Skip to main content

Angiogenesis Switch Pathways

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. 1. Jubb AM, Oates AJ, Holden S, Koeppen H. Predicting benefit from anti-angiogenic agents in malignancy. Nat Rev Cancer 2006;6:626–635.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Folkman J, Long DM, Becker F. Growth and metastasis of tumors in organ culture. Cancer 1963;16:453–467.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Gimbrone MA, Jr., Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 1972;136:261–276.

    Article  PubMed  Google Scholar 

  4. 4. Gimbrone MA, Jr., Leapman SB, Cotran RS, Folkman J. Tumor angiogenesis: Iris neovascularization at a distance from experimental intraocular tumors. J Natl Cancer Inst 1973; 50:219–228.

    PubMed  Google Scholar 

  5. 5. Folkman J. Anti-angiogenesis: New concept for therapy of solid tumors. Ann Surg 1972;175:409–416.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990;82:4–6.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Fox SB, Gatter KC, Harris AL. Tumour angiogenesis. J Pathol 1996;179:232–237.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Bicknell R, Lewis C, Ferrara N. Tumor angiogenesis. Oxford: Oxford University Press, 1997.

    Google Scholar 

  9. 9. Folkman J. New perspectives in clinical oncology from angiogenesis research. Eur J Cancer 1996;32A:2534–2539.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Rak J, Kerbel RS. Treating cancer by inhibiting angiogenesis: New hopes and potential pitfalls. Cancer Metastasis Rev 1996;15:231–236.

    Article  PubMed  CAS  Google Scholar 

  11. 11. O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994;79:315–328.

    Article  PubMed  Google Scholar 

  12. 12. Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 1990;87:6624–6628.

    Article  PubMed  CAS  Google Scholar 

  13. 13. DiPietro LA. Thrombospondin as a regulator of angiogenesis. EXS 1997;79:295–314.

    PubMed  CAS  Google Scholar 

  14. 14. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994;265:1582–1584.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438:967–74.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Bertolini F, Shaked Y, Mancuso P, Kerbel RS. The multifaceted circulating endothelial cell in cancer: Towards marker and target identification. Nat Rev Cancer. 2006;6:835–845

    Article  PubMed  CAS  Google Scholar 

  17. 17. Naumov GN, Akslen LA, Folkman J. Role of angiogenesis in human tumor dormancy: Animal models of the angiogenic switch. Cell Cycle. 2006;5:1779–1787

    Article  PubMed  CAS  Google Scholar 

  18. 18. Indraccolo S, Favaro E, Amadori A. Dormant tumors awaken by a short-term angiogenic burst: The spike hypothesis. Cell Cycle. 2006;5:1751–1775

    Article  PubMed  CAS  Google Scholar 

  19. 19. Welsh SJ, Koh MY, Powis G. The hypoxic inducible stress response as a target for cancer drug discovery. Semin Oncol. 2006;33:486–497.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Chun YS, Kim MS, Park JW. Oxygen-dependent and -independent regulation of HIF-1alpha. J Korean Med Sci. 2002;17:581–588.

    PubMed  CAS  Google Scholar 

  21. 21. Scharte M, Han X, Bertges DJ, Fink MP, Delude RL. Cytokines induce HIF-1 DNA binding and the expression of HIF-1-dependent genes in cultured rat enterocytes. Am J Physiol Gastrointest Liver Physiol 2003;284(3): G373–384.

    PubMed  CAS  Google Scholar 

  22. 22. Iervolino A, Trisciuoglio D, Ribatti D, et al. Bcl-2 overexpression in human melanoma cells increases angiogenesis through VEGF mRNA stabilization and HIF-1-mediated transcriptional activity. FASEB J 2002;16:1453–1455.

    PubMed  CAS  Google Scholar 

  23. 23. Alghisi GC, Ruegg C. Vascular integrins in tumor angiogenesis: Mediators and therapeutic targets. Endothelium 2006;13:113–135.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Cai W, Chen X. Anti-angiogenic cancer therapy based on integrin alpha(v)beta3 antagonism. Anticancer Agents Med Chem 2006;6:407–428.

    Article  PubMed  CAS  Google Scholar 

  25. 25. Hajitou A, Pasqualini R, Arap W. Vascular targeting: Recent advances and therapeutic perspectives. Trends Cardiovasc Med 2006;16:80–88.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Rak JW, Hegmann EJ, Lu C, Kerbel RS. Progressive loss of sensitivity to endothelium-derived growth inhibitors expressed by human melanoma cells during disease progression. J Cell Physiol 1994;159:245–255.

    Article  PubMed  CAS  Google Scholar 

  27. 27. Gupta K, Q R-Y. Mechanism and its regulation of tumor-induced angiogenesis World J Gastroenterol 2003;9:1144–1155

    CAS  Google Scholar 

  28. 28. Bhushan M, Young HS, Brenchley PE, Griffiths CE. Recent advances in cutaneous angiogenesis. Br J Dermatol 2002;147:418–425.

    Article  PubMed  CAS  Google Scholar 

  29. 29. Sood AK, Fletcher MS, Hendrix MJ. The embryonic-like properties of aggressive human tumor cells. J Soc Gynecol Investig 2002;9:2–9.

    Article  PubMed  Google Scholar 

  30. 30. Hendrix MJ, Seftor EA, Meltzer PS, et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proc Natl Acad Sci USA 2001; 98:8018–8023.

    Article  PubMed  CAS  Google Scholar 

  31. 31. Shirakawa K, Kobayashi H, Heike Y, et al. Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft. Cancer Res 2002;62:560–566.

    PubMed  CAS  Google Scholar 

  32. 32. MacDonald IC, Groom AC, Chambers AF. Cancer spread and micrometastasis development: Quantitative approaches for in vivo models. Bioessays 2002;24:885–893.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Folkman J. Can mosaic tumor vessels facilitate molecular diagnosis of cancer? Proc Natl Acad Sci USA 2001;98:398–400.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Bertolini F, Shaked Y, Mancuso P, Kerbel RS. The multifaceted circulating endothelial cell in cancer: Towards marker and target identification. Nature Rev Cancer 2006;6:835.

    Article  CAS  Google Scholar 

  35. 35. Goon K, Lip G, Boos C, Stonelakey P, Blann A. Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 2006;8:79–88.

    Article  PubMed  CAS  Google Scholar 

  36. 36. Burri PH, Hlushchuk R, Djonov V. Intussusceptive angiogenesis: Its emergence, its characteristics, and its significance. Dev Dyn 2004;231:474–488.

    Article  PubMed  Google Scholar 

  37. 37. Jakeman LB, Armanini M, Phillips HS, Ferrara N. Developmental expression of binding sites and messenger ribonucleic acid for vascular endothelial growth factor suggests a role for this protein in vasculogenesis and angiogenesis. Endocrinol 1993;133:848–859.

    Article  CAS  Google Scholar 

  38. 38. Carmeliet P, Schoonjans L, Kieckens L, et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994;368:419–424.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996;380:439–442.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Senger DR, Brown LF, Claffey KP, Dvorak HF. Vascular permeability factor, tumor angiogenesis and stroma generation. Invasion Metastasis 1994;14:385–394.

    PubMed  CAS  Google Scholar 

  41. 41. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006;7:359–371

    Article  PubMed  CAS  Google Scholar 

  42. 42. Brown LF, Berse B, Jackman RW, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 1995;26:86–91.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 1993;4:1317–1326.

    PubMed  CAS  Google Scholar 

  44. 44. Rak J, Mitsuhashi Y, Bayko L, et al. Mutant ras oncogenes upregulate VEGF/VPF expression: Implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995;55:4575–4580.

    PubMed  CAS  Google Scholar 

  45. 45. Friesel RE, Maciag T. Molecular mechanisms of angiogenesis: Fibroblast growth factor signal transduction. FASEB J 1995; 9:919–925.

    PubMed  CAS  Google Scholar 

  46. 46. Yu ZX, Biro S, Fu YM, et al. Localization of basic fibroblast growth factor in bovine endothelial cells: Immunohistochemical and biochemical studies. Exp Cell Res 1993;204:247–259.

    Article  PubMed  CAS  Google Scholar 

  47. 47. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA 1986;83:7297–7301.

    Article  PubMed  CAS  Google Scholar 

  48. 48. Davis S, Yancopoulos GD. The angiopoietins: Yin and Yang in angiogenesis. Curr Top Microbiol Immunol 1999; 237:173–185.

    PubMed  CAS  Google Scholar 

  49. 49. Kim I, Kim JH, Moon SO, Kwak HJ, Kim NG, Koh GY. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene 2000; 19:4549–4552.

    Article  PubMed  CAS  Google Scholar 

  50. 50. Eklund L, Olsen BR. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 2006;312:630–641

    Article  PubMed  CAS  Google Scholar 

  51. 51. Shim WS, Teh M, Bapna A, et al. Angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice. Exp Cell Res 2002; 279:299–309.

    Article  PubMed  CAS  Google Scholar 

  52. 52. Stoeltzing O, Ahmad SA, Liu W, et al. Angiopoietin-1 inhibits tumour growth and ascites formation in a murine model of peritoneal carcinomatosis. Br J Cancer 2002;87:1182–1187.

    Article  PubMed  CAS  Google Scholar 

  53. 53. Camenisch G, Pisabarro MT, Sherman D, et al. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha (v)beta 3 and induces blood vessel formation in vivo. J Biol Chem 2002;277:17281–17290.

    Article  PubMed  CAS  Google Scholar 

  54. 54. Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A. Selective expression of angiopoietin 1 and 2 in mesenchymal cells surrounding veins and arteries of the avian embryo. Mech Dev 2001;106:133–136.

    Article  PubMed  CAS  Google Scholar 

  55. 55. Lin P, Buxton JA, Acheson A, et al. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci USA 1998;95:8829–8834.

    Article  PubMed  CAS  Google Scholar 

  56. 56. Cheng N, Brantley DM, Chen J. The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev 2002;13:75–85.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 1999;13: 1055–1066.

    Article  PubMed  CAS  Google Scholar 

  58. 58. Gale NW, Yancopoulos GD. Ephrins and their receptors: A repulsive topic? Cell Tissue Res 1997;290:227–241.

    Article  PubMed  CAS  Google Scholar 

  59. 59. Brantley DM, Cheng N, Thompson EJ, et al. Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 2002;21:7011–7026.

    Article  PubMed  CAS  Google Scholar 

  60. 60. Sporn MB, Roberts AB, Wakefield LM, de Crombrugghe B. Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol 1987;105:1039–1045.

    Article  PubMed  CAS  Google Scholar 

  61. 61. Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 1987;329:630–632.

    Article  PubMed  CAS  Google Scholar 

  62. 62. Wahl SM, Hunt DA, Wong HL, et al. Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation. J Immunol 1988;140:3026–3032.

    PubMed  CAS  Google Scholar 

  63. 63. Sherry B, Cerami A. Cachectin/tumor necrosis factor exerts endocrine, paracrine, and autocrine control of inflammatory responses. J Cell Biol 1988;107:1269–1277.

    Article  PubMed  CAS  Google Scholar 

  64. 64. Leibovich SJ. Role of cytokines in the process of tumor angiogenesis. In: Aggarwal B, Puri R, eds. Human cytokines: Their role in cell disease and therapy. Oxford: Blackwell Science, 1995: 539–564.

    Google Scholar 

  65. Moghaddam A. Thymidine phosphorylase/platelet endothelial cell derived growth factor: An angiogenic enzyme. In: Bicknell R, Lewis C, Ferrara N, eds. Tumor angiogenesis. Oxford University Press, 1997:251–260.

    Google Scholar 

  66. 66. Schreiber AB, Winkler ME, Derynck R. Transforming growth factor-alpha: A more potent angiogenic mediator than epidermal growth factor. Science 1986; 232:1250–1253.

    Article  PubMed  CAS  Google Scholar 

  67. 67. Bikfalvi A. Significance of angiogenesis in tumour progression and metastasis. Eur J Cancer 1995;31A:1101–1104.

    Article  PubMed  CAS  Google Scholar 

  68. 68. Kim SJ, Uehara H, Karashima T, Mccarty M, Shih N, Fidler IJ. Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia 2001;3:33–42.

    Article  PubMed  CAS  Google Scholar 

  69. 69. Salven P, Hattori K, Heissig B, Rafii S. Interleukin-1alpha promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. FASEB J 2002;16:1471–1473.

    PubMed  CAS  Google Scholar 

  70. 70. Numasaki M, Fukushi JI, Ono M, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood 2003;101(7):2620–2624.

    Article  PubMed  CAS  Google Scholar 

  71. 71. Park CC, Morel JC, Amin MA, Connors MA, Harlow LA, Koch AE. Evidence of IL-18 as a novel angiogenic mediator. J Immunol 2001;167:1644–1653.

    PubMed  CAS  Google Scholar 

  72. 72. Volpert OV, Fong T, Koch AE, et al. Inhibition of angiogenesis by interleukin 4. J Exp Med 1998;188:1039–1046.

    Article  PubMed  CAS  Google Scholar 

  73. 73. Lee JC, Kim DC, Gee MS, et al. Interleukin-12 inhibits angiogenesis and growth of transplanted but not in situ mouse mammary tumor virus-induced mammary carcinomas. Cancer Res 2002; 62:747–755.

    PubMed  CAS  Google Scholar 

  74. 74. Takahashi F, Akutagawa S, Fukumoto H, et al. Osteopontin induces angiogenesis of murine neuroblastoma cells in mice. Int J Cancer 2002;98:707–712.

    Article  PubMed  CAS  Google Scholar 

  75. 75. Tsopanoglou NE, Andriopoulou P, Maragoudakis ME. On the mechanism of thrombin-induced angiogenesis: Involvement of alpha(v)beta3-integrin. Am J Physiol Cell Physiol 2002;283:C1501–C1510.

    PubMed  CAS  Google Scholar 

  76. 76. Mehrabi MR, Serbecic N, Tamaddon F, et al. Clinical and experimental evidence of prostaglandin E1-induced angiogenesis in the myocardium of patients with ischemic heart disease. Cardiovasc Res 2002;56:214–224.

    Article  PubMed  CAS  Google Scholar 

  77. 77. Schwartz MA. Nicotine-induced angiogenesis. J Clin Psychiatry 2002;63:949–950.

    PubMed  Google Scholar 

  78. 78. Wakasugi K, Slike BM, Hood J, Ewalt KL, Cheresh DA, Schimmel P. Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J Biol Chem 2002;277:20124–20126.

    Article  PubMed  CAS  Google Scholar 

  79. 79. Tei K, Kawakami-Kimura N, Taguchi O, et al. Roles of cell adhesion molecules in tumor angiogenesis induced by cotransplantation of cancer and endothelial cells to nude rats. Cancer Res 2002;62:6289–6296.

    PubMed  CAS  Google Scholar 

  80. 80. Nor JE, Peters MC, Christensen JB, et al. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest 2001;81:453–463.

    PubMed  CAS  Google Scholar 

  81. 81. Hartwell DW, Butterfield CE, Frenette PS, et al. Angiogenesis in P- and E-selectin-deficient mice. Microcirculation. 1998;5:173–178

    PubMed  CAS  Google Scholar 

  82. 82. Chavakis T, Orlova V. The role of junctional adhesion molecules in interactions between vascular cells. Methods Mol Biol. 2006;341:37–50

    PubMed  Google Scholar 

  83. 83. Cavallaro U, Liebner S, Dejana E. Endothelial cadherins and tumor angiogenesis. Exp Cell Res. 2006 Mar 10;312:659–667.

    Article  PubMed  CAS  Google Scholar 

  84. 84. Haass NK, Smalley KS, Li L, Herlyn M. Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res. 2005;18:150–159

    Article  PubMed  CAS  Google Scholar 

  85. 85. Chavakis T, Orlova V. The role of junctional adhesion molecules in interactions between vascular cells. Methods Mol Biol. 2006;341:37–50

    PubMed  Google Scholar 

  86. 86. Alghisi GC, Ruegg C. Vascular integrins in tumor angiogenesis: Mediators and therapeutic targets. Endothelium. 2006;13: 113–135

    Article  PubMed  CAS  Google Scholar 

  87. 87. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha (v)beta 3 for angiogenesis. Science 1994;264:569–571.

    Article  PubMed  CAS  Google Scholar 

  88. 88. Mousa SA. Vitronectin receptors in vascular-mediated disorders. Med Res Rev. 2003;23:190–199.

    Article  PubMed  CAS  Google Scholar 

  89. 89. Tucker GC. Integrins: Molecular targets in cancer therapy. Curr Oncol Rep 2006;8:96–103

    Article  PubMed  CAS  Google Scholar 

  90. 90. Bogler O, Mikkelsen T. Angiogenesis and apoptosis in glioma: Two arenas for promising new therapies. J Cell Biochem 2005;96:16–24

    Article  PubMed  CAS  Google Scholar 

  91. 91. Kuphal S, Bauer R, Bosserhoff AK. Integrin signaling in malignant melanoma. Cancer Metastasis Rev. 2005;24:195–222

    Article  PubMed  CAS  Google Scholar 

  92. 92. Haass NK, Smalley KS, Li L, Herlyn M. Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res 2005;18:150–159

    Article  PubMed  CAS  Google Scholar 

  93. 93. Wechsel HW, Petri E, Feil G, Nelde HJ, Bichler KH, Loesr W. Renal cell carcinoma: Immunohistological investigation of expression of the integrin alpha (v)beta 3. Anticancer Res 1999;19:1529–1532

    PubMed  CAS  Google Scholar 

  94. 94. Leroy-Dudal J, Demeilliers C, Gallet O, et al. Transmigration of human ovarian adenocarcinoma cells through endothelial extracellular matrix involves alphav integrins and the participation of MMP2. Int J Cancer 2005;114:531–543

    Article  PubMed  CAS  Google Scholar 

  95. 95. Duan X, Jia SF, Zhou Z, Langley RR, Bolontrade MF, Kleinerman ES. Association of alphavbeta3 integrin expression with the metastatic potential and migratory and chemotactic ability of human osteosarcoma cells. Clin Exp Metastasis 2004;21:747–753

    Article  PubMed  CAS  Google Scholar 

  96. 96. Lamerato-Kozicki AR, Helm KM, Jubala CM, Cutter GC, Modiano JF. Canine hemangiosarcoma originates from hematopoietic precursors with potential for endothelial differentiation. Exp Hematol 2006;34:870–888.

    Article  PubMed  CAS  Google Scholar 

  97. 97. Danen EH, Ten Berge PJ, Van Muijen GN, Van 't Hof-Grootenboer AE, Brocker EB, Ruiter DJ. Emergence of alpha 5 beta 1 fibronectin- and alpha (v) beta 3 vitronectin-receptor expression in melanocytic tumour progression. Histopathology 1994;24:249–256.

    Article  PubMed  CAS  Google Scholar 

  98. 98. Natali PG, Hamby CV, Felding-Habermann B, et al. Clinical significance of alpha(v)beta3 integrin and intercellular adhesion molecule-1 expression in cutaneous malignant melanoma lesions. Cancer Res 1997;57:1554–1560.

    PubMed  CAS  Google Scholar 

  99. 99. Enenstein J, Kramer RH. Confocal microscopic analysis of integrin expression on the microvasculature and its sprouts in the neonatal foreskin. J Invest Dermatol 1994;103:381–386.

    Article  PubMed  CAS  Google Scholar 

  100. 100. Mitjans F, Sander D, Adan J, et al. An anti-alpha v-integrin antibody that blocks integrin function inhibits the development of a human melanoma in nude mice. J Cell Sci 1995;108:2825–2838.

    PubMed  CAS  Google Scholar 

  101. 101. Mitjans F, Meyer T, Fittschen C, et al. In vivo therapy of malignant melanoma by means of antagonists of alphav integrins. Int J Cancer 2000;87:716–723.

    Article  PubMed  CAS  Google Scholar 

  102. 102. Petitclerc E, Stromblad S, von Schalscha TL, et al. Integrin alpha(v)beta3 promotes M21 melanoma growth in human skin by regulating tumor cell survival. Cancer Res 1999; 59:2724–2730.

    PubMed  CAS  Google Scholar 

  103. 103. Castel S, Pagan R, Mitjans F, et al. RGD peptides and monoclonal antibodies, antagonists of alpha(v)-integrin, enter the cells by independent endocytic pathways. Lab Invest 2001;81:1615–1626.

    PubMed  CAS  Google Scholar 

  104. 104. Brooks PC, Montgomery AM, Rosenfeld M, et al. Integrin alpha (v)beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994;79:1157–1164.

    Article  PubMed  CAS  Google Scholar 

  105. 105. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct alpha v integrins. Science 1995;270:1500–1502.

    Article  PubMed  CAS  Google Scholar 

  106. 106. Montgomery AM, Reisfeld RA, Cheresh DA. Integrin alpha (v)beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci USA 1994;91:8856–8860.

    Article  PubMed  CAS  Google Scholar 

  107. 107. Cheresh DA, Stupack DG. Integrin-mediated death: An explanation of the integrin-knockout phenotype? Nat Med 2002;8:193–194.

    Article  PubMed  CAS  Google Scholar 

  108. 108. Ramos OH, Selistre-de-Araujo HS. Snake venom metalloproteases–structure and function of catalytic and disintegrin domains. Comp Biochem Physiol C Toxicol Pharmacol 2006;142:328–346

    Article  PubMed  CAS  Google Scholar 

  109. 109. Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL. Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 2002; 62:4263–4272.

    PubMed  CAS  Google Scholar 

  110. 110. Kumar CC, Malkowski M, Yin Z, et al. Inhibition of angiogenesis and tumor growth by SCH221153, a dual alpha(v)beta3 and alpha(v)beta5 integrin receptor antagonist. Cancer Res 2001;61:2232–2238.

    PubMed  CAS  Google Scholar 

  111. 111. Colorado PC, Torre A, Kamphaus G, et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 2000; 60:2520–2526.

    PubMed  CAS  Google Scholar 

  112. 112. Maeshima Y, Manfredi M, Reimer C, et al. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J Biol Chem 2001; 276:15240–15248.

    Article  PubMed  CAS  Google Scholar 

  113. 113. Kamphaus GD, Colorado PC, Panka DJ, et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 2000;275:1209–1215.

    Article  PubMed  CAS  Google Scholar 

  114. 114. Tarui T, Miles LA, Takada Y. Specific interaction of angiostatin with integrin alpha(v)beta(3) in endothelial cells. J Biol Chem 2001;276:39562–39568.

    Article  PubMed  CAS  Google Scholar 

  115. 115. Rehn M, Veikkola T, Kukk-Valdre E, et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA 2001;98:1024–1029.

    Article  PubMed  CAS  Google Scholar 

  116. 116. Dormond O, Foletti A, Paroz C, Ruegg C. NSAIDs inhibit alpha (v)beta 3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med 2001;7:1041–1047.

    Article  PubMed  CAS  Google Scholar 

  117. 117. Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ. Evidence for the involvement of endothelial cell integrin alpha (v)beta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med 1998;4:408–414.

    Article  PubMed  CAS  Google Scholar 

  118. 118. Ruegg C, Dormond O, Foletti A. Suppression of tumor angiogenesis through the inhibition of integrin function and signaling in endothelial cells: Which side to target? Endothelium 2002;9:151–160.

    Article  PubMed  CAS  Google Scholar 

  119. 119. Meyer A, Auernheimer J, Modlinger A, Kessler H. Targeting RGD recognizing integrins: Drug development, biomaterial research, tumor imaging and targeting. Curr Pharm Des 2006;12:2723–2747

    Article  PubMed  CAS  Google Scholar 

  120. 120. van Hinsbergh VW, Engelse MA, Quax PH. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 2006;26:716–728

    Article  PubMed  CAS  Google Scholar 

  121. 121. Duffy MJ. The urokinase plasminogen activator system: Role in malignancy. Curr Pharm Des 2004;10:39–49

    Article  PubMed  CAS  Google Scholar 

  122. 122. Kugler MC, Wei Y, Chapman HA. Urokinase receptor and integrin interactions. Curr Pharm Des 2003;9:1565–1574

    Article  PubMed  CAS  Google Scholar 

  123. 123. Min HY, Doyle LV, Vitt CR, et al. Urokinase receptor antagonists inhibit angiogenesis and primary tumor growth in syngeneic mice. Cancer Res 1996;56:2428–2433.

    PubMed  CAS  Google Scholar 

  124. 124. Yoshimoto M, Itoh F, Yamamoto H, Hinoda Y, Imai K, Yachi A. Expression of MMP-7(PUMP-1) mRNA in human colorectal cancers. Int J Cancer 1993;54:614–618.

    Article  PubMed  CAS  Google Scholar 

  125. 125. Davies B, Miles DW, Happerfield LC, et al. Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer 1993;67:1126–1131.

    Article  PubMed  CAS  Google Scholar 

  126. 126. Plate K. From angiogenesis to lymphangiogenesis. Nat Med 2001;7:151–152.

    Article  PubMed  CAS  Google Scholar 

  127. 127. Makinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001;7:199–205.

    Article  PubMed  CAS  Google Scholar 

  128. 128. O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88:277–285.

    Article  PubMed  Google Scholar 

  129. 129. Xiao F, Wei Y, Yang L, et al. A gene therapy for cancer based on the angiogenesis inhibitor, vasostatin. Gene Ther 2002; 9:1207–1213.

    Article  PubMed  CAS  Google Scholar 

  130. 130. Grant MA, Kalluri R. Structural basis for the functions of endogenous angiogenesis inhibitors. Cold Spring Harb Symp Quant Biol 2005;70:399–410

    Article  PubMed  CAS  Google Scholar 

  131. 131. Sund M, Xie L, Kalluri R. The contribution of vascular basement membranes and extracellular matrix to the mechanics of tumor angiogenesis. APMIS 2004;112:450–462.

    Article  PubMed  CAS  Google Scholar 

  132. 132. Bouck N, Stellmach V, Hsu SC. How tumors become angiogenic. Adv Cancer Res 1996;69:135–174.

    Article  PubMed  CAS  Google Scholar 

  133. 133. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27–31.

    Article  PubMed  CAS  Google Scholar 

  134. 134. Gately S, Twardowski P, Stack MS, et al. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA 1997;94:10868–10872.

    Article  PubMed  CAS  Google Scholar 

  135. 135. Dong Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 1997;88:801–810.

    Article  PubMed  CAS  Google Scholar 

  136. 136. Patterson BC, Sang QA. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J Biol Chem 1997;272:28823–28825.

    Article  PubMed  CAS  Google Scholar 

  137. 137. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999;284:808–812.

    Article  PubMed  CAS  Google Scholar 

  138. 138. Moser TL, Stack MS, Wahl ML, Pizzo SV. The mechanism of action of angiostatin: Can you teach an old dog new tricks? Thromb Haemost 2002;87:394–401.

    PubMed  CAS  Google Scholar 

  139. 139. Moser TL, Stack MS, Asplin I, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 1999;96:2811–2816.

    Article  PubMed  CAS  Google Scholar 

  140. 140. Walter JJ, Sane DC. Angiostatin binds to smooth muscle cells in the coronary artery and inhibits smooth muscle cell proliferation and migration In vitro. Arterioscler Thromb Vasc Biol 1999;19:2041–2048.

    PubMed  CAS  Google Scholar 

  141. 141. Chen QR, Kumar D, Stass SA, Mixson AJ. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 1999;59:3308–3312.

    PubMed  CAS  Google Scholar 

  142. 142. Peroulis I, Jonas N, Saleh M. Antiangiogenic activity of endostatin inhibits C6 glioma growth. Int J Cancer 2002;97:839–845.

    Article  PubMed  CAS  Google Scholar 

  143. 143. Blezinger P, Wang J, Gondo M, et al. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat Biotechnol 1999;17:343–348.

    Article  PubMed  CAS  Google Scholar 

  144. 144. Kim YM, Hwang S, Kim YM, et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem 2002;277:27872–27879.

    Article  PubMed  CAS  Google Scholar 

  145. 145. Furumatsu T, Yamaguchi N, Nishida K, et al. Endostatin inhibits adhesion of endothelial cells to collagen I via alpha(2)beta(1) integrin, a possible cause of prevention of chondrosarcoma growth. J Biochem (Tokyo) 2002;131:619–626.

    CAS  Google Scholar 

  146. 146. Karumanchi SA, Jha V, Ramchandran R, et al. Cell surface glypicans are low-affinity endostatin receptors. Mol Cell 2001; 7:811–822.

    Article  PubMed  CAS  Google Scholar 

  147. 147. Pfeifer A, Kessler T, Silletti S, Cheresh DA, Verma IM. Suppression of angiogenesis by lentiviral delivery of PEX, a noncatalytic fragment of matrix metalloproteinase 2. Proc Natl Acad Sci USA 2000;97:12227–12232.

    Article  PubMed  CAS  Google Scholar 

  148. 148. Ewalt KL, Schimmel P. Activation of angiogenic signaling pathways by two human tRNA synthetases. Biochemistry 2002;41:13344–13349.

    Article  PubMed  CAS  Google Scholar 

  149. 149. Nash GF, Walsh DC, Kakkar AK. The role of the coagulation system in tumour angiogenesis. Lancet Oncol 2001;2:608–613.

    Article  PubMed  CAS  Google Scholar 

  150. 150. Wojtukiewicz MZ, Sierko E, Klement P, Rak J. The hemostatic system and angiogenesis in malignancy. Neoplasia 2001;3:371–384.

    Article  PubMed  CAS  Google Scholar 

  151. 151. Yamaoka M, Yamamoto T, Masaki T, Ikeyama S, Sudo K, Fujita T. Inhibition of tumor growth and metastasis of rodent tumors by the angiogenesis inhibitor O-(chloroacetyl-carbamoyl)fumagillol (TNP-470; AGM-1470). Cancer Res 1993;53:4262–4267.

    PubMed  CAS  Google Scholar 

  152. 152. Fotsis T, Pepper M, Adlercreutz H, Hase T, Montesano R, Schweigerer L. Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J Nutr 1995;125:790S–797S.

    PubMed  CAS  Google Scholar 

  153. 153. Moses MA, Sudhalter J, Langer R. Identification of an inhibitor of neovascularization from cartilage. Science 1990;248:1408–1410.

    Article  PubMed  CAS  Google Scholar 

  154. 154. Brem S, Cotran R, Folkman J. Tumor angiogenesis: A quantitative method for histologic grading. J Natl Cancer Inst 1972;48:347–356.

    PubMed  CAS  Google Scholar 

  155. 155. Fox SB, Harris AL. Markers of tumor angiogenesis: Clinical applications in prognosis and anti-angiogenic therapy. Invest New Drugs 1997;15:15–28.

    Article  PubMed  CAS  Google Scholar 

  156. 156. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 1991;324:1–8.

    Article  PubMed  CAS  Google Scholar 

  157. 157. Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: A new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992;84: 1875–1887.

    Article  PubMed  CAS  Google Scholar 

  158. 158. Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML. Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 1992;23:755–761.

    Article  PubMed  CAS  Google Scholar 

  159. 159. Fox SB, Leek RD, Weekes MP, Whitehouse RM, Gatter KC, Harris AL. Quantitation and prognostic value of breast cancer angiogenesis: Comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol 1995;177:275–283.

    Article  PubMed  CAS  Google Scholar 

  160. 160. Kawaguchi T, Yamamoto S, Kudoh S, Goto K, Wakasa K, Sakurai M. Tumor angiogenesis as a major prognostic factor in stage I lung adenocarcinoma. Anticancer Res 1997;17:3743–3746.

    PubMed  CAS  Google Scholar 

  161. 161. Heimburg S, Oehler MK, Kristen P, Papadopoulos T, Caffier H. The endothelial marker CD 34 in the assessment of tumour vascularisation in ovarian cancer. Anticancer Res 1997;17:3149–3151.

    PubMed  CAS  Google Scholar 

  162. 162. Tanigawa N, Amaya H, Matsumura M, Shimomatsuya T. Association of tumour vasculature with tumour progression and overall survival of patients with non-early gastric carcinomas. Br J Cancer 1997;75:566–571.

    Article  PubMed  CAS  Google Scholar 

  163. 163. Kumar-Singh S, Vermeulen PB, Weyler J, et al. Evaluation of tumour angiogenesis as a prognostic marker in malignant mesothelioma. J Pathol 1997;182:211–216.

    Article  PubMed  CAS  Google Scholar 

  164. 164. Vermeulen PB, Gasparini G, Fox SB, et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 2002;38:1564–1579.

    Article  PubMed  CAS  Google Scholar 

  165. 165. Anan K, Morisaki T, Katano M, et al. Preoperative assessment of tumor angiogenesis by vascular endothelial growth factor mRNA expression in homogenate samples of breast carcinoma: Fine-needle aspirates vs. resection samples. J Surg Oncol 1997;66:257–263.

    Article  PubMed  CAS  Google Scholar 

  166. 166. Dobbs SP, Hewett PW, Johnson IR, Carmichael J, Murray JC. Angiogenesis is associated with vascular endothelial growth factor expression in cervical intraepithelial neoplasia. Br J Cancer 1997;76:1410–1415.

    Article  PubMed  CAS  Google Scholar 

  167. 167. Eisma RJ, Spiro JD, Kreutzer DL. Vascular endothelial growth factor expression in head and neck squamous cell carcinoma. Am J Surg 1997;174:513–517.

    Article  PubMed  CAS  Google Scholar 

  168. 168. O'Brien T, Cranston D, Fuggle S, Bicknell R, Harris AL. Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res 1995;55:510–513.

    PubMed  Google Scholar 

  169. 169. Toi M, Hoshina S, Takayanagi T, Tominaga T. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J Cancer Res 1994;85:1045–1049.

    PubMed  CAS  Google Scholar 

  170. 170. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: Microvessel density, what it does and doesn't tell us. J Natl Cancer Inst 2002;94:883–893.

    PubMed  Google Scholar 

  171. 171. Dowlati A, Robertson K, Cooney M, et al. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res 2002;62:3408–3416.

    PubMed  CAS  Google Scholar 

  172. 172. Gasparini G, Longo R, Toi M, Ferrara N. Angiogenic inhibitors: A new therapeutic strategy in oncology. Nat Clin Pract Oncol 2005;2:562–577.

    Article  PubMed  CAS  Google Scholar 

  173. 173. Hurwitz HI, Fehrenbacher L, Hainsworth JD, et al. Bevacizumab in combination with fluorouracil and leucovorin: An active regimen for first-line metastatic colorectal cancer. J Clin Oncol 2005;23:3502–3508.

    Article  PubMed  CAS  Google Scholar 

  174. 174. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004;351 :337–345

    Article  PubMed  CAS  Google Scholar 

  175. 175. Sandler AB, Gray R, Brahmer J, et al. Randomized phase II/III trial of aclitaxel (P) plus carboplatin © with or without bevaciucumab (NSC 704865) in patients with advanced non-squamous non-small cell lung cancer (NSCLC): An Eastern Cooperative Oncology Group (ECOG) Trial – E4599. Proc ASCO 2005;23:2s (Abstract LBA4).

    Google Scholar 

  176. 176. Bonner JA., Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354:567–578.

    Article  PubMed  CAS  Google Scholar 

  177. 177. Citrin D, Menard C, Camphausen K. Combining radiotherapy and angiogenesis inhibitors: Clinical trial design. Int J Radiat Oncol Biol Phys 2006;64:15–25.

    Article  PubMed  Google Scholar 

  178. 178. Sund M, Zeisberg M, Kalluri R. Endogenous stimulators and inhibitors of angiogenesis in gastrointestinal cancers: Basic science to clinical application. Gastroenterology 2005;129:2076–2091.

    Article  PubMed  CAS  Google Scholar 

  179. 179. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002;2:727–739.

    Article  PubMed  CAS  Google Scholar 

  180. 180. Saltz LB, Lenz H, Hochster H. Randomized phase II trial of cetuximab/bevacizumab/irinotecan (CBI) versus cetuximab/bevacizumab (CB) in irinotecan-refractory colorectal cancer. J Clin Oncol 2005;23:A3508.

    Google Scholar 

  181. 181. McDonnell CO, Holden G, Sheridan ME, et al. Improvement in efficacy of chemoradiotherapy by addition of an antiangiogenic agent in a murine tumor model. J Surg Res 2004;116:19–23.

    Article  PubMed  CAS  Google Scholar 

  182. 182. Pfister DG, Su YB, Kraus DH, et al. Concurrent cetuximab, cisplatin, and concomitant boost radiotherapy for locoregionally advanced, squamous cell head and neck cancer: A pilot phase II study of a new combine-modality paradigm. J Clin Oncol 2006;24:1072–1078.

    Article  PubMed  CAS  Google Scholar 

  183. 183. Ginns LC, Roberts DH, Mark EJ, Brusch JL, Marler JJ. Pulmonary capillary hemangiomatosis with atypical endotheliomatosis: Successful antiangiogenic therapy with doxycycline. Chest 2003;124:2017–2022.

    Article  PubMed  Google Scholar 

  184. 184. Gille J, Spieth K, Kaufmann R. Metronomic low-dose chemotherapy as antiangiogenic therapeutic strategy for cancer. J Dtsch Dermatol Ges 2005;3:26–32.

    Article  PubMed  Google Scholar 

  185. 185. Marler JJ, Rubin JB, Trede NS, et al. Successful antiangiogenic therapy of giant cell angioblastoma with interferon alfa 2b: Report of 2 cases. Pediatrics 2002;109:E37.

    Article  PubMed  Google Scholar 

  186. 186. Jain RK. Antiangiogenic therapy for cancer: Current and emerging concepts. Oncology (Williston Park) 2005;19:7–16

    Google Scholar 

  187. 187. Jain RK. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 2005;307:58–62

    Article  PubMed  CAS  Google Scholar 

  188. 188. Kerbel RS. Antiangiogenic therapy: A universal chemosensitization strategy for cancer? Science 2006;312:1171–1175.

    Article  PubMed  CAS  Google Scholar 

  189. 189. Vacca A, Iurlaro M, Ribatti D, et al. Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 1999;94:4143–4155.

    PubMed  CAS  Google Scholar 

  190. 190. Drixler TA, Borel Rinkes IH, Ritchie ED, et al. Angiostatin inhibits pathological but not physiological retinal angiogenesis. Invest Ophthalmol Vis Sci. 2001;42:3325–3330

    PubMed  CAS  Google Scholar 

  191. 191. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgments. We appreciate the helpful comments and criticisms of this manuscript by Dr Claudi Solà. The authors also wish to thank all the members of our laboratory for their fruitful comments, and Nuria Soriano and Neus Sanchez for expert editorial help.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this chapter

Cite this chapter

Piulats, J., Mitjans, F. (2008). Angiogenesis Switch Pathways. In: Bronchud, M.H., Foote, M.A., Giaccone, G., Olopade, O., Workman, P. (eds) Principles of Molecular Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-470-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-470-4_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-25-1

  • Online ISBN: 978-1-59745-470-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics