Skip to main content

New Candidate Anthrax Pathogenic Factors

  • Conference paper

Part of the book series: Infectious Disease ((ID))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    1 Upon histopathological examination of tissue sections stained with hematoxylin & eosin, apoptosis is typically described as a so-called single- or individual-cell death, which requires additional confirmation of its origin by other methods

References

  1. Smith H, Keppie J, Stainley JL (1955) The chemical basis of the virulence of Bacillus anthracis. V. The specific toxin produced by B. anthracis in vivo. Br J Exp Pathol 36:460–472.

    PubMed  CAS  Google Scholar 

  2. Lincoln RE, Walker JS, Klein F, Haines BW (1964) Anthrax. Adv Vet Sci 9:327–368.

    Google Scholar 

  3. Fellows PF, Linscott MK, Ivins BE, Pitt ML, Rossi CA, Gibbs PH, Friedlander AM (2001) Efficacy of a human anthrax vaccine in guinea pigs, rabbits, and rhesus macaques against challenge by Bacillus anthracis isolates of diverse geographical origin. Vaccine 19:3241–3247.

    Article  PubMed  CAS  Google Scholar 

  4. Smith H, Keppie JL (1954) Observations on experimental anthrax: demonstration of a lethal factor produced in vivo by Bacillus anthracis. Nature 163:869–870.

    Article  Google Scholar 

  5. Thorne CB, Molnar DM, Strange RE (1960) Production of toxin in vitro by Bacillus anthracis and its separation into two components. J Bacteriol 79:450–455.

    PubMed  CAS  Google Scholar 

  6. Fish DC, Lincoln RE (1967) Biochemical and biophysical characterization of anthrax toxin. Fed Proc 26:1534–1538.

    PubMed  CAS  Google Scholar 

  7. Stanley JL, Smith H (1961) Purification of factor I and recognition of a third factor of the anthrax toxin. J Gen Microbiol 26:49–66.

    PubMed  CAS  Google Scholar 

  8. Pezard C, Berche P, Mock M (1991) Contribution of individual toxin components to virulence of Bacillus anthracis. Infect Immun 59:3472–3477.

    PubMed  CAS  Google Scholar 

  9. Welkos SL, Keener TJ, Gibbs PH (1986) Differences in susceptibility of inbred mice to Bacillus anthracis. Infect Immun 51:795–800.

    PubMed  CAS  Google Scholar 

  10. Welkos SL (1991) Plasmid-associated virulence factors of non-toxigenic (pX01-) Bacillus anthracis. Microb Pathol 10:183–198.

    Article  CAS  Google Scholar 

  11. Cataldi A, Mock M, Bentancor L (2000) Characterization of Bacillus anthracis strains used for vaccination. J Appl Micro-biol 88:648–654.

    Article  CAS  Google Scholar 

  12. Mikshis NI, Eremin SA, Bolotnikova MF (1999)[[Correlation of the virulence of Bacillus anthracis with expression of signs, coded for by chromosomal genes][Article in Russian]. Mol Gen Mikrobiol Virusol 3:25–28.

    Google Scholar 

  13. Stepanov AS, Mikshis NI, Eremin SA, Bolotnikova MF (1999)[Contribution of determinants, located in Bacillus anthracis chromosomes, in realizing the pathogenic properties of the pathogen][Article in Russian] Mol Gen Mikrobiol Virusol 1:20–23.

    PubMed  Google Scholar 

  14. Klichko VI, Miller J, Wu A, Popov SG, Alibek K (2003) Anaerobic induction of Bacillus anthracis hemolytic activity. Biochem Biophys Res Commun 303:855–862.

    Article  PubMed  CAS  Google Scholar 

  15. Drobniewski FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6:324–338.

    PubMed  CAS  Google Scholar 

  16. Akesson A, Hedstrom SA, Ripa T (1991) Bacillus cereus: a significant pathogen in postoperative and post-traumatic wounds on orthopaedic wards. Scand J Infect Dis 23:71–77.

    Article  PubMed  CAS  Google Scholar 

  17. David DB, Kirkby GR, Noble BA (1994) Bacillus cereus endophthalmitis. Br J Ophthalmol 78:577–580.

    Article  PubMed  CAS  Google Scholar 

  18. Turnbull PC, French TA, Dowsett EG (1977) Severe systemic and pyogenic infections with Bacillus cereus. Br Med J 1:1628–1629.

    Article  PubMed  CAS  Google Scholar 

  19. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630.

    Article  PubMed  CAS  Google Scholar 

  20. Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, et al (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86.

    Article  PubMed  CAS  Google Scholar 

  21. Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, et al (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91.

    Article  PubMed  CAS  Google Scholar 

  22. Pannucci J, Okinaka RT, Sabin R, Kuske CR (2002) Bacillus anthracis pXO1 plasmid sequence conservation among closely related bacterial species. J Bacteriol 184:134–41.

    Article  PubMed  CAS  Google Scholar 

  23. Hoffmaster AR, Hill KK, Gee JE, Marston CK, De BK, Popo-vic T, et al (2006) Characterization of Bacillus cereus isolates associated with fatal pneumonias: strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J Clin Microbiol 44:3352–3360.

    Article  PubMed  CAS  Google Scholar 

  24. Friedlander A (2001) Tackling anthrax. Nature 414:160–161.

    Article  PubMed  CAS  Google Scholar 

  25. Bonventre PF, Eckert NJ (1963) The biologic activities of Bacillus anthracis and Bacillus cereus culture filtrates. Am J Pathol 43:201–211.

    PubMed  CAS  Google Scholar 

  26. Eckert NJ, Bonventre PF (1963) In vivo effects of Bacillus anthracis culture filtrates. J Inf Dis 112:226–232.

    Google Scholar 

  27. Ezepchuk IuV, Bobkova ED, Prosvetova NK (1969)[On the toxic and various biochemical properties of filtrates of B. anthracis and cereus][Article in Russian] Zh Mikrobiol Epidemiol Immunobiol 46:19–23.

    PubMed  Google Scholar 

  28. Moayeri M, Haines D, Young HA, Leppla SH (2003) Bacillus anthracis lethal toxin induces TNF-alpha-independent hypoxia-mediated toxicity in mice. J Clin Invest 112:670–682.

    PubMed  CAS  Google Scholar 

  29. Cui X, Moayeri M, Li Y L i X, Haley M, Fitz Y, et al (2004) Lethality during continuous anthrax lethal toxin infusion is associated with circulatory shock but not inflammatory cytokine or nitric oxide release in rats. Am J Physiol Regul Integr Comp Physiol 286:R699–709.

    PubMed  CAS  Google Scholar 

  30. Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Friedlander AM, et al (1999) Anthrax as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA 281:1735–1745.

    Article  PubMed  CAS  Google Scholar 

  31. Grinberg LM, Abramova FA, Yampolskaya OV, Walker DH, Smith JH (2001) Quantitative pathology of inhalational anthrax I: quantitative microscopic findings. Mod Pathol 14:482–495.

    Article  PubMed  CAS  Google Scholar 

  32. Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261:7123–7126.

    PubMed  CAS  Google Scholar 

  33. Hanna PC, Acosta D, Collier RJ (1993) On the role of macrophages in anthrax. Proc Natl Acad Sci USA 90:10198–10201.

    Article  PubMed  CAS  Google Scholar 

  34. Hanna PC, Kruskal B, Ezekowitz R, et al(1994) Role of macrophages oxidative burst in the action of anthrax lethal toxin. Mol Med 1:7–18.

    PubMed  CAS  Google Scholar 

  35. Klein F, Walker JS, Fitzpatrick DF, Lincoln RE, Mahlandt BG, Jones WI, et al. Jr(1966) Pathophysiology of anthrax. J Infect Dis 116:123–138.

    PubMed  CAS  Google Scholar 

  36. Shannon JG, Ross CL, Koehler TM, Rest RF (2003) Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect Immun 71:3183–3189.

