Skip to main content

Transforming Growth Factor-β and Cancer

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Normal tissue homeostasis is maintained by strict regulation of interactions between cells and their microenvironment. How a cell responds to stimulatory and inhibitory signals it receives from the microenvironment will directly impact whether or not that particular cell will proceed through the cell cycle and proliferate or stop cell cycle progression and undergo assessment. When cells no longer respond to their microenvironmental cues and proliferate autonomously, tumors arise. The major known negative regulators of cell proliferation are the transforming growth factor βs (TGF-βs). The TGF-β signaling pathways are tumor suppressive, yet once tumors have developed, TGF-β signaling can enhance tumor progression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003;3(11):807–821.

    Article  CAS  PubMed  Google Scholar 

  2. Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A 2003;100(15):8621–8623.

    Article  CAS  PubMed  Google Scholar 

  3. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003;113(6):685–700.

    Article  CAS  PubMed  Google Scholar 

  4. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000;275(47):36803–36810.

    Article  CAS  PubMed  Google Scholar 

  5. Bhowmick NA, Ghiassi M, Bakin A, et al. Transforming growth factor-betal mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12(l):27–36.

    CAS  PubMed  Google Scholar 

  6. Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL. Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem 2001;276(50):46707–46713.

    Article  CAS  PubMed  Google Scholar 

  7. Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL. p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 2002;115 (Pt 15): 3193–3206.

    CAS  PubMed  Google Scholar 

  8. Larisch-Bloch S, Danielpour D, Roche NS, et al. Selective loss of the transforming growth factor-beta apoptotic signaling pathway in mutant NRP-154 rat prostatic epithelial cells. Cell Growth Differ 2000;11(l):1–10.

    CAS  PubMed  Google Scholar 

  9. Gottfried Y, Rotem A, Lotan R, Steller H, Larisch S. The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J 2004;23(7):1627–1635.

    Article  CAS  PubMed  Google Scholar 

  10. Kim SJ. [Molecular mechanism of inactivation of TGF-beta receptors during carcinogenesis]. Tanpakushitsu Kakusan Koso 2001;46(2):111–116.

    CAS  PubMed  Google Scholar 

  11. Kretzschmar M. Transforming growth factor-beta and breast cancer: Transforming growth factorbeta/SMAD signaling defects and cancer. Breast Cancer Res 2000;2(2):107–115.

    Article  CAS  PubMed  Google Scholar 

  12. Miyazono K, Suzuki H, Imamura T. Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Sci 2003;94(3):230–234.

    Article  CAS  PubMed  Google Scholar 

  13. Coffey RJ, Jr., Sipes NJ, Bascom CC, et al. Growth modulation of mouse keratinocytes by transforming growth factors. Cancer Res 1988;48(6): 1596–1602.

    CAS  PubMed  Google Scholar 

  14. Pierce DF, Jr., Gorska AE, Chytil A, et al. Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci U S A 1995;92(10):4254–4258.

    Article  CAS  PubMed  Google Scholar 

  15. Ziv E, Cauley J, Morin PA, Saiz R, Browner WS. Association between the T29→C polymorphism in the transforming growth factor betal gene and breast cancer among elderly white women: The Study of Osteoporotic Fractures. Jama 2001;285(22):2859–2863.

    Article  CAS  PubMed  Google Scholar 

  16. Wu SP, Theodorescu D, Kerbel RS, et al. TGF-beta 1 is an autocrine-negative growth regulator of human colon carcinoma FET cells in vivo as revealed by transfection of an antisense expression vector. J Cell Biol 1992;116(1):187–196.

    Article  CAS  PubMed  Google Scholar 

  17. Wu SP, Sun LZ, Willson JK, Humphrey L, Kerbel R, Brattain MG. Repression of autocrine transforming growth factor beta 1 and beta 2 in quiescent CBS colon carcinoma cells leads to progression of tumorigenic properties. Cell Growth Differ 1993;4(2):115–123.

    CAS  PubMed  Google Scholar 

  18. Bottinger EP, Jakubczak JL, Haines DC, Bagnall K, Wakefield LM. Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]anthracene. Cancer Res 1997;57(24):5564–5570.

    CAS  PubMed  Google Scholar 

  19. Amendt C, Schumacher P, Weber H, Blessing M. Expression of a dominant negative type II TGF-beta receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene 1998;17(l):25–34.

    Article  CAS  PubMed  Google Scholar 

  20. Tu WH, Thomas TZ, Masumori N, et al. The loss of TGF-beta signaling promotes prostate cancer metastasis. Neoplasia 2003;5(3):267–277.

    CAS  PubMed  Google Scholar 

  21. Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol 2003;163(4):1539–1549.

    CAS  PubMed  Google Scholar 

  22. Goumans MJ, Mummery C. Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 2000;44(3):253–265.

    CAS  PubMed  Google Scholar 

  23. Zhu Y, Richardson JA, Parada LF, Graff JM. Smad3 mutant mice develop metastatic colorectal cancer. Cell 1998;94(6):703–714.

    Article  CAS  PubMed  Google Scholar 

  24. Yang X, Letterio JJ, Lechleider RJ, et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 1999;18(5):1280–1291.

    Article  CAS  PubMed  Google Scholar 

  25. Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF. Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol Cell Biol 1999;19(4):2495–2504.

    CAS  PubMed  Google Scholar 

  26. Han SU, Kim HT, Seong do H, et al. Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene 2004;23(7): 1333–1341.

    Article  CAS  PubMed  Google Scholar 

  27. Takaku K, Miyoshi H, Matsunaga A, Oshima M, Sasaki N, Taketo MM. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res 1999;59(24):6113–6117.

    CAS  PubMed  Google Scholar 

  28. Xu X, Brodie SG, Yang X, et al. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 2000;19(15):1868–1874.

    Article  CAS  PubMed  Google Scholar 

  29. Takaku K, Oshima M, Miyoshi H, Matsui M, Scidin MF, Taketo MM. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 1998;92(5):645–656.

    Article  CAS  PubMed  Google Scholar 

  30. Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci U S A 1995;92(10):4482–4486.

    Article  CAS  PubMed  Google Scholar 

  31. Hamamoto T, Beppu H, Okada H, et al. Compound disruption of smad2 accelerates malignant progression of intestinal tumors in apc knockout mice. Cancer Res 2002;62(20):5955–5961.

    CAS  PubMed  Google Scholar 

  32. Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE. Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 1998;58(23):5329–5332.

    CAS  PubMed  Google Scholar 

  33. Grady WM, Myeroff LL, Swinler SE, et al. Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 1999;59(2):320–324.

    CAS  PubMed  Google Scholar 

  34. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995;268(5215):1336–1338.

    Article  CAS  PubMed  Google Scholar 

  35. Akiyama Y, Iwanaga R, Saitoh K, et al. Transforming growth factor beta type II receptor gene mutations in adenomas from hereditary nonpolyposis colorectal cancer. Gastroenterology 1997;112(l):33–39.

    Article  CAS  PubMed  Google Scholar 

  36. Myeroff LL, Parsons R, Kim SJ, et al. A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res 1995;55(23):5545–5547.

    CAS  PubMed  Google Scholar 

  37. Chung YJ, Song JM, Lee JY, et al. Microsatellite instability-associated mutations associate preferentially with the intestinal type of primary gastric carcinomas in a high-risk population. Cancer Res 1996;56(20):4662–4665.

    CAS  PubMed  Google Scholar 

  38. Izumoto S, Arita N, Ohnishi T, et al. Microsatellite instability and mutated type II transforming growth factor-beta receptor gene in gliomas. Cancer Lett 1997;112(2):251–256.

    Article  CAS  PubMed  Google Scholar 

  39. Ohue M, Tomita N, Monden T, et al. Mutations of the transforming growth factor beta type II receptor gene and microsatellite instability in gastric cancer. Int J Cancer 1996;68(2):203–206.

