Skip to main content

Neuroglial Dysfunction in Diabetic Retinopathy

  • Chapter
Diabetic Retinopathy

Part of the book series: Contemporary Diabetes ((CDI))

  • 2237 Accesses

Abstract

Diabetic retinopathy is a vision-threatening disease that impacts many, if not all the different types of cells in the retina. This chapter reviews evidence that the dysfunction of the neuroglial cells of the retina contributes to the pathology of diabetic retinopathy. The basic histology of the neurons and glial cells of the retina is summarized, along with a discussion of the functions of these different cell types, and how they operate collectively to mediate vision. Then the effect of diabetes on retinal function is summarized, along with a discussion of how neurodegeneration, glial dysfunction, and neuroinflammation each may play a part in loss of vision. Finally, the history of research on neuroglial dysfunction in diabetic retinopathy is summarized in order to appreciate the evolution of the notion that vision loss is mediated through abnormalities in neuroglial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duke-Elder S. The emergence of vision in the animal world. Annals of the Royal College of Surgeons of England 1958;23(1):1–24.

    PubMed  CAS  Google Scholar 

  2. Kolb H. How the retina works. Am Sci 2003;91:28–36.

    Google Scholar 

  3. Schiller PH, Sandell JH, Maunsell JH. Functions of the ON and OFF channels of the visual system. Nature 1986;322(6082):824–5.

    PubMed  CAS  Google Scholar 

  4. Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 2006;86(3):1009–31.

    PubMed  CAS  Google Scholar 

  5. Dubois-Dauphin M, Poitry-Yamate C, de Bilbao F, Julliard AK, Jourdan F, Donati G. Early postnatal Muller cell death leads to retinal but not optic nerve degeneration in NSE-Hu-Bcl-2 transgenic mice. Neuroscience 2000;95(1):9–21.

    PubMed  CAS  Google Scholar 

  6. Newman E, Reichenbach A. The Muller cell: a functional element of the retina. Trends Neurosci 1996;19(8):307–12.

    PubMed  CAS  Google Scholar 

  7. Newman EA. Glial modulation of synaptic transmission in the retina. Glia 2004;47(3):268–74.

    PubMed  Google Scholar 

  8. Antonetti DA, Barber AJ, Bronson SK, et al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 2006;55(9):2401–11.

    PubMed  CAS  Google Scholar 

  9. Schnitzer J. Retinal astrocytes: their restriction to vascularized parts of the mammalian retina. Neurosci Lett 1987;78(1):29–34.

    PubMed  CAS  Google Scholar 

  10. Gardner TW, Lieth E, Khin SA, et al. Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest Ophthalmol Vis Sci 1997;38(11):2423–7.

    PubMed  CAS  Google Scholar 

  11. Xu H, Chen M, Mayer EJ, Forrester JV, Dick AD. Turnover of resident retinal microglia in the normal adult mouse. Glia 2007;55(11):1189–98.

    PubMed  Google Scholar 

  12. Arevalo JF, Fromow-Guerra J, Quiroz-Mercado H, et al. Primary intravitreal bevacizumab (Avastin) for diabetic macular edema: results from the Pan-American Collaborative Retina Study Group at 6-month follow-up. Ophthalmology 2007;114(4):743–50.

    PubMed  Google Scholar 

  13. Lobo CL, Bernardes RC, Figueira JP, de Abreu JR, Cunha-Vaz JG. Three-year follow-up study of blood-retinal barrier and retinal thickness alterations in patients with type 2 diabetes mellitus and mild nonproliferative diabetic retinopathy. Arch Ophthalmol 2004;122(2):211–7.

    PubMed  Google Scholar 

  14. Kern TS, Engerman RL. A mouse model of diabetic retinopathy. Arch Ophthalmol 1996;114(8):986–90.

    PubMed  CAS  Google Scholar 

  15. Barber AJ, Antonetti DA, Gardner TW. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest Ophthalmol Vis Sci 2000;41(11):3561–8.

    PubMed  CAS  Google Scholar 

  16. Feit-Leichman RA, Kinouchi R, Takeda M, et al. Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest Ophthalmol Vis Sci 2005;46(11):4281–7.

    PubMed  Google Scholar 

  17. Barber AJ, Antonetti DA, Kern TS, et al. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci 2005;46(6):2210–8.

    PubMed  Google Scholar 

  18. Rungger-Brandle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 2000;41(7):1971–80.

    PubMed  CAS  Google Scholar 

  19. Zeng XX, Ng YK, Ling EA. Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci 2000;17(3):463–71.

    PubMed  CAS  Google Scholar 

  20. Bek T. Immunohistochemical characterization of retinal glial cell changes in areas of vascular occlusion secondary to diabetic retinopathy. Acta Ophthalmol Scand 1997;75(4):388–92.

    PubMed  CAS  Google Scholar 

  21. Krady JK, Basu A, Allen CM, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 2005;54(5):1559–65.

    PubMed  CAS  Google Scholar 

  22. Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes 1998;47(12):1953–9.

    CAS  Google Scholar 

  23. Ng EW, Shima DT, Calias P, Cunningham ET, Jr., Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006;5(2):123–32.

    PubMed  CAS  Google Scholar 

  24. Amrite AC, Ayalasomayajula SP, Cheruvu NP, Kompella UB. Single periocular injection of cele-coxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci 2006;47(3):1149–60.

    PubMed  Google Scholar 

  25. Di Leo MA, Caputo S, Falsini B, et al. Nonselective loss of contrast sensitivity in visual system testing in early type I diabetes. Diabetes Care 1992;15(5):620–5.

    PubMed  CAS  Google Scholar 

  26. Hardy KJ, Lipton J, Scase MO, Foster DH, Scarpello JH. Detection of colour vision abnormalities in uncomplicated type 1 diabetic patients with angiographically normal retinas. Br J Ophthalmol 1992;76(8):461–4.

    PubMed  CAS  Google Scholar 

  27. Holm K, Larsson J, Lovestam-Adrian M. In diabetic retinopathy, foveal thickness of 300 mum seems to correlate with functionally significant loss of vision. Doc Ophthalmol 2007;114(3):117–24.

    PubMed  Google Scholar 

  28. Hyvarinen L, Laurinen P, Rovamo J. Contrast sensitivity in evaluation of visual impairment due to diabetes. Acta Ophthalmol (Copenh) 1983;61(1):94–101.

    CAS  Google Scholar 

  29. Bearse MA, Jr., Han Y, Schneck ME, Barez S, Jacobsen C, Adams AJ. Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Invest Ophthalmol Vis Sci 2004;45(9):3259–65.

    PubMed  Google Scholar 

  30. Caputo S, Di Leo MA, Falsini B, et al. Evidence for early impairment of macular function with pattern ERG in type I diabetic patients. Diabetes Care 1990;13(4):412–8.

    PubMed  CAS  Google Scholar 

  31. Di Leo MA, Falsini B, Caputo S, Ghirlanda G, Porciatti V, Greco AV. Spatial frequency-selective losses with pattern electroretinogram in type 1 (insulin-dependent) diabetic patients without retinopa-thy. Diabetologia 1990;33(12):726–30.

    PubMed  Google Scholar 

  32. Fortune B, Schneck ME, Adams AJ. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 1999;40(11):2638–51.

    PubMed  CAS  Google Scholar 

  33. Palmowski AM, Sutter EE, Bearse MA, Jr., Fung W. Mapping of retinal function in diabetic retinopa-thy using the multifocal electroretinogram. Invest Ophthalmol Vis Sci 1997;38(12):2586–96.

    PubMed  CAS  Google Scholar 

  34. Ghirlanda G, Di Leo MA, Caputo S, et al. Detection of inner retina dysfunction by steady-state focal electroretinogram pattern and flicker in early IDDM. Diabetes 1991;40(9):1122–7.

    PubMed  CAS  Google Scholar 

  35. Davis MD, Fisher MR, Gangnon RE, et al. Risk factors for high-risk proliferative diabetic retinopathy and severe visual loss: Early Treatment Diabetic Retinopathy Study Report #18. Invest Ophthalmol Vis Sci 1998;39(2):233–52.

    PubMed  CAS  Google Scholar 

  36. Han Y, Adams AJ, Bearse MA, Jr., Schneck ME. Multifocal electroretinogram and short-wavelength automated perimetry measures in diabetic eyes with little or no retinopathy. Arch Ophthalmol 2004;122(12):1809–15.

    PubMed  Google Scholar 

  37. Di Leo MA, Caputo S, Falsini B, Porciatti V, Greco AV, Ghirlanda G. Presence and further development of retinal dysfunction after 3-year follow up in IDDM patients without angiographically documented vasculopathy. Diabetologia 1994;37(9):911–6.

    PubMed  Google Scholar 

  38. Sinclair SH. Diabetic retinopathy: the unmet needs for screening and a review of potential solutions. Expert review of medical devices 2006;3(3):301–13.

    PubMed  Google Scholar 

  39. Ewing FM, Deary IJ, Strachan MW, Frier BM. Seeing beyond retinopathy in diabetes: electrophysiolog-ical and psychophysical abnormalities and alterations in vision. Endocrine reviews 1998;19(4):462–76.

    PubMed  CAS  Google Scholar 

  40. Frost-Larsen K, Larsen HW, Simonsen SE. Value of electroretinography and dark adaptation as prognostic tools in diabetic retinopathy. Dev ophthalmol 1981;2:222–34.

    PubMed  CAS  Google Scholar 

  41. Spaide RF, Fisher YL. Intravitreal bevacizumab (Avastin) treatment of proliferative diabetic retinopa-thy complicated by vitreous hemorrhage. Retina 2006;26(3):275–8.

    PubMed  Google Scholar 

  42. Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol 1985;103(1):51–4.

    PubMed  CAS  Google Scholar 

  43. Trick GL, Burde RM, Gordon MO, Santiago JV, Kilo C. The relationship between hue discrimination and contrast sensitivity deficits in patients with diabetes mellitus. Ophthalmology 1988;95(5):693–8.

    PubMed  CAS  Google Scholar 

  44. Dosso AA, Bonvin ER, Morel Y, Golay A, Assal JP, Leuenberger PM. Risk factors associated with contrast sensitivity loss in diabetic patients. Graefes Arch Clin Exp Ophthalmol 1996;234(5):300–5.

    PubMed  CAS  Google Scholar 

  45. Liu W, Deng Y. The analysis of electroretinography of diabetes mellitus. Yan Ke Xue Bao 2001;17(3): 173–5, 9.

    PubMed  CAS  Google Scholar 

  46. Tzekov R, Arden GB. The electroretinogram in diabetic retinopathy. Survey of ophthalmology 1999;44(1):53–60.

    PubMed  CAS  Google Scholar 

  47. Holopigian K, Greenstein VC, Seiple W, Hood DC, Carr RE. Evidence for photoreceptor changes in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 1997;38(11):2355–65.

    PubMed  CAS  Google Scholar 

  48. Mortlock KE, Chiti Z, Drasdo N, Owens DR, North RV. Silent substitution S-cone electroretinogram in subjects with diabetes mellitus. Ophthalmic Physiol Opt 2005;25(5):392–9.

    PubMed  Google Scholar 

  49. Simonsen SE. The value of the oscillatory potential in selecting juvenile diabetics at risk of developing proliferative retinopathy. Acta Ophthalmol (Copenh) 1980;58(6):865–78.

    CAS  Google Scholar 

  50. Han Y, Schneck ME, Bearse MA, Jr., et al. Formulation and evaluation of a predictive model to identify the sites of future diabetic retinopathy. Invest Ophthalmol Vis Sci 2004;45(11):4106–12.

    PubMed  Google Scholar 

  51. Han Y, Bearse MA, Jr., Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electro retinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 2004;45(3):948–54.

    PubMed  Google Scholar 

  52. Bearse MA, Jr., Adams AJ, Han Y, et al. A multifocal electroretinogram model predicting the development of diabetic retinopathy. Progress in retinal and eye research 2006;25(5):425–48.

    PubMed  Google Scholar 

  53. Hancock HA, Kraft TW. Oscillatory potential analysis and ERGs of normal and diabetic rats. Invest Ophthalmol Vis Sci 2004;45(3):1002–8.

    PubMed  Google Scholar 

  54. Sakai H, Tani Y, Shirasawa E, Shirao Y, Kawasaki K. Development of electroretinographic alterations in streptozotocin-induced diabetes in rats. Ophthalmic Res 1995;27(1):57–63.

    PubMed  CAS  Google Scholar 

  55. Yonemura D, Aoki T, Tsuzuki K. Electroretinogram in diabetic retinopathy. Arch Ophthalmol 1962;68:19–24.

    PubMed  CAS  Google Scholar 

  56. Phipps JA, Fletcher EL, Vingrys AJ. Paired-flash identification of rod and cone dysfunction in the diabetic rat. Invest Ophthalmol Vis Sci 2004;45(12):4592–600.

    PubMed  Google Scholar 

  57. Aizu Y, Oyanagi K, Hu J, Nakagawa H. Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology 2002;22(3):161–70.

    PubMed  Google Scholar 

  58. Li Q, Zemel E, Miller B, Perlman I. Early retinal damage in experimental diabetes: electroretino-graphical and morphological observations. Exp Eye Res 2002;74(5):615–25.

    PubMed  CAS  Google Scholar 

  59. Bresnick GH. Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol 1986;104(7): 989–90.

    PubMed  CAS  Google Scholar 

  60. Wolter JR. Diabetic retinopathy. Am J Ophthalmol 1961;51:1123–41.

    PubMed  CAS  Google Scholar 

  61. Bloodworth JM, Jr. Diabetic retinopathy. Diabetes 1962;11:1–22.

    PubMed  Google Scholar 

  62. Hammes HP, Federoff HJ, Brownlee M. Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1995;1(5):527–34.

    PubMed  CAS  Google Scholar 

  63. Kerrigan LA, Zack DJ, Quigley HA, Smith SD, Pease ME. TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol 1997;115(8):1031–5.

    PubMed  CAS  Google Scholar 

  64. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998;102(4):783–91.

    PubMed  CAS  Google Scholar 

  65. Gastinger MJ, Singh RS, Barber AJ. Loss of cholinergic and dopaminergic amacrine cells in streptozoto-cin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci 2006;47(7):3143–50.

    PubMed  Google Scholar 

  66. Martin PM, Roon P, Van Ells TK, Ganapathy V, Smith SB. Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci 2004;45(9):3330–6.

    PubMed  Google Scholar 

  67. Park SH, Park JW, Park SJ, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia 2003;46(9):1260–8.

    PubMed  Google Scholar 

  68. El-Remessy AB, Al-Shabrawey M, Khalifa Y, Tsai NT, Caldwell RB, Liou GI. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am J Pathol 2006;168(1):235–44.

    PubMed  CAS  Google Scholar 

  69. Park JW, Park SJ, Park SH, et al. Up-regulated expression of neuronal nitric oxide synthase in experimental diabetic retina. Neurobiol Dis 2006;21(1):43–9.

    PubMed  CAS  Google Scholar 

  70. Seigel GM, Lupien SB, Campbell LM, Ishii DN. Systemic IGF-I treatment inhibits cell death in diabetic rat retina. J Diabetes Complicat 2006;20(3):196–204.

    PubMed  Google Scholar 

  71. Abu-El-Asrar AM, Dralands L, Missotten L, Al-Jadaan IA, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci 2004;45(8):2760–6.

    PubMed  Google Scholar 

  72. Mohr S, Xi X, Tang J, Kern TS. Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes 2002;51(4):1172–9.

    PubMed  CAS  Google Scholar 

  73. Chihara E, Matsuoka T, Ogura Y, Matsumura M. Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy. Ophthalmology 1993;100(8):1147–51.

    PubMed  CAS  Google Scholar 

  74. Chakrabarti S, Sima AA. The effect of myo-inositol treatment on basement membrane thickening in the BB/W-rat retina. Diabetes Research Clin Pract 1992;16(1):13–7.

    CAS  Google Scholar 

  75. Scott TM, Foote J, Peat B, Galway G. Vascular and neural changes in the rat optic nerve following induction of diabetes with streptozotocin. J Anat 1986;144:145–52.

    PubMed  CAS  Google Scholar 

  76. Sugimoto M, Sasoh M, Ido M, Wakitani Y, Takahashi C, Uji Y. Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy. Ophthalmologica Journal international d'ophtalmologie International journal of ophthalmology 2005;219(6):379–85.

    Google Scholar 

  77. Meyer-Rusenberg B, Pavlidis M, Stupp T, Thanos S. Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy. Graefes Arch Clin Exp Ophthalmol 2006;245(7):1009–18.

    PubMed  Google Scholar 

  78. Gastinger MJ, Barber AJ, Khin SA, McRill CS, Gardner TW, Marshak DW. Abnormal centrifugal axons in streptozotocin-diabetic rat retinas. Invest Ophthalmol Vis Sci 2001;42(11):2679–85.

    PubMed  CAS  Google Scholar 

  79. Agardh E, Bruun A, Agardh CD. Retinal glial cell immunoreactivity and neuronal cell changes in rats with STZ-induced diabetes. Curr Eye Res 2001;23(4):276–84.

    PubMed  CAS  Google Scholar 

  80. Roufail E, Soulis T, Boel E, Cooper ME, Rees S. Depletion of nitric oxide synthase-containing neurons in the diabetic retina: reversal by aminoguanidine. Diabetologia 1998;41(12):1419–25.

    PubMed  CAS  Google Scholar 

  81. Goto R, Doi M, Ma N, Semba R, Uji Y. Contribution of nitric oxide-producing cells in normal and diabetic rat retina. Jpn J Ophthalmol 2005;49(5):363–70.

    PubMed  CAS  Google Scholar 

  82. Seki M, Tanaka T, Nawa H, et al. Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain-derived neu-rotrophic factor for dopaminergic amacrine cells. Diabetes 2004;53(9):2412–9.

    PubMed  CAS  Google Scholar 

  83. Ng YK, Zeng XX, Ling EA. Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin-induced diabetic rats. Brain Res 2004;1018(1):66–72.

    PubMed  CAS  Google Scholar 

  84. Ramsey DJ, Ripps H, Qian H. Streptozotocin-induced diabetes modulates GABA receptor activity of rat retinal neurons. Exp Eye Res 2007;85(3):413–22.

    PubMed  CAS  Google Scholar 

  85. Barber AJ, Antonetti DA. Mapping the blood vessels with paracellular permeability in the retinas of diabetic rats. Invest Ophthalmol Vis Sci 2003;44(12):5410–6.

    PubMed  Google Scholar 

  86. Yokota T, Ma RC, Park J Y, et al. Role of protein kinase C on the expression of platelet-derived growth factor and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes. Diabetes 2003;52(3):838–45.

    PubMed  CAS  Google Scholar 

  87. Lieth E, Barber AJ, Xu B, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 1998;47(5):815–20.

    CAS  Google Scholar 

  88. Ambati J, Chalam K V, Chawla DK, et al. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 1997;115(9):1161–6.

    PubMed  CAS  Google Scholar 

  89. Lieth E, LaNoue KF, Antonetti DA, Ratz M. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group. Exp Eye Res 2000;70(6):723–30.

    PubMed  CAS  Google Scholar 

  90. Puro DG. Diabetes-induced dysfunction of retinal Muller cells. Trans Am Ophthalmol Soc 2002;100: 339–52.

    PubMed  Google Scholar 

  91. Ward MM, Jobling AI, Kalloniatis M, Fletcher EL. Glutamate uptake in retinal glial cells during diabetes. Diabetologia 2005;48(2):351–60.

    PubMed  CAS  Google Scholar 

  92. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 2000;25(9–10):1439–51.

    PubMed  CAS  Google Scholar 

  93. Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 2003;52(2):506–11.

    PubMed  CAS  Google Scholar 

  94. Li Q, Puro DG. Diabetes-induced dysfunction of the glutamate transporter in retinal Muller cells. Invest Ophthalmol Vis Sci 2002;43(9):3109–16.

    PubMed  Google Scholar 

  95. Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes 1998;47(3):445–9.

    PubMed  CAS  Google Scholar 

  96. Sarthy VP. Muller cells in retinal health and disease. Archivos de la Sociedad Espanola de Oftalmologia 2000;75(6):367–8.

    PubMed  CAS  Google Scholar 

  97. Lundkvist A, Reichenbach A, Betsholtz C, Carmeliet P, Wolburg H, Pekny M. Under stress, the absence of intermediate filaments from Muller cells in the retina has structural and functional consequences. J Cell Sci 2004;117(Pt 16):3481–8.

    PubMed  CAS  Google Scholar 

  98. Fletcher EL, Phipps JA, Ward MM, Puthussery T, Wilkinson-Berka JL. Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy. Curr pharm Des 2007;13(26):2699–712.

    PubMed  CAS  Google Scholar 

  99. Pe'er J, Folberg R, Itin A, Gnessin H, Hemo I, Keshet E. Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy. Br J Ophthalmol 1996;80(3):241–5.

    PubMed  Google Scholar 

  100. Frank RN. Diabetic retinopathy. N Engl J Med 2004;350(1):48–58.

    PubMed  CAS  Google Scholar 

  101. Kilic U, Kilic E, Jarve A, et al. Human vascular endothelial growth factor protects axotomized retinal ganglion cells in vivo by activating ERK-1/2 and Akt pathways. J Neurosci 2006;26(48):12439–46.

    PubMed  CAS  Google Scholar 

  102. Schlingemann RO. Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2004;242(1):91–101.

    PubMed  CAS  Google Scholar 

  103. Famiglietti EV, Stopa EG, McGookin ED, Song P, LeBlanc V, Streeten BW. Immunocytochemical localization of vascular endothelial growth factor in neurons and glial cells of human retina. Brain Res 2003;969(1–2):195–204.

    PubMed  CAS  Google Scholar 

  104. Hammes HP, Lin J, Bretzel RG, Brownlee M, Breier G. Upregulation of the vascular endothelial growth factor/vascular endothelial growth factor receptor system in experimental background diabetic retinopathy of the rat. Diabetes 1998;47(3):401–6.

    PubMed  CAS  Google Scholar 

  105. Hirata C, Nakano K, Nakamura N, et al. Advanced glycation end products induce expression of vascular endothelial growth factor by retinal Muller cells. Biochem Biophys Res Commun 1997;236(3):712–5.

    PubMed  CAS  Google Scholar 

  106. Amin RH, Frank RN, Kennedy A, Eliott D, Puklin JE, Abrams GW. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 1997;38(1):36–47.

    PubMed  CAS  Google Scholar 

  107. Abu El-Asrar AM, Meersschaert A, Dralands L, Missotten L, Geboes K. Inducible nitric oxide syn-thase and vascular endothelial growth factor are colocalized in the retinas of human subjects with diabetes. Eye (London, England) 2004;18(3):306–13.

    CAS  Google Scholar 

  108. Murata T, Nakagawa K, Khalil A, Ishibashi T, Inomata H, Sueishi K. The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas. Lab Invest; J Tech Methods Pathol 1996;74(4):819–25.

    CAS  Google Scholar 

  109. Gariano RF, Gardner TW. Retinal angiogenesis in development and disease. Nature 2005;438(7070): 960–6.

    PubMed  CAS  Google Scholar 

  110. Zhang J, Gerhardinger C, Lorenzi M. Early complement activation and decreased levels of glyco-sylphosphatidylinositol-anchored complement inhibitors in human and experimental diabetic retinopathy. Diabetes 2002;51(12):3499–504.

    PubMed  CAS  Google Scholar 

  111. Joussen AM, Poulaki V, Mitsiades N, et al. Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. Faseb J 2003;17(1):76–8.

    PubMed  CAS  Google Scholar 

  112. Cusick M, Chew E Y, Chan CC, Kruth HS, Murphy RP, Ferris FL, III. Histopathology and regression of retinal hard exudates in diabetic retinopathy after reduction of elevated serum lipid levels. Ophthalmology 2003;110(11):2126–33.

    PubMed  Google Scholar 

  113. Wolfensberger TJ, Hamilton AM. Diabetic retinopathy—an historical review. Semin Ophthalmol 2001;16(1):2–7.

    PubMed  CAS  Google Scholar 

  114. Simonsen SE. ERG in Juvenile Diabetics: a prognostic study. Symposium on the Treatment of Diabetic Retinopathy MF Goldberg and SL Fine, editors Arlington: US Dept of Health, Education and Welfare 681–689 1969.

    Google Scholar 

  115. Bresnick GH, Palta M. Oscillatory potential amplitudes. Relation to severity of diabetic retinopathy. Arch Ophthalmol 1987;105(7):929–33.

    PubMed  CAS  Google Scholar 

  116. Bresnick GH, Palta M. Predicting progression to severe proliferative diabetic retinopathy. Arch Ophthalmol 1987;105(6):810–4.

    PubMed  CAS  Google Scholar 

  117. Della Salla S, Bertoni G, Somazzi L, Stubbe F, Wilkins AJ. Impaired contrast sensitivity in diabetic patients with and without retinopathy: a new technique for rapid assessment. Br J Ophthalmol 1985;69(2):(136–142).

    Google Scholar 

  118. Abraham FA, Haimovitz J, Berezin M. The photopic and scotopic visual thresholds in diabetics without diabetic retinopathy. Metab Pediatr Syst Ophthalmol 1988;11(1–2):76–7.

    PubMed  CAS  Google Scholar 

  119. Roy MS, Gunkel RD, Podgor MJ. Color vision defects in early diabetic retinopathy. Arch Ophthalmol 1986;104(2):225–8.

    PubMed  CAS  Google Scholar 

  120. Daley ML, Watzke RC, Riddle MC. Early loss of blue-sensitive color vision in patients with type I diabetes. Diabetes Care 1987;10(6):777–81.

    PubMed  CAS  Google Scholar 

  121. Ghirlanda G, Di Leo MA, Caputo S, Cercone S, Greco AV. From functional to microvascular abnormalities in early diabetic retinopathy. Diabetes/Metab Rev 1997;13(1):15–35.

    CAS  Google Scholar 

  122. Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation 1961;24:82–6.

    PubMed  CAS  Google Scholar 

  123. Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns. I V. Diabetic retinopathy. Arch Ophthalmol 1961;66:366–78.

    PubMed  CAS  Google Scholar 

  124. Qaum T, Xu Q, Joussen AM, et al. VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest Ophthalmol Vis Sci 2001;42(10):2408–13.

    PubMed  CAS  Google Scholar 

  125. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 2000;97(18):10242–7.

    PubMed  CAS  Google Scholar 

  126. Storkebaum E, Carmeliet P. VEGF: a critical player in neurodegeneration. J Clin Invest 2004; 113(1):14–8.

    PubMed  CAS  Google Scholar 

  127. Nishijima K, Ng YS, Zhong L, et al. Vascular endothelial growth factor-a is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 2007.

    Google Scholar 

  128. Nakanishi Y, Nakamura M, Mukuno H, Kanamori A, Seigel GM, Negi A. Latanoprost rescues retinal neuro-glial cells from apoptosis by inhibiting caspase-3, which is mediated by p44/p42 mitogen-activated protein kinase. Exp Eye Res 2006;83(5):1108–17.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Springer Science + Business Media, LLC

About this chapter

Cite this chapter

VanGuilder, H.D., Gardner, T.W., Barber, A.J. (2008). Neuroglial Dysfunction in Diabetic Retinopathy. In: Duh, E.J. (eds) Diabetic Retinopathy. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-563-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-563-3_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-83-1

  • Online ISBN: 978-1-59745-563-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics