jr, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci USA 77:3974–3977.

    Article  Google Scholar 

  17. Neyfakh AA, Bidenko VE, Chen LB (1991) Efflux-mediated multidrug resistance in Bacillus subtilis : similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci USA 88:4781–4785.

    Article  PubMed  CAS  Google Scholar 

  18. Ma D, Cook DN, Alberti M, Pan NG, Nikaido H, Hearst JE (1995) Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16:45–56.

    Article  PubMed  CAS  Google Scholar 

  19. Poole K., Krebes K. McNally C., Neshat S, (1993) Multiple antibiotic resistance in Pseudomonas aeruginosa : evidence for involvement of an efflux operon. J. Bacteriol. 175:7363–7372.

    PubMed  CAS  Google Scholar 

  20. Brown MH, Skurray RA (2001) Staphylococcal mutlidrug efflux protein QacA. J Mol Microbiol Biotechnol 3:163–170.

    PubMed  CAS  Google Scholar 

  21. Hagman K, Pan W, Spratt BG, Balthazar JT, Judd RC, Shafer WM (1995) Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiol 141:611–622.

    Article  CAS  Google Scholar 

  22. Lee EH, Shafer WM (1999) The farAB -encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol Microbiol 33:839–845.

    Article  PubMed  CAS  Google Scholar 

  23. Rouquette-Loughlin C, Dunham SA, Kuhn M, Balthazar J, Shafer WM (2003) The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cat-ionic compounds. J Bacteriol 185:1101–1106.

    Article  PubMed  CAS  Google Scholar 

  24. Rouquette-Loughlin CE, Balthazar JT, Shafer WM (2005) Characterization of the MacA-MacB efflux system in Neisseria gonorrhoeae. J Antimicrob Chemother 56:856–860.

    Article  PubMed  CAS  Google Scholar 

  25. Pan W, Spratt BG (1994) Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol Microbiol 11:769–765.

    Article  PubMed  CAS  Google Scholar 

  26. Lucas CE, Balthazar JT, Hagman KE, Shafer WM (1997) The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae. J Bacteriol 179:4123–4128.

    PubMed  CAS  Google Scholar 

  27. Hagman KE, Lucas CE, Balthazar JT, Snyder L, Nilles M, Judd RC, Shafer WM (1997) The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. Microbiol 143:2117–2125.

    Article  CAS  Google Scholar 

  28. Delahay RM, Robertson BD, Balthazar JT, Shafer WM, Ison CA (1997) Involvement of the gonococcal MtrE in the resistance of Neisseria gonorrhoeae to toxic hydrophobic compounds. Micro-biol 143:2127–2133.

    CAS  Google Scholar 

  29. Rouquette-Loughlin CE, Balthazar JT, Hill SA, Shafer WM (2004) Modulation of the mtrCDE -encoded efflux pump gene complex due to a Correia Element insertion sequence. Mol Microbiol 54:731–741.

    Article  PubMed  CAS  Google Scholar 

  30. Lucas CE, Hagman KE, Levin JC, Stein DC, Shafer WM (1995) Importance of lipooligosaccharide structure in determining gono-coccal resistance to hydrophobic antimicrobial agents due to the mtr efflux system. Mol Microbiol 16:1001–1010.

    Article  PubMed  CAS  Google Scholar 

  31. Folster JP, Shafer WM (2005) Regulation of mtrF expression in Neisseria gonorrhoeae and its role in high-level antimicrobial resistance. J Bacteriol 187:3713–3720.

    Article  PubMed  CAS  Google Scholar 

  32. Veal WL, Shafer WM (2003) Identification of a cell envelope protein (MtrF) involved in hydrophobic antimicrobial resistance in Neisseria gonorrhoeae. J Antimicrob Chemother 51:27–37.

    Article  PubMed  CAS  Google Scholar 

  33. Rouquette-Loughlin C, Stojiljkovic I, Hrobowski T, Balthazar JT, Shafer WM (2002) Inducible, but not constitutive resistance of gonococci to hydrophobic agents due to the MtrC-MtrD-MtrE efflux pump requires the TonB-ExbB-ExbD proteins. Antimi-crob Agents Chemother 46:561–565.

    Article  CAS  Google Scholar 

  34. Hagman KE, Shafer WM (1995) Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae. J Bacteriol 171:4162–4165.

    Google Scholar 

  35. Johnson SR, Sanduk AL, Parekh M, Wang SA, Knapp J, Trees D (2003) Mutations causing in vitro resistance to azithromycin in Neisseria gonorrhoeae. Int J Antimicrob Agents 21:414–419.

    Article  PubMed  CAS  Google Scholar 

  36. Zarantonelli L, Borthagaray G, Lee E-H, Veal W, Shafer WM (2001) Decreased susceptibility to azithromycin and erythromy-cin mediated by a novel mtrR promoter mutation in Neisseria gonorrhoeae. J Antimicrob Chemother 47:651–654.

    Article  PubMed  CAS  Google Scholar 

  37. Shafer WM, Balthazar JT, Hagman KE, Morse SA (1995) Mis-sense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiol 141:907–911.

    Article  CAS  Google Scholar 

  38. Hoffman KM, Williams D, Shafer WM, Brennan RG (2005) Characterization of the Multiple Transferrable Repressor, MtrR from Neisseria gonorrhoeae. J Bacteriol 187:5008–5012.

    Article  Google Scholar 

  39. Lee E-H, Rouquette-Loughlin C, Folster JP, Shafer WM (2003) FarR regulates the farAB -encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J Bacteriol 185:7145–7152.

    Article  PubMed  CAS  Google Scholar 

  40. Drake SL, Koomey M (1995) The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae. Mol Microbiol 52:975–986.

    Article  Google Scholar 

  41. Folster JP, Dhulipala V, Nicholas RA, Shafer WM (2007) Differential regulation of ponA and pilMNOPQ expression by the MtrR transcriptional regulatory protein in Neisseria gonorrhoeae. J Bacteriol 189:4569–4577.

    Article  PubMed  CAS  Google Scholar 

  42. Dougherty TJ (1986) Genetic analysis and penicillin-binding proteins in Neisseria gonorrhoeae with chromosomally mediated resistance. Antimicrob Agents Chemother 30:649–652.

    PubMed  CAS  Google Scholar 

  43. Ma D, Alberti M, Lyncg C, Nikaido H, Hearst JE (1996) The local repressor AcrR plays a modulating role in regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol 19:101–112.

    Article  PubMed  CAS  Google Scholar 

  44. Rouquette C, Harmon JB, Shafer WM (1999) Induction of the mtrCDE -encoded efflux pump system of Neisseria gonorrhoeae requires MtrA an AraC-like protein. Mol Microbiol 33:651–658.

    Article  PubMed  CAS  Google Scholar 

  45. Gallegos MT, Michan C, Ramos JL (1993) The XylS/AracC family of regulators. Nucl Acids Res 21:807–810.

    Article  PubMed  CAS  Google Scholar 

  46. Tzeng Y-L, Ambrose K, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens DS (2005) Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187:5387–5396.

    Article  PubMed  CAS  Google Scholar 

  47. Eisenstein BI, Sparling PF (1978) Mutations to increased antibiotic sensitivity in naturally-occurring gonococci. Nature 271:242–244.

    Article  PubMed  CAS  Google Scholar 

  48. Veal W, Yellen A, Balthazar JT, Pan W, Spratt BG, Shafer WM (1998) Loss-of-function mutations in the mtr efflux system of Neisseria gonorrhoeae. Microbiol 144:621–627.

    Article  CAS  Google Scholar 

  49. Zarantonelli L, Borthagaray G, Lee EH, Shafer WM (1999) Decreased azithromycin-susceptibility of Neisseria gonorrhoeae due to mtrR mutations. Antimicrob Agents Chemother 43:2468–2472.

    PubMed  CAS  Google Scholar 

  50. Shafer WM, Qu X-D, Waring AJ, Lehrer RI (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/ division efflux pump family. Proc Natl Acad Sci USA 95:829–1833.

    Article  Google Scholar 

  51. Sorenson OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, Borregaard N (2001) Human cathelicidin, h-CAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase. Blood 97:3951–3959.

    Article  Google Scholar 

  52. Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH (1995) Fall-39, a putative human peptide antibiotic, is cysteine-freeexpressed in bone marrow and testis. Proc Natl Acad Sci USA 92:195–199.

    Article  PubMed  CAS  Google Scholar 

  53. Thompson SA, Sparling PF (1993) The RTX cytotoxin-related FrpA protein of Neisseria meningitides is secreted extracellularly by N. meningitidis and HlyBD+ Escherichia coli. Infect Immun 61:2906–2911.

    PubMed  CAS  Google Scholar 

  54. Kamal N, Rouquette-Loughlin C, Shafer WM (2007) The TolC-like protein of Neisseria meningitidis is required for extracellular production of the Repeats-in-Toxin toxin FrpC but not for resistance to antimicrobials recognized by the Mtr efflux pump. Infect Immun 75:6008–6012.

    Article  PubMed  CAS  Google Scholar 

  55. Morse SA, Lysko PG, McFarland L, Knapp JS, Sandstrom E, Critchlow C, Holme KK (1982) Gonococcal strains from homosexual men have outer membranes with reduced permeability to hydrophobic molecules. Infect Immun 37:432–438.

    PubMed  CAS  Google Scholar 

  56. Jerse AE, (1998) Experimental gonococcal gential infection and opacity protein expression in estradiol-treated mice. Infect Immun 67:5699–5708.

    Google Scholar 

  57. Jerse AE, Sharma ND, Bodner ANB, Snyder LA, Shafer WM (2003) A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun 71:5576–5582.

    Article  PubMed  CAS  Google Scholar 

  58. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudsill J, Dorsch-ner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457.

    Article  PubMed  CAS  Google Scholar 

  59. Warner DM, Folster JP, Shafer WM, Jerse AE (2007) Regulation of the MtrC-MtrD-MtrE efflux pump modulates the in vivo fitness of Neisseria gonorrhoeae. J Infect Dis 196:1804–1812.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Pucko for help in manuscript preparation. We also thank past and current members of the Shafer and Jerse laboratories for their many valuable contributions to the studies described in this chapter. We also gratefully acknowledge the important contributions of our collaborators (notably, B. Spratt, C. Ison, G., R. Judd, S. Hill, G. Borthagary, R. Brennan, R. Nicholas, and the late I. Stojiljkovic) over the years who have helped advance our knowledge regarding the mtr efflux system. We are especially grateful to P. F. Sparling for his insightful observations regarding gonococcal resistance to antibiotics and his encouragement over the years. Work in our laboratories is supported by NIH grants AI021150 (W. M. S), AI062755 (W. M. S.), and AI042053 (A. E. J.) and funds from the VA Medical Research Service. W. M. S. is the recipient of a Senior Research Career Scientist Award from the VA.

Author information

Authors and Affiliations

Authors

Editor information

Vassil St. Georgiev PhD Karl A. Western MD John J. McGowan PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Shafer, W.M. et al. (2008). Expression of the MtrC-MtrD-MtrE Efflux Pump in Neisseria gonorrhoeae and Bacterial Survival in the Presence of Antimicrobials. In: Georgiev, V.S., Western, K.A., McGowan, J.J. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-569-5_7

Download citation

Publish with us

Policies and ethics