Skip to main content

Cannabinoid Receptor Signal Transduction Pathways

  • Chapter

Part of the book series: The Receptors ((REC))

Abstract

The cannabinoid receptors CB1 and CB2 each couple to intracellular G proteins in order to transduce agonist binding into a cellular response. Signalling by the two receptors can differ markedly, as indeed can signal transduction through each individual receptor in response to various ligands. The divergence of signalling is regulated at various stages—from G protein coupling to activation of effectors, and in many cases appears to be cell type specific. This review will initially examine the ability of CB1 and CB2 to activate G proteins, and then look at downstream pathways, both G protein dependent and independent, that are activated by these receptors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kristiansen K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther. 2004;103:21–80.

    CAS  PubMed  Google Scholar 

  2. Claing A, Laporte SA. Novel roles for arrestins in G protein-coupled receptor biology and drug discovery. Curr Opin Drug Discov Devel. 2005;8:585–9.

    CAS  PubMed  Google Scholar 

  3. McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS. G-protein signaling: back to the future. Cell Mol Life Sci. 2005;62:551–77.

    CAS  PubMed  Google Scholar 

  4. Cabrera-Vera TM, Vanhauwe J, Thomas TO, et al. Insights into G protein structure, function, and regulation. Endocr Rev. 2003;24:765–81.

    CAS  PubMed  Google Scholar 

  5. Kenakin T. Agonist-receptor efficacy. I: Mechanisms of efficacy and receptor promiscuity. Trends Pharmacol Sci. 1995;16:188–92.

    CAS  PubMed  Google Scholar 

  6. Kenakin T. Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol Sci. 2003;24:346–54.

    CAS  PubMed  Google Scholar 

  7. Vasquez C, Lewis DL. The CB1 Cannabinoid receptor can sequester G-proteins, making them unavailable to couple to other receptors. J Neurosci. 1999;19:9271–80.

    CAS  PubMed  Google Scholar 

  8. Glass M, Northup JK. Agonist selective regulation of G proteins by cannabinoid CB1 and CB2 receptors. Mol Pharmacol. 1999;56:1362–9.

    CAS  PubMed  Google Scholar 

  9. Bonhaus DW, Chang LK, Kwan J, Martin GR. Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: evidence for agonist-specific trafficking of intracellular responses. J Pharmacol Exp Ther. 1998;287:884–8.

    CAS  PubMed  Google Scholar 

  10. Song Z, Bonner T. A lysine residue of the cannabinoid receptor is critical for receptor recognition by several agonists but not WIN55212–2. Mol Pharmacol. 1996;49:891–6.

    CAS  PubMed  Google Scholar 

  11. Sutkowski EM, Tang WJ, Broome CW, Robbins JD, Seamon KB. Regulation of forskolin interactions with type I, II, V, and VI adenylyl cyclases by Gs alpha. Biochemistry. 1994;33:12852–9.

    CAS  PubMed  Google Scholar 

  12. Lauckner JE, Hille B, Mackie K. The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci USA. 2005;102:19144–9.

    CAS  PubMed  Google Scholar 

  13. Felder C, Veluz J, Williams H, Briley E, Matsuda L. Cannabinoid agonists stimulate both receptor- and non-receptor-mediated signal transduction pathways in cells transfected with and expressing cannabinoid receptor clones. Mol Pharmacol. 1992;42:838–45.

    CAS  PubMed  Google Scholar 

  14. Felder C, Joyce K, Briley E, et al. Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol. 1995;48:443–50.

    CAS  PubMed  Google Scholar 

  15. Shoemaker JL, Ruckle MB, Mayeux PR, Prather PL. Agonist-directed trafficking of response by endocannabinoids acting at CB2 receptors. J Pharmacol Exp Ther. 2005;315:828–38.

    CAS  PubMed  Google Scholar 

  16. McAllister SD, Griffin G, Satin LS, Abood ME. Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system. J Pharmacol Exp Ther. 1999;291:618–26.

    CAS  PubMed  Google Scholar 

  17. Itoh H, Toyama R, Kozasa T, Tsukamoto T, Matsuoka M, Kaziro Y. Presence of three distinct molecular species of Gi protein alpha subunit. Structure of rat cDNAs and human genomic DNAs. J Biol Chem. 1988;263:6656–64.

    CAS  PubMed  Google Scholar 

  18. Mukhopadhyay S, Howlett AC. CB1 receptor-G protein association. Subtype selectivity is determined by distinct intracellular domains. Eur J Biochem. 2001;268:499–505.

    CAS  PubMed  Google Scholar 

  19. Mukhopadhyay S, Howlett AC. Chemically distinct ligands promote differential CB1 cannabinoid receptor-Gi protein interactions. Mol Pharmacol. 2005;67:2016–24.

    CAS  PubMed  Google Scholar 

  20. Francis SH, Poteet-Smith C, Busch JL, Richie-Jannetta R, Corbin JD. Mechanisms of autoinhibition in cyclic nucleotide-dependent protein kinases. Front Biosci. 2002;7:d580–92.

    CAS  PubMed  Google Scholar 

  21. Murayama T, Ui M. Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J Biol Chem. 1983;258:3319–26.

    CAS  PubMed  Google Scholar 

  22. Glass M, Felder CC. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci. 1997;17:5327–33.

    CAS  PubMed  Google Scholar 

  23. Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol. 2005;67:1697–704.

    CAS  PubMed  Google Scholar 

  24. Montminy MR, Bilezikjian LM. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature. 1987;328:175–8.

    CAS  PubMed  Google Scholar 

  25. Jarrahian A, Watts VJ, Barker EL. D2 dopamine receptors modulate Galpha-subunit coupling of the CB1 cannabinoid receptor. J Pharmacol Exp Ther. 2004;308:880–6.

    CAS  PubMed  Google Scholar 

  26. O’Dowd BF, Ji X, Alijaniaram M, et al. Dopamine receptor oligomerization visualized in living cells. J Biol Chem. 2005;280:37225–35.

    PubMed  Google Scholar 

  27. Andersson M, Usiello A, Borgkvist A, et al. Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J Neurosci. 2005;25:8432–8.

    CAS  PubMed  Google Scholar 

  28. Caulfield MP, Brown DA. Cannabinoid receptor agonists inhibit Ca current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br J Pharmacol. 1992;106:231–2.

    CAS  PubMed  Google Scholar 

  29. Mackie K, Hille B. Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Nat Acad Sci USA. 1992;89:3825–9.

    CAS  PubMed  Google Scholar 

  30. Mackie K, Lai Y, Westenbroek R, Mitchell R. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci. 1995;15:6552–61.

    CAS  PubMed  Google Scholar 

  31. Mintz IM, Sabatini BL, Regehr WG. Calcium control of transmitter release at a cerebellar synapse. Neuron. 1995;15:675–88.

    CAS  PubMed  Google Scholar 

  32. Brown SP, Safo PK, Regehr WG. Endocannabinoids inhibit transmission at granule cell to purkinje cell synapses by modulating three types of presynaptic calcium channels. J Neurosci. 2004;24:5623–31.

    CAS  PubMed  Google Scholar 

  33. Maejima T, Ohno-Shosaku T, Kano M. Endogenous cannabinoid as a retrograde messenger from depolarized postsynaptic neurons to presynaptic terminals. Neurosci Res. 2001;40:205–10.

    CAS  PubMed  Google Scholar 

  34. Ohno-Shosaku T, Maejima T, Kano M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron. 2001;29:729–38.

    CAS  PubMed  Google Scholar 

  35. Makara JK, Mor M, Fegley D, et al. Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nat Neurosci. 2005;8:1139–41.

    CAS  PubMed  Google Scholar 

  36. Zhuang S-Y, Bridges D, Grigorenko E, et al. Cannabinoids produce neuroprotection by reducing intracellular calcium release from ryanodine-sensitive stores. Neuropharmacology. 2005;48:1086–96.

    CAS  PubMed  Google Scholar 

  37. Weber JT, Rzigalinski BA, Willoughby KA, Moore SF, Ellis EF. Alterations in calcium-mediated signal transduction after traumatic injury of cortical neurons. Cell Calcium. 1999;26:289–99.

    CAS  PubMed  Google Scholar 

  38. Spat A, Bradford PG, McKinney JS, Rubin RP, Putney JW, Jr. A saturable receptor for 32P-inositol-1,4,5-triphosphate in hepatocytes and neutrophils. Nature. 1986;319:514–6.

    CAS  PubMed  Google Scholar 

  39. Daniel H, Rancillac A, Crepel F. Mechanisms underlying cannabinoid inhibition of presynaptic Ca2 + influx at parallel fibre synapses of the rat cerebellum. J Physiol. 2004;557:159–74.

    CAS  PubMed  Google Scholar 

  40. Galve-Roperh I, Sánchez C, Del Pulgar TG, Guzmán M, Cortés ML, Izquierdo M. Anti-tumoral action of cannabinoids: Involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med. 2000;6:313–9.

    CAS  PubMed  Google Scholar 

  41. Sanchez C, de Ceballos ML, del Pulgar TG, et al. Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res. 2001;61:5784–9.

    CAS  PubMed  Google Scholar 

  42. Sanchez C, Galve-Roperh I, Rueda D, Guzman M. Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Delta9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes. Mol Pharmacol. 1998;54:834–43.

    CAS  PubMed  Google Scholar 

  43. Adam-Klages S, Adam D, Wiegmann K, et al. FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell. 1996;86:937–47.

    CAS  PubMed  Google Scholar 

  44. Guzman M, Galve-Roperh I, Sanchez C. Ceramide: a new second messenger of cannabinoid action. Trends Pharmacol Sci. 2001;22:19–22.

    CAS  PubMed  Google Scholar 

  45. Ellert-Miklaszewska A, Kaminska B, Konarska L. Cannabinoids down-regulate PI3K/Akt and Erk signalling pathways and activate proapoptotic function of Bad protein. Cell Signal. 2005;17:25–37.

    CAS  PubMed  Google Scholar 

  46. Schubert KM, Scheid MP, Duronio V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem. 2000;275:13330–5.

    CAS  PubMed  Google Scholar 

  47. Stratford S, DeWald DB, Summers SA. Ceramide dissociates 3′-phosphoinositide production from pleckstrin homology domain translocation. Biochem J. 2001;354:359–68.

    CAS  PubMed  Google Scholar 

  48. Gomez del Pulgar T, Velasco G, Sanchez C, Haro A, Guzman M. De novo-synthesized ceramide is involved in cannabinoid-induced apoptosis. Biochem J. 2002;363:183–8.

    CAS  PubMed  Google Scholar 

  49. Daaka Y, Luttrell LM, Ahn S, et al. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J Biol Chem. 1998;273:685–8.

    CAS  PubMed  Google Scholar 

  50. Whistler JL, von Zastrow M. Dissociation of functional roles of dynamin in receptor-mediated endocytosis and mitogenic signal transduction. J Biol Chem 1999;274:24575–8.

    CAS  PubMed  Google Scholar 

  51. Pierce KL, Maudsley S, Daaka Y, Luttrell LM, Lefkowitz RJ. Role of endocytosis in the activation of the extracellular signal-regulated kinase cascade by sequestering and nonsequestering G protein-coupled receptors. Proc Nat Acad Sci USA. 2000;97:1489–94.

    CAS  PubMed  Google Scholar 

  52. Roche JP, Bounds S, Brown S, Mackie K. A mutation in the second transmembrane region of the CB1 receptor selectively disrupts G protein signaling and prevents receptor internalization. Mol Pharmacol. 1999;56:611–8.

    CAS  PubMed  Google Scholar 

  53. Sanchez MG, Ruiz-Llorente L, Sanchez AM, Diaz-Laviada I. Activation of phosphoinositide 3-kinase/PKB pathway by CB(1) and CB(2) cannabinoid receptors expressed in prostate PC-3 cells. Involvement in Raf-1 stimulation and NGF induction. Cell Signal. 2003;15:851–9.

    CAS  PubMed  Google Scholar 

  54. Galve-Roperh I, Rueda D, Gomez del Pulgar T, Velasco G, Guzman M. Mechanism of extracellular signal-regulated kinase activation by the CB1 cannabinoid receptor. Mol Pharmacol. 2002;62:1385–92.

    CAS  PubMed  Google Scholar 

  55. Bouaboula M, Poinot-Chazel C, Marchand J, et al. Signaling pathway associated with stimulation of CB2 peripheral cannabinoid receptor. Involvement of both mitogen-activated protein kinase and induction of Krox-24 expression. Eur J Biochem. 1996;237:704–11.

    CAS  PubMed  Google Scholar 

  56. Kobayashi Y, Arai S, Waku K, Sugiura T. Activation by 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, of p42/44 mitogen-activated protein kinase in HL-60 cells. J Biochem. 2001;129:665–9.

    CAS  PubMed  Google Scholar 

  57. Molina-Holgado F, Pinteaux E, Heenan L, Moore JD, Rothwell NJ, Gibson RM. Neuroprotective effects of the synthetic cannabinoid HU-210 in primary cortical neurons are mediated by phosphatidylinositol 3-kinase/AKT signaling. Mol Cell Neurosci. 2005;28:189–94.

    CAS  PubMed  Google Scholar 

  58. Bouaboula M, Poinot-Chazel C, Bourrie B, et al. Activation of mitogen-activated protein kinases by stimulation of the central cannabinoid receptor CB1. Biochem J. 1995;312:637–41.

    CAS  PubMed  Google Scholar 

  59. Davis MI, Ronesi J, Lovinger DM. A predominant role for inhibition of the adenylate cyclase/protein kinase A pathway in ERK activation by cannabinoid receptor 1 in N1E-115 neuroblastoma cells. J Biol Chem. 2003;278:48973–80.

    CAS  PubMed  Google Scholar 

  60. Derkinderen P, Valjent E, Toutant M, et al. Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J Neurosci. 2003;23:2371–82.

    CAS  PubMed  Google Scholar 

  61. Dumaz N, Marais R. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J. 2005;272:3491–504.

    CAS  PubMed  Google Scholar 

  62. Dhillon AS, Pollock C, Steen H, Shaw PE, Mischak H, Kolch W. Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol Cell Biol. 2002;22:3237–46.

    CAS  PubMed  Google Scholar 

  63. Rubovitch V, Gafni M, Sarne Y. The involvement of VEGF receptors and MAPK in the cannabinoid potentiation of Ca2 + flux into N18TG2 neuroblastoma cells. Mol Brain Res. 2004;120:138–44.

    CAS  PubMed  Google Scholar 

  64. Blazquez C, Gonzalez-Feria L, Alvarez L, Haro A, Casanova ML, Guzman M. Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. Cancer Res. 2004;64:5617–23.

    CAS  PubMed  Google Scholar 

  65. Hart S, Fischer OM, Ullrich A. Cannabinoids induce cancer cell proliferation via tumor necrosis factor alpha-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res. 2004;64:1943–50.

    CAS  PubMed  Google Scholar 

  66. Rueda D, Navarro B, Martinez-Serrano A, Guzman M, Galve-Roperh I. The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway. J Biol Chem. 2002;277:46645–50.

    CAS  PubMed  Google Scholar 

  67. Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12:9–18.

    CAS  PubMed  Google Scholar 

  68. Herrera B, Carracedo A, Diez-Zaera M, Guzman M, Velasco G. p38 MAPK is involved in CB2 receptor-induced apoptosis of human leukaemia cells. FEBS Lett. 2005;579:5084–8.

    CAS  PubMed  Google Scholar 

  69. Eichele K, Weinzierl U, Ramer R, Brune K, Hinz B. R(+)-Methanandamide elicits a cyclooxygenase-2-dependent mitochondrial apoptosis signaling pathway in human neuroglioma cells. Pharm Res. 2005.

    Google Scholar 

  70. McAllister SD, Chan C, Taft RJ, et al. Cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells. J Neurooncol. 2005;74:31–40.

    CAS  PubMed  Google Scholar 

  71. Flygare J, Gustafsson K, Kimby E, Christensson B, Sander B. Cannabinoid receptor ligands mediate growth inhibition and cell death in mantle cell lymphoma. FEBS Lett. 2005;579:6885–9.

    CAS  PubMed  Google Scholar 

  72. Do Y, McKallip RJ, Nagarkatti M, Nagarkatti PS. Activation through cannabinoid receptors 1 and 2 on dendritic cells triggers NF-kappaB-dependent apoptosis: novel role for endogenous and exogenous cannabinoids in immunoregulation. J Immunol. 2004;173:2373–82.

    CAS  PubMed  Google Scholar 

  73. Rueda D, Galve-Roperh I, Haro A, Guzman M. The CB1 cannabinoid receptor is coupled to the activation of c-jun N-terminal kinase. Mol Pharmacol. 2000;58:814–20.

    CAS  PubMed  Google Scholar 

  74. Downer EJ, Fogarty MP, Campbell VA. Tetrahydrocannabinol-induced neurotoxicity depends on CB1 receptor-mediated c-Jun N-terminal kinase activation in cultured cortical neurons. Br J Pharmacol. 2003;140:547–57.

    CAS  PubMed  Google Scholar 

  75. Sugiura T, Oka S, Gokoh M, Kishimoto S, Waku K. New perspectives in the studies on endocannabinoid and cannabis: 2-arachidonoylglycerol as a possible novel mediator of inflammation. J Pharmacol Sci. 2004;96:367–75.

    CAS  PubMed  Google Scholar 

  76. Glass M, Dragunow M. Induction of the Krox 24 transcription factor in striosomes by a cannabinoid agonist. Neuroreport. 1995;6:241–4.

    CAS  PubMed  Google Scholar 

  77. Mailleux P, Verslype M, Preud’homme X, Vanderhaeghen JJ. Activation of multiple transcription factor genes by tetrahydrocannabinol in rat forebrain. Neuroreport. 1994;5:1265–8.

    CAS  PubMed  Google Scholar 

  78. Patel NA, Moldow RL, Patel JA, Wu G, Chang SL. Arachidonylethanolamide (AEA) activation of FOS proto-oncogene protein immunoreactivity in the rat brain. Brain Res. 1998;797:225–33.

    CAS  PubMed  Google Scholar 

  79. Bouaboula M, Bourrié B, Rinaldi-Carmona M, Shire D, Fur GL, Casellas P. Stimulation of cannabinoid receptor CB1 induces krox-24 expression in human astrocytoma cells. J Biol Chem. 1995;270:13973–80.

    CAS  PubMed  Google Scholar 

  80. Nackley AG, Makriyannis A, Hohmann AG. Selective activation of cannabinoid CB(2) receptors suppresses spinal fos protein expression and pain behavior in a rat model of inflammation. Neuroscience. 2003;119:747–57.

    CAS  PubMed  Google Scholar 

  81. Bauer I, Hohl M, Al-Sarraj A, Vinson C, Thiel G. Transcriptional activation of the Egr-1 gene mediated by tetradecanoylphorbol acetate and extracellular signal-regulated protein kinase. Arch Biochem Biophys. 2005;438:36–52.

    CAS  PubMed  Google Scholar 

  82. Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol. 2002;193:287–92.

    CAS  PubMed  Google Scholar 

  83. Shaw PE, Schroter H, Nordheim A. The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell. 1989;56:563–72.

    CAS  PubMed  Google Scholar 

  84. Treisman R. Identification and purification of a polypeptide that binds to the c-fos serum response element. EMBO J. 1987;6:2711–7.

    CAS  PubMed  Google Scholar 

  85. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993;365:855–9.

    CAS  PubMed  Google Scholar 

  86. Valjent E, Pages C, Rogard M, Besson MJ, Maldonado R, Caboche J. Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission. Eur J Neurosci. 2001;14:342–52.

    CAS  PubMed  Google Scholar 

  87. Sgambato V, Pages C, Rogard M, Besson M-J, Caboche J. Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J Neurosci. 1998;18:8814–25.

    CAS  PubMed  Google Scholar 

  88. Casu MA, Pisu C, Sanna A, et al. Effect of [Delta]9-tetrahydrocannabinol on phosphorylated CREB in rat cerebellum: an immunohistochemical study. Brain Res. 2005;1048:41–7.

    CAS  PubMed  Google Scholar 

  89. Torii S, Nakayama K, Yamamoto T, Nishida E. Regulatory mechanisms and function of ERK MAP kinases. J Biochem. 2004;136:557–61.

    CAS  PubMed  Google Scholar 

  90. Cao X, Mahendran R, Guy G, Tan Y. Detection and characterization of cellular EGR-1 binding to its recognition site. J Biol Chem. 1993;268:16949–57.

    CAS  PubMed  Google Scholar 

  91. Christy BA, Lau LF, Nathans D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with “zinc finger” sequences. Proc Nat Acad Sci USA. 1988;85:7857–61.

    CAS  PubMed  Google Scholar 

  92. Sukhatme VP, Cao X, Chang LC, et al. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell. 1988;53:37–43.

    CAS  PubMed  Google Scholar 

  93. Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science. 1987;238:797–9.

    CAS  PubMed  Google Scholar 

  94. Chinenov Y, Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene. 2001;20:2438–52.

    CAS  PubMed  Google Scholar 

  95. Miyamoto A, Yamamoto T, Ohno M, et al. Roles of dopamine D1 receptors in delta 9-tetrahydrocannabinol-induced expression of Fos protein in the rat brain. Brain Res. 1996;710:234–40.

    CAS  PubMed  Google Scholar 

  96. Sakurai-Yamashita Y, Kataoka Y, Fujiwara M, Mine K, Ueki S. Delta 9-tetrahydrocannabinol facilitates striatal dopaminergic transmission. Pharmacol Biochem Behav. 1989;33:397–400.

    CAS  PubMed  Google Scholar 

  97. Voruganti LN, Slomka P, Zabel P, Mattar A, Awad AG. Cannabis induced dopamine release: an in-vivo SPECT study. Psychiatry Res. 2001;107:173–7.

    CAS  PubMed  Google Scholar 

  98. Butovsky E, Juknat A, Goncharov I, et al. In vivo up-regulation of brain-derived neurotrophic factor in specific brain areas by chronic exposure to delta-tetrahydrocannabinol. J Neurochem. 2005;93:802–11.

    CAS  PubMed  Google Scholar 

  99. Khaspekov LG, Brenz Verca MS, Frumkina LE, Hermann H, Marsicano G, Lutz B. Involvement of brain-derived neurotrophic factor in cannabinoid receptor-dependent protection against excitotoxicity. Eur J Neurosci. 2004;19:1691–9.

    PubMed  Google Scholar 

  100. Grigorenko E, Kittler J, Clayton C, et al. Assessment of cannabinoid induced gene changes: tolerance and neuroprotection. Chem Phys Lipids. 2002;121:257–66.

    CAS  PubMed  Google Scholar 

  101. Bayatti N, Hermann H, Lutz B, Behl C. Corticotropin-releasing hormone-mediated induction of intracellular signaling pathways and brain-derived neurotrophic factor expression is inhibited by the activation of the endocannabinoid system. Endocrinology. 2005;146:1205–13.

    CAS  PubMed  Google Scholar 

  102. Shieh PB, Hu SC, Bobb K, Timmusk T, Ghosh A. Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron. 1998;20:727–40.

    CAS  PubMed  Google Scholar 

  103. Marsicano G, Goodenough S, Monory K, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 2003;302:84–8.

    CAS  PubMed  Google Scholar 

  104. Zafra F, Hengerer B, Leibrock J, Thoenen H, Lindholm D. Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 1990;9:3545–50.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Glass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Scotter, E., Graham, S., Glass, M. (2009). Cannabinoid Receptor Signal Transduction Pathways. In: Reggio, P.H. (eds) The Cannabinoid Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-503-9_6

Download citation

Publish with us

Policies and ethics