    Article  PubMed  CAS  Google Scholar 

  37. Brown ER, Moody MD, Treece EL, Smith CW (1958) Differential diagnosis of Bacillus cereus, Bacillus anthracis, and Bacillus cereus var. Mycoides J Bacteriol 75:499–509.

    CAS  Google Scholar 

  38. Nordberg BK, Schmiterlow CG, Hansen HJ (1961) Pathophysiological investigations into the terminal course of experimental anthrax in the rabbit. Acta Pathol Microbiol Scand 53: 295 – 318.

    Article  PubMed  CAS  Google Scholar 

  39. MacFarland. J (1907) Pathogenic Bacteria, fifth edition. Sounders Co., Philadelphia and London.

    Google Scholar 

  40. Henderson DW, Peacock S, Belton FC (1956) Observations on the prophylaxis of experimental pulmonary anthrax in the monkey. J Hyg (Lond) 54:28–36.

    Article  CAS  Google Scholar 

  41. Little SF, Ivins BE, Fellows PF, Friedlander AM (1997) Passive protection by polyclonal antibodies against Bacillus anthracis infection in guinea pigs. Infect Immun 65:5171–5175.

    PubMed  CAS  Google Scholar 

  42. Ivins B, Fellows P, Pitt L, Estep J, Farchaus J, Friedlander A, Gibbs P (1995) Experimental anthrax vaccines: efficacy of adjuvants combined with protective antigen against an aerosol Bacillus anthracis spore challenge in guinea pigs. Vaccine 13:1779–1784.

    Article  PubMed  CAS  Google Scholar 

  43. Pitt ML, Little S, Ivins BE, Fellows P, Boles J, Barth J, et al (1999) In vitro correlate of immunity in an animal model of inhalational anthrax. J Appl Microbiol 87:304.

    Article  PubMed  Google Scholar 

  44. Welkos S, Little S, Friedlander A, Fritz D, Fellows P (2001) The role of antibodies to Bacillus anthracis and anthrax toxin components in inhibiting the early stages of infection by anthrax spores. Microbiology 147:1677–1685.

    PubMed  CAS  Google Scholar 

  45. Cote CK, Rossi CA, Kang AS, Morrow PR, Lee JS, Welkos SL (2005) The detection of protective antigen (PA) associated with spores of Bacillus anthracis and the effects of anti-PA antibodies on spore germination and macrophage interactions. Microb Pathog 38:209–225.

    Article  PubMed  CAS  Google Scholar 

  46. Wintberry LK, Bondoc L, Park S, Simon L, Shih CN, Giri L (2000) Characterization of the US-licenced anthrax vaccine. Abstracts of Fourth International Conference on Anthrax. Annapolis, MD, p. 41.

    Google Scholar 

  47. Chaudry GJ, Moayeri M, Liu S, Leppla SH (2002) Quickening the pace of anthrax research: three advances point towards possible therapies. Trends Microbiol 10:58–62.

    Article  PubMed  CAS  Google Scholar 

  48. Tonello F, Seveso M, Marin O, Mock M, Montecucco C (2002) Screening inhibitors of anthrax lethal factor. Nature 418:386.

    Article  PubMed  CAS  Google Scholar 

  49. Mourez M, Lacy DB, Cunningham K, Legmann R, Sellman BR, Mogridge J, Collier RJ (2002) 2001: a year of major advances in anthrax toxin research Trends microbiol 10:287–298.

    Article  PubMed  CAS  Google Scholar 

  50. Sellman R, Mourez M, Collier J (2001) Dominant-negative mutants of a toxin subunit: an approach to therapy of anthrax. Science 292:695–697.

    Article  PubMed  CAS  Google Scholar 

  51. Min DH, Tang WJ, Mrksich M (2004) Chemical screening by mass spectrometry to identify inhibitors of anthrax lethal factor. Nat Biotechnol 22:717–723.

    Article  PubMed  CAS  Google Scholar 

  52. Turk BE, Wong TY, Schwarzenbacher R, Jarrell ET, Leppla SH, Collier RJ, Liddington RC, Cantley LC (2004) The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor. Nat Struct Mol Biol 11:60–66.

    Article  PubMed  CAS  Google Scholar 

  53. Sarac MS, Peinado JR, Leppla SH, Lindberg I (2004) Protection against anthrax toxemia by hexa-D-arginine in vitro and in vivo. Infect Immun 72:602–605.

    Article  PubMed  CAS  Google Scholar 

  54. Popov SG, Popova TG, Grene E, Klotz F, Cardwell J, Bradburne C, et al (2004) Systemic cytokine response in murine anthrax. Cell Microbiol 6:226–233.

    Article  CAS  Google Scholar 

  55. Popov SG, Villasmil R, Bernardi J, Grene E, Cardwell J W u A, et al (2002) Lethal toxin of Bacillus anthracis causes apoptosis of macrophages. Biochem Biopys Res Commun 293:349–355.

    Article  CAS  Google Scholar 

  56. Popov SG, Villasmil R, Bernardi J, Grene E, Cardwell J, Pop-ova T, et al (2002) Effect of Bacillus anthracis lethal toxin on human peripheral blood mononuclear cells. FEBS Lett 527:211–215.

    Article  PubMed  CAS  Google Scholar 

  57. Forino M, Johnson S, Wong TY, Rozanov DV, Savinov AY, Li W, et al (2005) Efficient synthetic inhibitors of anthrax lethal factor. Proc Natl Acad Sci USA 102:9499–9504.

    Article  PubMed  CAS  Google Scholar 

  58. Shoop WL, Xiong Y, Wiltsie J, Woods A, Guo J, Pivnichny JV, et al (2005) Anthrax lethal factor inhibition. Proc Natl Acad Sci USA 102:7958–7963.

    Article  PubMed  CAS  Google Scholar 

  59. Pellizzari R, Guidi-Rontani C, Vitale G, Mock M, Montecucco C (1999) Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFN-γ-induced release of NO and TNF-α. FEBS Lett 462:199–204.

    Article  PubMed  CAS  Google Scholar 

  60. Erwin JL, DaSilva LM, Bavari S, Little SF, Freidlander AM, Chanh TC (2001) Macrophage-derived cell lines do not express proinflammatory cytokines after exposure to Bacillus anthracis lethal toxin. Inf Immun 69:1175–1177.

    Article  CAS  Google Scholar 

  61. Hu H, Sa Q, Koehler TM, Aronson AI, Zhou D (2006) Inactivation of Bacillus anthracis spores in murine primary macrophages. Cell Microbiol 8:1634–1642.

    Article  PubMed  CAS  Google Scholar 

  62. Cite C, Rooijen NV, Welkos S (2006) Roles of macrophages and neutrophils in the early host response to bacillus anthracis spores in a mouse model of infection. Inf Immun 74:469–480.

    Article  CAS  Google Scholar 

  63. Hanna PC, Acosta D, Collier RJ (1993) On the role of macrophages in anthrax. Proc Natl Acad Sci USA 90:10198–10201.

    Article  PubMed  CAS  Google Scholar 

  64. Hanna PC, Kruskal B, Ezekowitz R, et al (1994) Role of macrophages oxidative burst in the action of anthrax lethal toxin. Mol Med 1:7–18.

    PubMed  CAS  Google Scholar 

  65. Friedlander AM (1986) Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 261:7123–7126.

    PubMed  CAS  Google Scholar 

  66. Moayeri M, Leppla S (2004) The role of anthrax lethal toxin in pathogenesis. Curr Opinion Microb 7:19–24.

    Article  CAS  Google Scholar 

  67. Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, et al (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280:734–737.

    Article  PubMed  CAS  Google Scholar 

  68. Duffield JS. (2003) The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond) 104:27–38.

    Article  CAS  Google Scholar 

  69. Kim SO, Jing Q, Hoebe K, Beutler B, Duesbery NS, Han J (2003) Sensitizing anthrax lethal toxin-resistant macrophages to lethal toxin-induced killing by tumor necrosis factor-alpha. J Biol Chem 278:7413–7421.

    Article  PubMed  CAS  Google Scholar 

  70. Park JM, Greten FR, Li Z-W, Karin M (2002) Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297:2048–2051.

    Article  PubMed  CAS  Google Scholar 

  71. Holmstrom TH, Chow SC, Elo I, Coffey ET, Orrenius S, Sistonen L, Eriksson JE (1998) Suppression of Fas/APO-1-mediated apoptosis by mitogen-activated kinase signaling. J Immunol 160:2626–2636.

    PubMed  CAS  Google Scholar 

  72. Pickering AK, Osorio M, Lee GM, Grippe VK, Bray M, Merkel TJ (2004) Cytokine response to infection with Bacillus anthracis spores. Infect Immun 72:6382–6389.

    Article  PubMed  CAS  Google Scholar 

  73. Hughes MA, Green CS, Lowchyj L, Lee GM, Grippe VK, Smith MF et al (2005) MyD88-dependent signaling contributes to protection following Bacillus anthracis spore challenge of mice: implications for Toll-like receptor signaling. Infect Immun 73:7535–7540.

    Article  PubMed  CAS  Google Scholar 

  74. Guidi-Rontani C, Weber-Levy M, Labruyere E, Mock M (1999) Germination of Bacillus anthracis spores within alveolar macrophages. Mol Microbiol 31:9–17.

    Article  PubMed  CAS  Google Scholar 

  75. Dixon TC, Fadl AA, Koehler TM, Swanson JA, Hanna PC (2000) Early Bacillus anthracis-macrophage interactions: intracellular survival and escape. Cell Microbiol 2:453–463.

    Article  PubMed  CAS  Google Scholar 

  76. Tournier JN, Quesnel-Hellmann A, Mathieu J, Montecucco J, Tang WJ, Mock M et al (2005) Anthrax edema toxin cooperates with lethal toxin impair cytokine secretion during infection of dendritic cells. J Immunol 174:4934–4941.

    PubMed  CAS  Google Scholar 

  77. Heffernan BJ, Thomason B, Herring-Palmer A, Hanna PC (in press) Functional interactions of Bacillus anthracis anthrolysin O and three phospholipases C in a murine model of inhalation anthrax.

    Google Scholar 

  78. Grinberg LM, Abramova FA, Yampolskaya OV, Walker DH, Smith JH (2001) Quantitative pathology of inhalational anthrax I: quantitative microscopic findings. Mod Pathol 14:482–495.

    Article  PubMed  CAS  Google Scholar 

  79. Szabo G, Romics L JrFrendl G (2002) Liver in sepsis and systemic inflammatory response syndrome. Clin Liver Dis 6:1045–1046.

    Article  PubMed  Google Scholar 

  80. Phillips MJ, Poucell S, Patterson J, Valencia P (1987) The Liver: An Atlas and Text of Structural Pathology, pp. 1–32, Raven Press, New York.

    Google Scholar 

  81. Savill J, Fadok V, Henson P, Haslett C (1993) Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14:131–136.

    Article  PubMed  CAS  Google Scholar 

  82. Platt N, Silva RP, daGordon S (1998) Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol 8:365–372.

    Article  PubMed  CAS  Google Scholar 

  83. Giles KM, Hart SP, Haslett C, Rossi AG, Dransfield I (2000) An appetite for apoptotic cells? Controversies and challenges. Br J Haematol 109:1–12.

    Article  PubMed  CAS  Google Scholar 

  84. Faouzi S, Burckhardt BE, Hanson JC, Campe CB, Schrum L W, Rippe RA, Maher JJ (2001) Anti-Fas induces hepatic chemokines and promotes inflammation by an NF-kappa B-independent, caspase-3-dependent pathway. J Biol Chem 276:49077–49082.

    Article  PubMed  CAS  Google Scholar 

  85. Hohlbaum AM, Gregory MS, Ju ST, Marshak-Rothstein A (2001) Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J Immunol 167:6217–6224.

    PubMed  CAS  Google Scholar 

  86. Bozic CR, Kolakowski LF Jr, Gerard NP, Garcia-Rodriguez C, von Uexkull-Guldenband C, Conklyn MJ, et al (1995) Expression and biologic characterization of the murine chemokine KC. J Immunol 154:6048–6057.

    PubMed  CAS  Google Scholar 

  87. Wade BH, Wright GG, Hewlett EL, Leppla SH, Mandell GL (1985) Anthrax toxin components stimulate chemotaxis of human polymorphonuclear neutrophils. Proc Soc Exp Biol Med 179:159–162.

    PubMed  CAS  Google Scholar 

  88. Wanner GA, Mica L, Wanner-Schmid E, Kolb SA, Hentze H, Trentz O, Ertel W (1999) Inhibition of caspase activity prevents CD95-mediated hepatic microvascular perfusion failure and restores Kupffer cell clearance capacity. FASEB J 13:1239–1248.

    PubMed  CAS  Google Scholar 

  89. Greaves P, Edwards R, Cohen GM, MacFarlane M (2001) ‘Have you seen this?’ Diffuse hepatic apoptosis. Toxicol Pathol 29:398–400.

    Article  PubMed  CAS  Google Scholar 

  90. Abramova FA, Grinberg LM, Yampolskaya OV, Walker DH (1993) Pathology of inhalational anthrax in 42 cases from the Sverdlovsk outbreak of 1979. Proc Natl Acad Sci USA 90:2291–2294.

    Article  PubMed  CAS  Google Scholar 

  91. Stearns-Kurosawa DJ, Lupu F, Taylor FB Jr Kinasewitz G, Kurosawa S (2006) Sepsis and pathophysiology of anthrax in a nonhuman primate model. Am J Pathol 169:433–444.

    Article  PubMed  CAS  Google Scholar 

  92. Smith H, Stoner HB (1967) Anthrax toxic complex. Fed Proc 26:1554–1557.

    PubMed  CAS  Google Scholar 

  93. Warfel JM, Steele AD, D'Agnillo F (2005) Anthrax lethal toxin induces endothelial barrier dysfunction. Am J Pathol 166:1871–1881.

    Article  PubMed  CAS  Google Scholar 

  94. Culley NC, Pinson DM, Chakrabarty A, Mayo MS, Levine SM (2005) Pathophysiological manifestations in mice exposed to anthrax lethal toxin. Infect Immun 73:7006–7010.

    Article  PubMed  CAS  Google Scholar 

  95. Mikshis NI, Stepanov AS, Shevchenko OV, Eremin SA (1999)[The intrastrain heterogeneity of the causative agent of anthrax].[Article in Russian] Zh Mikrobiol Epidemiol Immunobiol 3:78–79.

    PubMed  Google Scholar 

  96. Mignot T, Mock M, Robichon D, Landier A, Lereclus D, Fouet A (2001) The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol Microbiol 42:1189–1198.

    Article  PubMed  CAS  Google Scholar 

  97. Klichko VI, Miller J, Wu A, Popov SG, Alibek K (2003) Anaerobic induction of Bacillus anthracis hemolytic activity. Biochem Biophys Res Commun 303:855–862.

    Article  PubMed  CAS  Google Scholar 

  98. Thorne CB, Molnar DM, Stranger RE (1960) Production of toxin in vitro by Bacillus anthracis and its separation into two components. J Bacteriol 79:450–455.

    PubMed  CAS  Google Scholar 

  99. Shannon JG, Ross CL, Koehler TM, Rest RF (2003) Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect Immun 71:3183–3189.

    Article  PubMed  CAS  Google Scholar 

  100. Popova TG, Millis B, Bradburne C, Nazarenko S, Bailey C, Chandhoke V, Popov SG (2006) Acceleration of epithelial cell syndecan-1 shedding by anthrax hemolytic virulence factors. BMC Microbiol 6:8–14.

    Article  PubMed  CAS  Google Scholar 

  101. Mosser EM, Rest RF (2006) The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol 6:56–60.

    Article  PubMed  CAS  Google Scholar 

  102. Park JM, Ng VH, Maeda S, Rest RF, Karin M (2004) Anthrolysin O and other gram-positive cytolysins are toll-like receptor 4 agonists. J Exp Med 200:1647–1655.

    Article  PubMed  CAS  Google Scholar 

  103. Popov SG, Popova TG, Hopkins S, Weinstein RS, MacAfee R, Fryxell K, et al (2005) Effective antiprotease-antibiotic treatment of experimental anthrax. BMC Infect Dis 5:25–39.

    Article  PubMed  CAS  Google Scholar 

  104. Chung MC, Popova TG, Millis BA, Mukherjee DV, Zhou W, Liotta LA, et al (2006) Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors. J Biol Chem 281:31408–31418.

    Article  PubMed  CAS  Google Scholar 

  105. Ramarao N, Lereclus D (2005) The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages. Cell Microbiol 7:1357–1364.

    Article  PubMed  CAS  Google Scholar 

  106. Park PW, Pier GB, Preston MJ, Goldberger O, Fitzgerald ML, Bernfield M (2000) Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J Biol Chem 275:3057–3064.

    Article  PubMed  CAS  Google Scholar 

  107. Park PW, Pier GB, Hinkes MT, Bernfield M (2001) Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 411:98–102.

    Article  PubMed  CAS  Google Scholar 

  108. Park PW, Foster TJ, Nishi E, Duncan SJ, Klagsbrun M, Chen Y (2004) Activation of syndecan-1 ectodomain shedding by Staphylococcus aureus alpha-toxin and beta-toxin. J Biol Chem 279:251–258.

    Article  PubMed  CAS  Google Scholar 

  109. Vasconcelos D,Barnewall R,BabinM,HuntR, Estep J, Nielsen C, et al (2003) Pathology of inhalation anthrax in cynomolgus monkeys (Macaca fascicularis). Lab Invest 83:1201–1209.

    Article  PubMed  Google Scholar 

  110. Mun-Bryce S, Rosenberg GA (1998) Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab 18:1163–1172.

    Article  PubMed  CAS  Google Scholar 

  111. Li L, Chaikof EL (2002) Mechanical stress regulates syndecan-4 expression and redistribution in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 22:61–68.

    Article  PubMed  Google Scholar 

  112. Higashiyama S, Nanba D (2005) ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk. Biochim Biophys Acta 1751:110–117.

    PubMed  CAS  Google Scholar 

  113. Timmermann M, Hogger P (2005) Oxidative stress and 8-iso-prostaglandin F(2alpha) induce ectodomain shedding of CD163 and release of tumor necrosis factor-alpha from human monocytes. Free Radic Biol Med 39:98–107.

    Article  PubMed  CAS  Google Scholar 

  114. Aktories K, Barbieri JT (2005) Bacterial cytotoxins: targeting eukaryotic switches. Nat Rev Microbiol 3:397–410.

    Article  PubMed  CAS  Google Scholar 

  115. Kato M, Saunders S, Nguyen H, Bernfield M (1995) Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol Biol Cell 6:559–576.

    PubMed  CAS  Google Scholar 

  116. Beauvais DM, Rapraeger AC (2004) Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol 2:3–15.

    Article  PubMed  Google Scholar 

  117. Moayeri M, Webster JI, Wiggins JF, Leppla SH, Sternberg EM (2005) Endocrine perturbation increases susceptibility of mice to anthrax lethal toxin. Infect Immun 73:4238–4244.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vassil St. Georgiev PhD Karl A. Western MD John J. McGowan PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Popov, S.G. (2008). New Candidate Anthrax Pathogenic Factors. In: Georgiev, V.S., Western, K.A., McGowan, J.J. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-569-5_4

Download citation

Publish with us

Policies and ethics