    Article  CAS  PubMed  Google Scholar 

  40. Nagai M, Kawarada Y, Watanabe M, et al. Analysis of microsatellite instability, TGF-beta type II receptor gene mutations and hMSH2 and hMLHl allele losses in pancreaticobiliary maljunctionassociated biliary tract tumors. Anticancer Res 1999; 19(3A): 1765–1768.

    CAS  PubMed  Google Scholar 

  41. Garrigue-Antar L, Munoz-Antonia T, Antonia SJ, Gesmonde J, Vellucci VF, Reiss M. Missense mutations of the transforming growth factor beta type II receptor in human head and neck squamous carcinoma cells. Cancer Res 1995;55(18):3982–3987.

    CAS  PubMed  Google Scholar 

  42. Yasumi K, Guo RJ, Hanai H, et al. Transforming growth factor beta type II receptor (TGF beta RII) mutation in gastric lymphoma without mutator phenotype. Pathol Int 1998;48(2): 134–137.

    Article  CAS  PubMed  Google Scholar 

  43. Knaus PI, Lindemann D, DeCoteau JF, et al. A dominant inhibitory mutant of the type II transforming growth factor beta receptor in the malignant progression of a cutaneous T-cell lymphoma. Mol Cell Biol 1996;16(7):3480–3489.

    CAS  PubMed  Google Scholar 

  44. Lynch MA, Nakashima R, Song H, et al. Mutational analysis of the transforming growth factor beta receptor type II gene in human ovarian carcinoma. Cancer Res 1998;58(19):4227–4232.

    CAS  PubMed  Google Scholar 

  45. Chen T, Carter D, Garrigue-Antar L, Reiss M. Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res 1998;58(21):4805–4810.

    CAS  PubMed  Google Scholar 

  46. Anbazhagan R, Bornman DM, Johnston JC, Westra WH, Gabrielson E. The S387Y mutations of the transforming growth factor-beta receptor type I gene is uncommon in metastases of breast cancer and other common types of adenocarcinoma. Cancer Res 1999;59(14):3363–3364.

    CAS  PubMed  Google Scholar 

  47. Zhang HT, Fei QY, Chen F, et al. Mutational analysis of the transforming growth factor beta receptor type I gene in primary non-small cell lung cancer. Lung Cancer 2003;40(3):281–287.

    PubMed  Google Scholar 

  48. Pasche B, Kolachana P, Nafa K, et al. TbetaR-I(6A) is a candidate tumor susceptibility allele. Cancer Res 1999;59(22):5678–5682.

    CAS  PubMed  Google Scholar 

  49. Kaklamani VG, Hou N, Bian Y, et al. TGFBR1 * 6A and cancer risk: a meta-analysis of seven casecontrol studies. J Clin Oncol 2003;21(17):3236–3243.

    Article  CAS  PubMed  Google Scholar 

  50. Hahn SA, Schutte M, Hoque AT, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271(5247):350–353.

    Article  CAS  PubMed  Google Scholar 

  51. Miyaki M, Iijima T, Konishi M, et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 1999;18(20):3098–3103.

    Article  CAS  PubMed  Google Scholar 

  52. Howe JR, Mitros FA, Summers RW. The risk of gastrointestinal carcinoma in familial juvenile polyposis. Ann Surg Oncol 1998;5(8):751–756.

    Article  CAS  PubMed  Google Scholar 

  53. Hata A, Shi Y, Massague J. TGF-beta signaling and cancer: structural and functional consequences of mutations in Smads. Mol Med Today 1998;4(6):257–262.

    Article  CAS  PubMed  Google Scholar 

  54. Eppert K, Scherer SW, Ozcelik H, et al. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996;86(4):543–552.

    Article  CAS  PubMed  Google Scholar 

  55. Riggins GJ, Thiagalingam S, Rozenblum E, et al. Mad-related genes in the human. Nat Genet 1996; 13(3):347–349.

    Article  CAS  PubMed  Google Scholar 

  56. Arai T, Akiyama Y, Okabe S, Ando M, Endo M, Yuasa Y Genomic structure of the human Smad3 gene and its infrequent alterations in colorectal cancers. Cancer Lett 1998;122(1–2):157–163.

    Article  CAS  PubMed  Google Scholar 

  57. Coqueret O. Linking cyclins to transcriptional control. Gene 2002;299(l-2):35–55.

    Article  CAS  PubMed  Google Scholar 

  58. Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 2002;1602(l):73–87.

    CAS  PubMed  Google Scholar 

  59. Gutierrez C, Ramirez-Parra E, Castellano MM, del Pozo JC. G(l) to S transition: more than a cell cycle engine switch. Curr Opin Plant Biol 2002;5(6):480–486.

    Article  CAS  PubMed  Google Scholar 

  60. Laiho M, DeCaprio JA, Ludlow JW, Livingston DM, Massague J. Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell 1990;62(l):175–185.

    Article  CAS  PubMed  Google Scholar 

  61. Feng XH, Lin X, Derynck R. Smad2, smad3 and smad4 cooperate with Spl to induce pl5(Ink4B) transcription in response to TGF-beta [In Process Citation]. EMBO J 2000;19(19):5178–5193.

    Article  CAS  PubMed  Google Scholar 

  62. Hu PP, Shen X, Huang D, Liu Y, Counter C, Wang XF. The MEK pathway is required for stimulation of p21(WAFl/CIPl) by transforming growth factor-beta. J Biol Chem 1999;274(50):35381–35387.

    Article  CAS  PubMed  Google Scholar 

  63. Batova A, Diccianni MB, Yu JC, et al. Frequent and selective methylation of pl5 and deletion of both pl5 and pl6 in T-cell acute lymphoblastic leukemia. Cancer Res 1997;57(5):832–836.

    CAS  PubMed  Google Scholar 

  64. Feng XH, Liang YY, Liang M, Zhai W, Lin X. Direct Interaction of c-Myc with Smad2 and Smad3 to Inhibit TGF-betaMediated Induction of the CDK Inhibitor pl5(Ink4B). Mol Cell 2002;9(l): 133–143.

    Article  CAS  PubMed  Google Scholar 

  65. Warner BJ, Blain SW, Seoane J, Massague J. Myc downregulation by transforming growth factor beta required for activation of the pl5(Ink4b) G(l) arrest pathway. Mol Cell Biol 1999;19(9):5913–5922.

    CAS  PubMed  Google Scholar 

  66. Wu S, Cetinkaya C, Munoz-Alonso MJ, et al. Myc represses differentiation-induced p21CIPl expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 2003;22(3):351–360.

    Article  CAS  PubMed  Google Scholar 

  67. Alexandrow MG, Kawabata M, Aakre M, Moses HL. Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor beta 1. Proc Natl Acad Sci U S A 1995;92(8):3239–3243.

    Article  CAS  PubMed  Google Scholar 

  68. Chen CR, Kang Y, Massague J. Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci U S A 2001;98(3):992–999.

    Article  CAS  PubMed  Google Scholar 

  69. Baldwin RL, Tran H, Karlan BY. Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/ Smad signaling. Cancer Res 2003;63(6): 1413–1419.

    CAS  PubMed  Google Scholar 

  70. Schuster N, Krieglstein K. Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res 2002; 307(1): 1–14.

    Article  CAS  PubMed  Google Scholar 

  71. Joza N, Kroemer G, Penninger JM. Genetic analysis of the mammalian cell death machinery. Trends Genet 2002; 18(3): 142–149.

    Article  CAS  PubMed  Google Scholar 

  72. Kim SG, Jong HS, Kim TY, et al. Transforming growth factor-beta 1 induces apoptosis through Fas ligand-independent activation of the Fas death pathway in human gastric SNU-620 carcinoma cells. Mol Biol Cell 2004;15(2):420–434.

    Article  CAS  PubMed  Google Scholar 

  73. Conery AR, Cao Y, Thompson EA, Townsend CM, Jr., Ko TC, Luo K. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol 2004;6(4):366–372.

    Article  CAS  PubMed  Google Scholar 

  74. Tachibana I, Imoto M, Adjei PN, et al. Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest 1997;99(10): 2365–2374.

    CAS  PubMed  Google Scholar 

  75. Jang CW, Chen CH, Chen CC, Chen JY, Su YH, Chen RH. TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 2002;4(l):51–58.

    Article  CAS  PubMed  Google Scholar 

  76. Bender H, Wang Z, Schuster N, Krieglstein K. TIEG1 facilitates transforming growth factor-betamediated apoptosis in the oligodendroglial cell line OLI-neu. J Neurosci Res 2004;75(3):344–352.

    Article  CAS  PubMed  Google Scholar 

  77. Toyooka S, Toyooka KO, Miyajima K, et al. Epigenetic down-regulation of death-associated protein kinase in lung cancers. Clin Cancer Res 2003;9(8):3034–3041.

    CAS  PubMed  Google Scholar 

  78. Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA. TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 2001;3(8): 708–714.

    Article  CAS  PubMed  Google Scholar 

  79. Zeng L, Rowland RG, Lele SM, Kyprianou N. Apoptosis incidence and protein expression of p53, TGF-beta receptor II, p27Kipl, and Smad4 in benign, premalignant, and malignant human prostate. Hum Pathol 2004;35(3):290–297.

    Article  CAS  PubMed  Google Scholar 

  80. Valverius EM, Bates SE, Stampfer MR, et al. Transforming growth factor alpha production and epidermal growth factor receptor expression in normal and oncogene transformed human mammary epithelial cells. Mol Endocrinol 1989;3(l):203–214.

    CAS  PubMed  Google Scholar 

  81. Welch DR, Fabra A, Nakajima M. Transforming growth factor beta stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci U S A 1990;87(19):7678–7682.

    Article  CAS  PubMed  Google Scholar 

  82. McCune BK, Mullin BR, Flanders KC, Jaffurs WJ, Mullen LT, Sporn MB. Localization of transforming growth factor-beta isotypes in lesions of the human breast. Hum Pathol 1992;23(l):13–20.

    Article  CAS  PubMed  Google Scholar 

  83. MacCallum J, Bartlett JM, Thompson AM, Keen JC, Dixon JM, Miller WR. Expression of transforming growth factor beta mRNA isoforms in human breast cancer. Br J Cancer 1994;69(6): 1006–1009.

    CAS  PubMed  Google Scholar 

  84. Yin JJ, Selander K, Chirgwin JM, et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999; 103(2): 197–206.

    CAS  PubMed  Google Scholar 

  85. Thiery JP, Chopin D. Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Rev 1999;18(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  86. Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 1994;127(6 Pt 2): 2021–2036.

    Article  CAS  PubMed  Google Scholar 

  87. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  88. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994;79(2):315–328.

    Article  CAS  PubMed  Google Scholar 

  89. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000;6(4):389–395.

    Article  CAS  PubMed  Google Scholar 

  90. Goumans MJ, Lebrin F, Valdimarsdottir G. Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med 2003;13(7):301–307.

    Article  CAS  PubMed  Google Scholar 

  91. Pepper MS. Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 1997;8(1):21–23.

    Article  CAS  PubMed  Google Scholar 

  92. Dentelli P, Rosso A, Calvi C, et al. IL-3 affects endothelial cell-mediated smooth muscle cell recruitment by increasing TGF beta activity: potential role in tumor vessel stabilization. Oncogene 2004;23(9): 1681–1692.

    Article  CAS  PubMed  Google Scholar 

  93. Kulkarni AB, Huh CG, Becker D, et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 1993;90(2): 770–774.

    Article  CAS  PubMed  Google Scholar 

  94. Larsson J, Goumans MJ, Sjostrand LJ, et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 2001;20(7):1663–1673.

    Article  CAS  PubMed  Google Scholar 

  95. Oshima M, Oshima H, Taketo MM. TGF-beta receptor type II deficiency results in defects of yolk sac hematopoeisis and vasculogenesis. Dev Biol 1996;179(l):297–302.

    Article  CAS  PubMed  Google Scholar 

  96. Pertovaara L, Kaipainen A, Mustonen T, et al. Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J Biol Chem 1994; 269(9): 6271–6274.

    CAS  PubMed  Google Scholar 

  97. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999; 103(2): 159–165.

    CAS  PubMed  Google Scholar 

  98. Damert A, Machein M, Breier G, et al. Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 1997; 57(17):3860–3864.

    CAS  PubMed  Google Scholar 

  99. Sunderkotter C, Goebeler M, Schulze-Osthoff K, Bhardwaj R, Sorg C. Macrophage-derived angiogenesis factors. Pharmacol Ther 1991;51(2):195–216.

    Article  CAS  PubMed  Google Scholar 

  100. Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K. Transforming growth factorbetal level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 2001;91(5):964–971.

    Article  CAS  PubMed  Google Scholar 

  101. Tada T, Ohzeki S, Utsumi K, et al. Transforming growth factor-beta-induced inhibition of T cell function. Susceptibility difference in T cells of various phenotypes and functions and its relevance to immunosuppression in the tumor-bearing state. J Immunol 1991;146(3):1077–1082.

    CAS  PubMed  Google Scholar 

  102. Torre-Amione G, Beauchamp RD, Koeppen H, et al. A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. Proc Natl Acad Sci U S A 1990;87(4): 1486–1490.

    Article  CAS  PubMed  Google Scholar 

  103. Chen Y, Lebrun JJ, Vale W. Regulation of transforming growth factor betaand activin-induced transcription by mammalian Mad proteins. Proc Natl Acad Sci U S A 1996;93(23): 12992–12997.

    Article  CAS  PubMed  Google Scholar 

  104. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologie self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155(3):1151–1164.

    CAS  PubMed  Google Scholar 

  105. Chen W, Wahl SM. TGF-beta: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine Growth Factor Rev 2003;14(2):85–89.

    Article  CAS  PubMed  Google Scholar 

  106. Misra N, Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV Cutting Edge: Human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 2004;172(8):4676–4680.

    CAS  PubMed  Google Scholar 

  107. Somasundaram R, Jacob L, Swoboda R, et al. Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta. Cancer Res 2002;62(18):5267–5272.

    CAS  PubMed  Google Scholar 

  108. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002;169(5):2756–2761.

    CAS  PubMed  Google Scholar 

  109. Woo EY, Yeh H, Chu CS, et al. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 2002;168(9):4272–4276.

    CAS  PubMed  Google Scholar 

  110. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol 2003;200(4):429–447.

    Article  CAS  Google Scholar 

  111. Tuxhorn JA, Ayala GE, Rowley DR. Reactive stroma in prostate cancer progression. J Urol 2001;166(6):2472–2483.

    Article  CAS  PubMed  Google Scholar 

  112. Sieuwerts AM, Klijn JG, Henzen-Logmand SC, et al. Urokinase-type-plasminogen-activator (uPA) production by human breast (myo) fibroblasts in vitro: influence of transforming growth factorbeta(1) (TGF beta(l)) compared with factor(s) released by human epithelial-carcinoma cells. Int J Cancer 1998;76(6):829–835.

    Article  CAS  PubMed  Google Scholar 

  113. Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 1999;250(2):273–283.

    Article  CAS  PubMed  Google Scholar 

  114. Dimanche-Boitrel MT, Vakaet L, Jr., Pujuguet P, et al. In vivo and in vitro invasiveness of a rat coloncancer cell line maintaining E-cadherin expression: an enhancing role of tumor-associated myofibroblasts. Int J Cancer 1994;56(4):512–521.

    Article  CAS  PubMed  Google Scholar 

  115. Berking C, Takemoto R, Schaider H, et al. Transforming growth factor-betal increases survival of human melanoma through stroma remodeling. Cancer Res 2001;61(22):8306–8316.

    CAS  PubMed  Google Scholar 

  116. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bisseil MJ. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 1995;95(2):859–873.

    Article  CAS  PubMed  Google Scholar 

  117. Neaud V, Faouzi S, Guirouilh J, et al. Human hepatic myofibroblasts increase invasiveness of hepatocellular carcinoma cells: evidence for a role of hepatocyte growth factor. Hepatology 1997;26(6): 1458–1466.

    Article  CAS  PubMed  Google Scholar 

  118. Doucet C, Jasmin C, Azzarone B. Unusual interleukin-4 and-13 signaling in human normal and tumor lung fibroblasts. Oncogene 2000;19(51):5898–5905.

    Article  CAS  PubMed  Google Scholar 

  119. Lewis MP, Lygoe KA, Nystrom ML, et al. Tumour-derived TGF-betal modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 2004;90(4):822–832.

    Article  CAS  PubMed  Google Scholar 

  120. Gerdes MJ, Larsen M, Dang TD, Ressler SJ, Tuxhorn JA, Rowley DR. Regulation of rat prostate stromal cell myodifferentiation by androgen and TGF-betal. Prostate 2004;58(3):299–307.

    Article  CAS  PubMed  Google Scholar 

  121. Lohr M, Schmidt C, Ringel J, et al. Transforming growth factor-betal induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res 2001;61(2):550–555.

    Google Scholar 

  122. Hazelbag S, Gorter A, Kenter GG, van den Broek L, Fleuren G. Transforming growth factor-betal induces tumor stroma and reduces tumor infiltrate in cervical cancer. Hum Pathol 2002;33(12): 1193–1199.

    Article  CAS  PubMed  Google Scholar 

  123. Bhowmick NA, Chytil A, Plieth D, et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004;303(5659):848–851.

    Article  CAS  PubMed  Google Scholar 

  124. Muraoka RS, Koh Y, Roebuck LR, et al. Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor betal. Mol Cell Biol 2003;23(23):8691–8703.

    Article  CAS  PubMed  Google Scholar 

  125. Dumont N, Arteaga CL. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 2003;3(6):531–536.

    Article  CAS  PubMed  Google Scholar 

  126. Lee BI, Park SH, Kim JW, et al. MS-275, a histone deacetylase inhibitor, selectively induces transforming growth factor beta type II receptor expression in human breast cancer cells. Cancer Res 2001;61(3):931–934.

    CAS  PubMed  Google Scholar 

  127. Adnane J, Bizouarn FA, Chen Z, et al. Inhibition of farnesyltransferase increases TGFbeta type II receptor expression and enhances the responsiveness of human cancer cells to TGFbeta. Oncogene 2000;19(48):5525–5533.

    Article  CAS  PubMed  Google Scholar 

  128. Law BK, Chytil A, Dumont N, et al. Rapamycin potentiates transforming growth factor beta-induced growth arrest in nontransformed, oncogene-transformed, and human cancer cells. Mol Cell Biol 2002;22(23):8184–8198.

    Article  CAS  PubMed  Google Scholar 

  129. Fonsatti E, Altomonte M, Arslan P, Maio M. Endoglin (CD105): a target for anti-angiogenetic cancer therapy. Curr Drug Targets 2003;4(4):291–296.

    Article  CAS  PubMed  Google Scholar 

  130. Duda DG, Sunamura M, Lefter LP, et al. Restoration of SMAD4 by gene therapy reverses the invasive phenotype in pancreatic adenocarcinoma cells. Oncogene 2003;22(44):6857–6864.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Bonine-Summers, A.R., Law, B.K., Moses, H.L. (2007). Transforming Growth Factor-β and Cancer. In: Caligiuri, M.A., Lotze, M.T. (eds) Cytokines in the Genesis and Treatment of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-455-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-455-1_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-820-2

  • Online ISBN: 978-1-59745-455-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics