Skip to main content

Utilization of Lipoprotein Subfractions

  • Chapter
Therapeutic Lipidology

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 776 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fredrickson DS, Levy RI, Lees RS. Fat transport in lipoproteins – an integrated approach to mechanisms and disorders. N Engl J Med 1967;276:148–156.

    PubMed  CAS  Google Scholar 

  2. Kannel WB, Castelli WP, Gordon T. Cholesterol in the prediction of atherosclerotic disease: new perspectives based on the Framingham study. Ann Intern Med 1979;90:85–91.

    PubMed  CAS  Google Scholar 

  3. Kannel WB. Range of serum cholesterol values in the population developing coronary artery disease. Am J Cardiol 1995;76(9):69C–77C.

    PubMed  CAS  Google Scholar 

  4. Phillips NR, Waters D, Havel RJ. Plasma lipoproteins and progression of coronary artery disease evaluated by angiography and clinical events. Circulation 1993;88:2762–2770.

    PubMed  CAS  Google Scholar 

  5. Haskell WL, Alderman EL, Fair JM, et al. Effects of intensive multiple risk factor reduction on coronary atherosclerosis and clinical cardiac events in men and women with coronary artery disease. The Stanford Coronary Risk Intervention Project (SCRIP). Circulation 1994;89:975–990.

    PubMed  CAS  Google Scholar 

  6. Sniderman AD, Furberg CD, Keech A, et al. Apolipoproteins versus lipids as indices of coronary risk and as targets for statin therapy treatment. Lancet 2003;361:777–780.

    PubMed  CAS  Google Scholar 

  7. Barter PJ, Ballantyne CM, Carmena R, et al. Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of the thirty-person/ten-country panel. J Int Med Res 2006;259:247–258.

    CAS  Google Scholar 

  8. Gotto AM, Whitney E, Stein EA, Shapiro DR, Clearfield M, Weis S. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation 2000;101:477–484.

    PubMed  CAS  Google Scholar 

  9. Simes RJ, Marschner IC, Hunt D, Colquhoun D, Sullivan D, Stewart RAH. Relationship between lipid levels and clinical outcomes in the long-term intervention with pravastatin in the ischemic disease (LIPID) trial. To what extent is the reduction in coronary events with pravastatin explained by on-study lipid levels? Circulation 2002;105:1162–1169.

    PubMed  CAS  Google Scholar 

  10. van Lennep JE, Westerveld HT, van Lennep HW, Zwinderman AH, Erkelens DW, van der Wall EE. Apolipoprotein concentrations during treatment and recurrent coronary artery disease events. Arterioscler Thromb Vasc Biol 2000;20:2408–2413.

    PubMed  Google Scholar 

  11. Otvos JD, Jeyarajah EJ, Cromwell WC. Measurement issues related to lipoprotein heterogeneity. Am J Cardiol 2002;90(suppl):22i–29i.

    Google Scholar 

  12. Otvos JD. Why cholesterol measurements may be misleading about lipoprotein levels and cardiovascular disease risk – clinical implications of lipoprotein quantification using NMR spectroscopy. J Lab Med 2002;26:544–550.

    CAS  Google Scholar 

  13. Cromwell WC, Otvos JD. Low-density lipoprotein particle number and risk for cardiovascular disease. Curr Atheroscler Rep 2004;6:381–387.

    PubMed  Google Scholar 

  14. Dominiczak MH. Apolipoproteins and lipoproteins in human plasma. In: Handbook of Lipoprotein Testing (Rifai N, Warnick GR, Dominiczak MH, eds), AACC Press, Washington DC, 2000, pp. 1–29.

    Google Scholar 

  15. Hussain MM, Fatma S, Pan X, Iqbal J. Intestinal lipoprotein assembly. Curr Opin Lipidol 2005;16:281–285.

    PubMed  CAS  Google Scholar 

  16. Havel RJ. Origin, metabolic fate, and metabolic function of plasma lipoproteins. In: Contemporary Issues in Endocrinology and Metabolism, Volume 3 (Steinberg D, Olefsky JM, eds), Churchill Livingstone, New York, 1986, pp. 117–141.

    Google Scholar 

  17. Eisenberg S. Metabolism of apolipoproteins and lipoproteins. Curr Opin Lipidol 1990;1:205–215.

    Google Scholar 

  18. Blum CB. Dynamics of apolipoprotein E metabolism in humans. J Lipid Res 1982;23:1308–1316.

    PubMed  CAS  Google Scholar 

  19. Huff MW, Breckenridge WC, Strong WLP, Wolfe BM. Metabolism of apolipoproteins C-II, C-III and B in hypertriglyceridemic men: changes after heparin-induced lipolysis. Arteriosclerosis 1988;8:471–479.

    PubMed  CAS  Google Scholar 

  20. Thuren T, Wilcox RW, Sisson P, Waite M. Hepatic lipase hydrolysis of lipid monolayers. Regulation by apolipoproteins. J Biol Chem 1991;266:4853–4861.

    PubMed  CAS  Google Scholar 

  21. Herz J. The LDL-receptor related protein: portrait of a multifunctional receptor. Curr Opin Lipidol 1993;4:107–113.

    CAS  Google Scholar 

  22. Shachter NS. Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr Opin Lipidol 2001;12:297–304.

    PubMed  CAS  Google Scholar 

  23. Kang S, Davis RA. Cholesterol and hepatic lipoprotein assembly and secretion. Biochim Biophys Acta 2000;1529:223–230.

    PubMed  CAS  Google Scholar 

  24. Shelness GS, Sellers JA. Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol 2001;12:151–157.

    PubMed  CAS  Google Scholar 

  25. Packard CJ, Shepherd J. Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler Thromb Vasc Biol 1997;17:3542–3556.

    PubMed  CAS  Google Scholar 

  26. Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 2002;43:1363–1379.

    PubMed  CAS  Google Scholar 

  27. Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 2004;27: 1496–1504.

    PubMed  CAS  Google Scholar 

  28. Rye KA, Barter PJ. Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol 2004;24:421–428.

    PubMed  CAS  Google Scholar 

  29. Lee JY, Parks JS. ATP-binding cassette transporter AI and its role in HDL formation. Curr Opin Lipidol 2005;16:19–25.

    PubMed  Google Scholar 

  30. Gofman J, Lindgren F, Elliott H. Ultracentrifugal studies of lipoproteins of human serum. J Biol Chem 1949;179:973–978.

    CAS  Google Scholar 

  31. Gofman JW, Lindgren, F. The role of lipids and lipoproteins in atherosclerosis. Science 1950;111(2877):166–171.

    PubMed  CAS  Google Scholar 

  32. Lindgren FT, Elliott HA, Gofman JW. The ultracentrifugal characterization and isolation of human blood lipids and lipoproteins, with application to the study of atherosclerosis. J Phys Colloid Chem 1951;55:80–93.

    PubMed  CAS  Google Scholar 

  33. Fredrickson DS, Levy RI, Lees RS. Fat transport in lipoproteins: an integrated approach to mechanisms and disorders. N Engl J Med 1967;276:148–156.

    PubMed  CAS  Google Scholar 

  34. Otvos JD. Measurement of lipoprotein subclass profiles by nuclear magnetic resonance spectroscopy. In: Handbook of Lipoprotein Testing (Rifai N, Warnick GR, Dominiczak MH, eds), AACC Press, Washington DC, 2000, pp. 609–623.

    Google Scholar 

  35. Lounila J, Ala-Korpela M, Jokisaari J. Effects of orientational order and particle size on the NMR line positions of lipoproteins. Phys Rev 1994;72:4049–4052.

    CAS  Google Scholar 

  36. Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med 2006;26(4), pp. 847–870.

    PubMed  Google Scholar 

  37. Sniderman AD, Acantlebury T, Cianflone K. Hypertriglyceridemic hyperapoB: the unappreciated atherogenic dyslipoproteinemia in type 2 diabetes mellitus. Ann Intern Med 2001;135:447–459.

    PubMed  CAS  Google Scholar 

  38. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 1990;82(2):495–506.

    PubMed  CAS  Google Scholar 

  39. Sniderman AD, Vu H, Cianflone K. The effect of moderate hypertriglyceridemia on the relation of plasma total and LDL apoB levels. Atherosclerosis 1991;89:109–116.

    PubMed  CAS  Google Scholar 

  40. Durrington PN, Bolton CN, Hartog H. Serum and lipoprotein apolipoprotein B levels in normal subjects and patients with hyperlipoproteinaemia. Clin Chim Acta 1978;82:151–160.

    PubMed  CAS  Google Scholar 

  41. Garvey WT, Kwon S, Zheng D, et al. The effects of insulin resistance and type 2 diabetes mellitus on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 2003;52:453–462.

    PubMed  CAS  Google Scholar 

  42. Goff DC, D’Agostino RB, Jr, Haffner SM, Otvos JD. Insulin resistance and adiposity influence lipoprotein size and subclass concentrations. Results from the Insulin Resistance Atherosclerosis Study. Metabolism 2005;54:264–270.

    PubMed  CAS  Google Scholar 

  43. Festa A, Williams K, Hanley AJG, et al. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2005;111:3465–3472.

    PubMed  Google Scholar 

  44. Kathiresan S, Otvos JD, Sullivan LM, et al. Increased small LDL particle number: a prominent feature of the metabolic syndrome in the Framingham Heart Study. Circulation 2006;113:20–29.

    PubMed  CAS  Google Scholar 

  45. Cromwell WC, Otvos JD. Heterogeneity of low-density lipoprotein particle number in patients with type 2 diabetes mellitus and low-density lipoprotein cholesterol 100 mg/dL. Am J Cardiol 2006; Dec 15;98(12):1599–602.

    Google Scholar 

  46. Krauss RM. Heterogeneity of plasma low-density lipoproteins and atherosclerosis risk. Curr Opin Lipidol 1994;5:339–349.

    PubMed  CAS  Google Scholar 

  47. Austin MA. Triglyceride, small, dense low-density lipoprotein, and the atherogenic lipoprotein phenotype. Curr Atheroscler Rep 2000;2:200–207.

    PubMed  CAS  Google Scholar 

  48. Lamarche B, Lemieux I, Despres JP. The small, dense LDL phenotype and the risk of coronary heart disease: epidemiology, pathophysiology, and therapeutic aspects. Diabetes Metab 1999;25;199–211.

    PubMed  CAS  Google Scholar 

  49. McNamara JR, Campos H, Ordovas JM, Peterson J, Wilson PWF, Schaefer EJ. Effect of gender, age, and lipid status on low density lipoprotein subfraction distribution. Results of the Framingham Offspring Study. Arteriosclerosis 1987;7:483–490.

    PubMed  CAS  Google Scholar 

  50. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype: a proposed genetic marker for coronary heart disease risk. Circulation 1990;82:495–506.

    PubMed  CAS  Google Scholar 

  51. Reaven GM, Chen YD, Jeppesen J, Maheux P, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest 1993;92:141–146.

    PubMed  CAS  Google Scholar 

  52. Blake GJ, Otvos JD, Rifai N, Ridker PM. LDL particle concentration and size as determined by NMR spectroscopy as predictors of cardiovascular disease in women. Circulation 2002;106:1930–1937.

    PubMed  CAS  Google Scholar 

  53. Mackey RH, Kuller LH, Sutton-Tyrell K, Evans RW, Holubkov R, Matthews KA. Lipoprotein subclasses and coronary artery calcification in postmenopausal women from the Healthy Women Study. Am J Cardiol 2002;90(8A):71i–76i.

    PubMed  CAS  Google Scholar 

  54. Rosenson RS, Freedman DS, Otvos JD. Relations of lipoprotein subclass levels and LDL size to progression of coronary artery disease in the PLAC I trial. Am J Cardiol 2002;90:89–94.

    PubMed  CAS  Google Scholar 

  55. Kuller L, Arnold A, Tracy R, Otvos J, Burke G, Psaty B, Siscovick D, Freedman DS, Kronmal R. NMR spectroscopy of lipoproteins and risk of CHD in the Cardiovascular Health Study. Arterioscler Thromb Vasc Biol 2002;22:1175–1180.

    PubMed  CAS  Google Scholar 

  56. Otvos JD, Collins D, Freedman DS, et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation 2006;113(12):1556–1563.

    PubMed  CAS  Google Scholar 

  57. Schaefer E, Parise H, Otvos J, McNamara J, D’Agostino R, Wilson P. LDL particle number, size, and subspecies in assessing cardiovascular risk: results from the Framingham Offspring Study. Circulation 2004;110:III–777.

    Google Scholar 

  58. Mora S, Szklo M, Otvos JD, et al. LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2006; June 9 [epub ahead of print].

    Google Scholar 

  59. Castelli WP, Garrison RJ, Wilson PW, et al. Incidence of coronary heart disease and lipoprotein cholesterol levels: the Framingham Study. JAMA 1986;256:2835–2838.

    PubMed  CAS  Google Scholar 

  60. Multiple Risk Factor Intervention Trial Research Group. Relationship between baseline risk factors and coronary heart disease and total mortality in the Multiple Risk Factor Intervention Trial. Prev Med 1986;15(3):254–273.

    Google Scholar 

  61. Assmann G, Schulte H, von Eckardstein A, Huang Y. High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis 1996;124 Suppl:S11–S20.

    Google Scholar 

  62. Li X-P, Zhao S-P, Zhang XY, Liu L, Gao M, Zhou Q-C. Protective effect of high density lipoprotein on endothelium-dependent vasodilatation. Int J Cardiol 2000;73:231–236.

    PubMed  CAS  Google Scholar 

  63. Barter PJ. Inhibition of endothelial cell adhesion molecule expression by high density lipoproteins. Clin Exp Pharmacol Physiol 1997;24:286–287.

    PubMed  CAS  Google Scholar 

  64. Nofer JR, Walter M, Kehrel B, et al. HDL3-mediated inhibition of thrombin-induced platelet aggregation and fibrinogen binding occurs via decreased production of phosphoinositide-derived second messengers 1,2-diacylglycerol and inositol 1,4,5-tris-phosphate. Arterioscler Thromb Vasc Biol 1998;18:861–869.

    PubMed  CAS  Google Scholar 

  65. Nofer JR, Levkau B, Wolinska I, et al. Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J Biol Chem 2001;276:34480–34485.

    PubMed  CAS  Google Scholar 

  66. Aviram M, Hardak E, Vaya J, et al. Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions. Circulation 2000;101:2510–2517.

    PubMed  CAS  Google Scholar 

  67. Toikka J, Ahotupa M, Viikari J, et al. Constantly low HDL-cholesterol concentration relates to endothelial dysfunction and increased in vivo LDL oxidation in healthy young men. Atherosclerosis 1999;147:133–138.

    PubMed  CAS  Google Scholar 

  68. Miller NE. Associations of high-density lipoprotein subclasses and apolipoproteins with ischemic heart disease and coronary atherosclerosis. Am Heart J 1987;113(2 Pt 2):589–597.

    PubMed  CAS  Google Scholar 

  69. Johansson J, Carlson LA, Landou C, Hamsten A. High density lipoproteins and coronary atherosclerosis. A strong inverse relation with the largest particles is confined to normotriglyceridemic patients. Arterioscler Thromb 1991;11(1):174–182.

    PubMed  CAS  Google Scholar 

  70. Silverman DI, Ginsburg GS, Pasternak RC. High-density lipoprotein subfractions. Am J Med 1993;94(6):636–645.

    PubMed  CAS  Google Scholar 

  71. Gofman JW, Young W, Tandy R. Ischemic heart disease, atherosclerosis, and longevity. Circulation 1966;34(4):679–697.

    PubMed  CAS  Google Scholar 

  72. Cheung MC, Brown BG, Wolf AC, Albers JJ. Altered particle size distribution of apolipoprotein A-I-containing lipoproteins in subjects with coronary artery disease. J Lipid Res 1991;32(3):383–394.

    PubMed  CAS  Google Scholar 

  73. Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med 1991;325(6):373–381.

    PubMed  CAS  Google Scholar 

  74. Salonen JT, Salonen R, Seppanen K, Rauramaa R, Tuomilehto J. HDL, HDL2, and HDL3 subfractions, and the risk of acute myocardial infarction. A prospective population study in eastern Finnish men. Circulation 1991;84(1):129–139.

    PubMed  CAS  Google Scholar 

  75. Lamarche B, Moorjani S, Cantin B, Dagenais GR, Lupien PJ, Despres JP. Associations of HDL2 and HDL3 subfractions with ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Arterioscler Thromb Vasc Biol 1997;17(6):1098–1105.

    PubMed  CAS  Google Scholar 

  76. Hattori H, Kujiraoka T, Egashira T, et al. Association of coronary heart disease with pre-beta-HDL concentrations in Japanese men. Clin Chem 2004;50(3):589–595.

    PubMed  CAS  Google Scholar 

  77. Yu S, Yarnell JW, Sweetnam P, Bolton CH. High density lipoprotein subfractions and the risk of coronary heart disease: 9-years follow-up in the Caerphilly Study. Atherosclerosis 2003;166(2):331–338.

    PubMed  CAS  Google Scholar 

  78. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990;323:1289–1298.

    PubMed  CAS  Google Scholar 

  79. Brown BG, Zhao XQ, Chait A, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 2001;345:1583–1592.

    PubMed  CAS  Google Scholar 

  80. Asztalos BF, Batista M, Horvath KV, et al. Change in alpha1 HDL concentration predicts progression in coronary artery stenosis. Arterioscler Thromb Vasc Biol 2003;23:847–852.

    PubMed  CAS  Google Scholar 

  81. Ruotolo G, Ericsson C-G, Tettamanti C, et al. Treatment effects on serum lipoprotein lipids, apolipoproteins and low density lipoprotein particle size and relationships of lipoprotein variables to progression of coronary artery disease in the Bezafibrate Coronary Atherosclerosis Intervention Trial (BECAIT). J Am Coll Cardiol 1998;32:1648–1656.

    PubMed  CAS  Google Scholar 

  82. Syvänne M, Nieminen MS, Frick MH, et al. Associations between lipoproteins and the progression of coronary and vein-graft atherosclerosis in a controlled trial with gemfibrozil in men with low baseline levels of HDL cholesterol. Circulation 1998;98:1993–1999.

    PubMed  Google Scholar 

  83. Mänttäri M, Koskinen P, Manninen V, Huttunen JK, Frick MH, Nikkilä EA. Effect of gemfibrozil on the concentration and composition of serum lipoproteins. Atherosclerosis 1990;81:11–17.

    PubMed  Google Scholar 

  84. Guerin M, Le Goff W, Frisdal E, et al. Action of ciprofibrate in Type IIB hyperlipoproteinemia: modulation of the atherogenic lipoprotein phenotype and stimulation of high-density lipoprotein-mediated cellular cholesterol efflux. J Clin Endocrinol Metab 2003;88:3738–3746.

    PubMed  CAS  Google Scholar 

  85. Freedman DS, Otvos JD, Jeyarajah EJ, Barboriak JJ, Anderson AJ, Walker J. Relation of lipoprotein subclasses as measured by proton nuclear magnetic resonance spectroscopy to coronary artery disease. Arterioscler Thromb Vasc Biol 1998;18:1046–1053.

    PubMed  CAS  Google Scholar 

  86. Soedamah-Muthu SS, Chang Y-F, Otvos J, Evans RW, Orchard TJ. Lipoprotein subclass measurements by nuclear magnetic resonance spectroscopy improve the prediction of coronary artery disease in type 1 diabetes. A prospective report from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia 2003;46:674–682.

    Google Scholar 

  87. Freedman DS, Otvos JD, Jeyarajah EJ, et al. Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: the Framingham Study. Clin Chem 2004;50:1189–1200.

    PubMed  CAS  Google Scholar 

  88. Brewer HB, Remaley AT, Neufeld EB, Baso F, Joyce C. Regulation of plasma high-density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease. Arterioscler Thromb Vasc Biol 2004;24:1755–1760.

    PubMed  CAS  Google Scholar 

  89. Austin MA, McKnight B, Edwards KL, et al. Cardiovascular disease mortality in familial forms of hypertriglyceridemia: a 20-year prospective study. Circulation 2000;101:2777–2782.

    PubMed  CAS  Google Scholar 

  90. Hokanson JE, Austin MA. Plasma triglyceride level as a risk factor for cardiovascular disease independent of high-density lipoprotein level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996;3:213–219.

    PubMed  CAS  Google Scholar 

  91. Cohnn JS, Marcoux C, Davignon J. Detection, quantification, and characterization of potentially atherogenic triglyceride-rich remnant lipoproteins. Arterioscler Thromb Vasc Biol 1999;19:2474–2486.

    Google Scholar 

  92. Inoue T, Uchida T, Kamishirado H, et al. Remnant-like lipoprotein particles as risk factors for coronary artery disease in elderly patients. Horm Metab Res 2004;36:298–302.

    PubMed  CAS  Google Scholar 

  93. Hamano M, Saito M, Eto M, et al. Serum amyloid A, C-reactive protein and remnant-like lipoprotein particle cholesterol in type 2 diabetic patients with coronary heart disease. Ann Clin Biochem 2004;41(pt 2):125–129.

    PubMed  CAS  Google Scholar 

  94. Schaefer EJ, McNamara JR, Tayler T, et al. Effects of atorvastatin on fasting and postprandial lipoprotein subclasses in coronary heart disease patients versus control subjects. Am J Cardiol 2002;90:689–696.

    PubMed  CAS  Google Scholar 

  95. Kawakami A, Tanaka A, Nakajima K, Shimokado K, Yoshida M. Atorvastatin attenuates remnant lipoprotein-induced monocyte adhesion to vascular endothelium under flow conditions. Circ Res 2002;91:263–271.

    PubMed  CAS  Google Scholar 

  96. Inoue T, Uchida T, Kamishirado H, et al. Possible relationship between insulin resistance and remnant-like lipoprotein particles in coronary endothelial dysfunction. Clin Cardiol 2002;25:532–536.

    PubMed  Google Scholar 

  97. Fukushima H, Kugiyama K, Sugiyama S, et al. Comparison of remnant-like lipoprotein particles in postmenopausal women with and without coronary artery disease and in men with coronary artery disease. Am J Cardiol 2001;88:1370–1373.

    PubMed  CAS  Google Scholar 

  98. McNamara JR, Shah PK, Nakajima K, et al. Remnant-like particle (RLP) cholesterol is an independent cardiovascular disease risk factor in women: results from the Framingham Heart Study. Atherosclerosis 2001;154:229–236.

    PubMed  CAS  Google Scholar 

  99. Karpe F, Boquist S, Tang R, Bond GM, de Faire U, Hamsten A. Remnant lipoproteins are related to intima-media thickness of the carotid artery independently of LDL cholesterol and plasma triglycerides. J Lipid Res 2001;42:17–21.

    PubMed  CAS  Google Scholar 

  100. Takeichi S, Yukawa N, Nakajima Y, et al. Association of plasma triglyceride-rich lipoprotein remnants with coronary atherosclerosis in cases of sudden cardiac death. Atherosclerosis 1999;142:309–315.

    PubMed  CAS  Google Scholar 

  101. Takeichi S, Nakajima Y, Osawa M, et al. The possible role of remnant-like particles as a risk factor for sudden cardiac death. Int J Legal Med 1997;110:213–219.

    PubMed  CAS  Google Scholar 

  102. Kugiyama K, Doi H, Takazoe K, et al. Remnant lipoprotein levels in fasting serum predict coronary events in patients with coronary artery disease. Circulation 1999;99:2858–2860.

    PubMed  CAS  Google Scholar 

  103. Seman LJ, McNamara JR, Schaefer EJ. Lipoprotein (a), homocysteine, and remnant like particles: emerging risk factors. Curr Opin Cardiol 1999;14:186–191.

    PubMed  CAS  Google Scholar 

  104. Twickler TB, Dallinga-Thie GM, Cohn JS, Chapman MJ. Elevated remnant-like particle cholesterol concentration: a characteristic feature of the atherogenic lipoprotein phenotype. Circulation 2004;109:1918–1925.

    PubMed  CAS  Google Scholar 

  105. Satoh A, Adachi H, Tsuruta M, et al. High plasma level of remnant-like particle cholesterol in the metabolic syndrome. Diabetes Care 2005;28(10):2514–2518.

    PubMed  CAS  Google Scholar 

  106. Imke C, Rodriguez BL, Grove JS, et al. Are remnant-like particles independent predictors of coronary heart disease incidence? The Honolulu Heart Study. Arterioscler Thromb Vasc Biol 2005;25:1718–1722.

    PubMed  CAS  Google Scholar 

  107. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001;285:2486–2497.

    Google Scholar 

  108. Grundy SM, Cleeman JI, Merz CNB, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004;110:227–239.

    PubMed  Google Scholar 

  109. Rizzo M, Berneis K, Corrado E, Novo S. The significance of low-density-lipoproteins size in vascular diseases. Int Angiol 2006;25(1):4–9.

    PubMed  CAS  Google Scholar 

  110. Rizzo M, Berneis K. Should we measure routinely the LDL peak particle size? Int J Cardiol 2006 Feb 15;107(2):166–170.

    Google Scholar 

  111. Bays H, Stein EA. Pharmacotherapy for dyslipidaemia – current therapies and future agents. Expert Opin Pharmacother 2003;4(11):1901–1938.

    PubMed  CAS  Google Scholar 

  112. McKenney JM, McCormick LS, Schaefer EJ, Black DM, Watkins ML. Effect of niacin and atorvastatin on lipoprotein subclasses in patients with atherogenic dyslipidemia. Am J Cardiol 2001;88(3):270–274.

    PubMed  CAS  Google Scholar 

  113. Soedamah-Muthu SS, Colhoun HM, Thomason MJ, et al.; CARDS Investigators. The effect of atorvastatin on serum lipids, lipoproteins and NMR spectroscopy defined lipoprotein subclasses in type 2 diabetic patients with ischaemic heart disease. Atherosclerosis 2003;167(2):243–255.

    PubMed  CAS  Google Scholar 

  114. Schaefer EJ, McNamara JR, Tayler T, et al. Effects of atorvastatin on fasting and postprandial lipoprotein subclasses in coronary heart disease patients versus control subjects. Am J Cardiol 2002;90(7):689–696.

    PubMed  CAS  Google Scholar 

  115. Schaefer EJ, McNamara JR, Tayler T, et al. Comparisons of effects of statins (atorvastatin, fluvastatin, lovastatin, pravastatin, and simvastatin) on fasting and postprandial lipoproteins in patients with coronary heart disease versus control subjects. Am J Cardiol 2004;93(1):31–39.

    PubMed  CAS  Google Scholar 

  116. Miller M, Dolinar C, Cromwell W, Otvos JD. Effectiveness of high doses of simvastatin as monotherapy in mixed hyperlipidemia. Am J Cardiol 2001;87(2):232–234.

    PubMed  CAS  Google Scholar 

  117. Rosenson RS, Otvos JD, Freedman DS. Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the Pravastatin Limitation of Atherosclerosis in the Coronary Arteries (PLAC-I) trial. Am J Cardiol 2002;90(2):89–94.

    PubMed  CAS  Google Scholar 

  118. Rosuvastatin Dose Ranging Study. FDA PI Aug 2003.

    Google Scholar 

  119. Morgan JM, Capuzzi DM, Baksh RI, et al. Effects of extended-release niacin on lipoprotein subclass distribution. Am J Cardiol 2003;91(12):1432–1436.

    PubMed  CAS  Google Scholar 

  120. Al-Shaer MH. The effects of ezetimibe on the LDL-cholesterol particle number. Cardiovasc Drugs Ther 2004;18(4):327–328.

    PubMed  CAS  Google Scholar 

  121. Pearson TA, Denke MA, McBride PE, Battisti WP, Brady WE, Palmisano J. A community-based, randomized trial of ezetimibe added to statin therapy to attain NCEP ATP III goals for LDL cholesterol in hypercholesterolemic patients: the Ezetimibe Add-On to Statin for Effectiveness (EASE) Trial. Mayo Clin Proc 2005;80(5):587–595.

    PubMed  CAS  Google Scholar 

  122. Ikewaki K, Tohyama J, Nakata Y, Wakikawa T, Kido T, Mochizuki S. Fenofibrate effectively reduces remnants, and small dense LDL, and increases HDL particle number in hypertriglyceridemic men – a nuclear magnetic resonance study. J Atheroscler Thromb 2004;11:278–285.

    PubMed  CAS  Google Scholar 

  123. Steinmetz A, Schwartz T, Hehnke U, Kaffarnik H. Multicenter comparison of micronized fenofibrate and simvastatin in patients with primary type IIA or IIB hyperlipoproteinemia. J Cardiovasc Pharmacol 1996;27(4):563–570.

    PubMed  CAS  Google Scholar 

  124. Bilz S, Wagner S, Schmitz M, Bedynek A, Keller U, Demant T. Effects of atorvastatin versus fenofibrate on apoB-100 and apoA-I kinetics in mixed hyperlipidemia. J Lipid Res 2004;45(1):174–185.

    PubMed  CAS  Google Scholar 

  125. Superko HR, Greenland P, Manchester RA, et al. Effectiveness of low-dose colestipol therapy in patients with moderate hypercholesterolemia. Am J Cardiol 1992;70(2):135–140.

    PubMed  CAS  Google Scholar 

  126. Rosenson RS. Colesevelam HCl reduces LDL particle number and increases LDL size in hypercholesterolemia. Atherosclerosis 2006;185(2):327–330.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Cromwell, W.C., Otvos, J.D. (2007). Utilization of Lipoprotein Subfractions. In: Davidson, M.H., Toth, P.P., Maki, K.C., Gotto, A.M. (eds) Therapeutic Lipidology. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-533-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-533-6_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-551-4

  • Online ISBN: 978-1-59745-533-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics