Skip to main content

Cytokines in Multiple Myeloma

Therapeutic Implications

  • Chapter
  • 1060 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Multiple myeloma (MM) is a clonal plasma cell neoplasm which remains incurable despite conventional therapy; and new treatment strategies are therefore urgently required (1,2). MM cells predominantly localize in bone marrow (BM), and their interaction with BM stromal cells (BMSCs) stimulates transcription and secretion of cytokines from BMSCs. Cytokines in turn not only promote the growth and survival of MM cells, but also reduce efficacy of conventional drugs (2). For example, adherence of MM cells to BMSCs triggers interleukin-6 (IL-6) and insulin-like growth factor-I (IGF-I), and vascular endothelial growth factor (VEGF) production from BMSCs, which induces MM cell growth and protect against dexamethasone (Dex)-induced MM apoptosis (3–8). High serum levels of IL-6 and IGF-I in MM patients (9,10) also correlate with clinical drug-resistance in MM. Cytokines trigger three signaling cascades in MM cells: mitogen-activated extracellular kinase 2(MEK)/extracellular signal-regulated kinase (ERK); phosphatidylinositol-3 kinase (PI3-kinase)/AKT; and Janus kinases (JAK)-signal transducer and activator of transcription (STAT) pathways. Novel treatment strategies based on targeting these signaling pathways are now being designed to block cytokine-mediated growth/survival and drug-resistance. In this chapter, we review the role of various cytokines in the biology of MM, as well as novel therapies that overcome cytokine-mediated growth, survival, migration and chemoresistance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin 2000; 50(1):7–33.

    CAS  PubMed  Google Scholar 

  2. Anderson KC. Moving disease biology from the lab to the clinic. Cancer 2003;97(3 Suppl):796–801.

    PubMed  Google Scholar 

  3. Klein B, Zhang XG, Jourdan M, et al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood 1989;73(2):517–526.

    CAS  PubMed  Google Scholar 

  4. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC. Adhesion of human myelomaderived cell lines to bone marrow stromal cells stimulates IL-6 secretion. Blood 1993;82:3712–3720.

    CAS  PubMed  Google Scholar 

  5. Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 1996; 87(3): 1104–1112.

    CAS  PubMed  Google Scholar 

  6. Lichtenstein A, Tu Y, Fady C, Vescio R, Berenson J. Interleukin-6 inhibits apoptosis of malignant plasma cells. Cell Immunol 1995;162:248–255.

    CAS  PubMed  Google Scholar 

  7. Freund GG, Kulas DT, Mooney RA. Insulin and IGF-1 increase mitogenesis and glucose metabolism in the multiple myeloma cell line, RPMI 8226. J Immunol 1993;151(4):1811–1820.

    CAS  PubMed  Google Scholar 

  8. Mitsiades CS, Mitsiades N, Poulaki V, et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: Therapeutic implications. Oncogene 2002;21(37):5673–5683.

    CAS  PubMed  Google Scholar 

  9. Bataille R, Jourdan M, Zhang XG, et al. Serum levels of interleukin-6, a potent myeloma cell growth factor, as a reflection of disease severity in plasma cell dyscrasias. J Clin Invest 1989;84:2008–2011.

    CAS  PubMed  Google Scholar 

  10. Tucci A, Bonadonna S, Cattaneo C, Ungari M, Giustina A, Guiseppe R. Transformation of a MGUS to overt multiple myeloma: The possible role of a pituitary macroadenoma secreting high levels of insulin-like growth factor 1 (IGF-1). Leuk Lymphoma 2003;44(3):543–545.

    CAS  PubMed  Google Scholar 

  11. Kawano MM, Hirano T, Matsuda T, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myeloma. Nature 1988;332:83–85.

    CAS  PubMed  Google Scholar 

  12. Anderson KC, Jones RM, Morimoto C, Leavitt P, Barut BA. Response patterns of purified myeloma cells to hematopoietic growth factors. Blood 1989;73(7): 1915–1924.

    CAS  PubMed  Google Scholar 

  13. Barut BA, Zon LI, Cochran MK, et al. Role of interleukin 6 in the growth of myeloma-derived cell lines. Leuk Res 1992;16(10):951–959.

    CAS  PubMed  Google Scholar 

  14. Klein B, Wijdenes J, Zhang XG, et al. Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 1991;78(5):1198–1204.

    CAS  PubMed  Google Scholar 

  15. Bataille R, Barlogie B, Lu ZY, et al. Biologic effects of anti-interleukin-6 murine monoclonal antibody in advanced multiple myeloma. Blood 1995; 86(2): 685–691.

    CAS  PubMed  Google Scholar 

  16. Sporeno E, Savino R, Ciapponi L, et al. Human interleukin-6 receptor super-antagonists with high potency and wide spectrum on multiple myeloma cells. Blood 1996;87(11):4510–4519.

    CAS  PubMed  Google Scholar 

  17. Suematsu S, Matsuda T, Aozasa K, et al. IgG1 plasmacytosis in interleukin 6 transgenic mice. Proc Natl Acad Sci U S A 1989;86(19):7547–7551.

    CAS  PubMed  Google Scholar 

  18. Lattanzio G, Libert C, Aquilina M, et al. Defective development of pristane-oil-induced plasmacytomas in interleukin-6-deficient BALB/c mice. Am J Pathol 1997;151(3):689–696.

    CAS  PubMed  Google Scholar 

  19. Barille S, Collette M, Bataille R, et al. Myeloma cells upregulate IL-6 but downregulate osteocalcin production by osteoblastic cells through cell to cell contact. Blood 1995;86:3151–3159.

    CAS  PubMed  Google Scholar 

  20. Wen XY, Stewart AK, Sooknanan RR, et al. Identification of c-myc promoter-binding protein and X-box binding protein 1 as interleukin-6 target genes in human multiple myeloma cells. Int J Oncol 1999;15(1):173–178.

    CAS  PubMed  Google Scholar 

  21. Chauhan D, Li G, Auclair D, et al. Identification of genes regulated by 2-methoxyestradiol (2ME2) in multiple myeloma cells using oligonucleotide arrays. Blood 2003;101(9):3606–3614.

    CAS  PubMed  Google Scholar 

  22. Reimold AM, Iwakoshi NN, Manis J, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 2001;412(6844):300–307.

    CAS  PubMed  Google Scholar 

  23. Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 2003;4(4):321–329.

    CAS  PubMed  Google Scholar 

  24. Klein B, Tarte K, Jourdan M, et al. Survival and proliferation factors of normal and malignant plasma cells. Int J Hematol 2003;78(2):106–113.

    CAS  PubMed  Google Scholar 

  25. Wu KD, Orme LM, Shaughnessy J, Jr., Jacobson J, Barlogie B, Moore MA. Telomerase and telomere length in multiple myeloma: Correlations with disease heterogeneity, cytogenetic status, and overall survival. Blood 2003;101(12):4982–4989.

    CAS  PubMed  Google Scholar 

  26. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003;374(Pt l):1–20.

    CAS  PubMed  Google Scholar 

  27. Chauhan D, Anderson KC. Mechanisms of cell death and survival in multiple myeloma (MM): Therapeutic implications. Apoptosis 2003;8(4):337–343.

    CAS  PubMed  Google Scholar 

  28. Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell 1994;76:253.

    CAS  PubMed  Google Scholar 

  29. Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood 1995;86:1243.

    CAS  PubMed  Google Scholar 

  30. Ogata A, Chauhan D, Teoh G, et al. Interleukin-6 triggers cell growth via the ras-dependent mitogenactivated protein kinase cascade. J Immunology 1997(159):2212–2221.

    Google Scholar 

  31. Feng GS, Hui CC, Pawson T. SH2-containing phosphotyrosine phosphatase as a target of proteintyrosine kinases. Science 1993;259(5101):1607–1611.

    CAS  PubMed  Google Scholar 

  32. Vogel W, Lammers R, Huang J, Ullrich A. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 1993;259(5101):1611–1614.

    CAS  PubMed  Google Scholar 

  33. Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of STAT3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999;10:105–115.

    CAS  PubMed  Google Scholar 

  34. Puthier D, Bataille R, Amiot M. IL-6 up-regulates mcl-1 in human myeloma cells through JAK/STAT rather than ras / MAP kinase pathway. Eur J Immunol 1999;29(12):3945–3950.

    CAS  PubMed  Google Scholar 

  35. Derenne S, Monia B, Dean NM, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bclx(L) is an essential survival protein of human myeloma cells. Blood 2002;100(l): 194–199.

    CAS  PubMed  Google Scholar 

  36. Neumann C, Zehentmaier G, Danhauser-Riedl S, Emmerich B, Hallek M. Interleukin-6 induces tyrosine phosphorylation of the Ras activating protein Shc, and its complex formation with Grb2 in the human multiple myeloma cell line LP-1. Eur J Immunol 1996;26(2):379–384.

    CAS  PubMed  Google Scholar 

  37. Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001;20(42):5991–6000.

    CAS  PubMed  Google Scholar 

  38. Hsu JH, Shi Y, Hu L, Fisher M, Franke TF, Lichtenstein A. Role of the AKT kinase in expansion of multiple myeloma clones: Effects on cytokine-dependent proliferative and survival responses. Oncogene 2002;21(9): 1391–1400.

    CAS  PubMed  Google Scholar 

  39. Podar K, Tai YT, Cole CE, et al. Essential role of caveolae in interleukin-6-and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem 2003; 278(8):5794–5801.

    CAS  PubMed  Google Scholar 

  40. Dai Y, Pei XY, Rahmani M, Conrad DH, Dent P, Grant S. Interruption of the NF-kappa b pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood 2004;103(7):2761–2770.

    CAS  PubMed  Google Scholar 

  41. Alas S, Bonavida B. Inhibition of constitutive STAT3 activity sensitizes Resistant non-Hodgkin’s lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin Cancer Res 2003;9(l):316–326.

    CAS  PubMed  Google Scholar 

  42. Hu L, Shi Y, Hsu JH, Gera J, Van Ness B, Lichtenstein A. Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 2003;101(8):3126–3135.

    CAS  PubMed  Google Scholar 

  43. Ancey C, Kuster A, Haan S, Herrmann A, Heinrich PC, Muller-Newen G. A fusion protein of the gpl30 and interleukin-6Ralpha ligand-binding domains acts as a potent interleukin-6 inhibitor. J Biol Chem 2003;278(19):16,968–16,972.

    CAS  Google Scholar 

  44. Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: A workshop report. Cancer Res 2004;64(4): 1546–1558.

    CAS  PubMed  Google Scholar 

  45. Billadeau D, Liu PC, Jelinek D, Shah N, Lebien TW, Vanness B. Activating mutations in the N-and K-ras oncogenes differentially affect the growth properties of the IL-6 dependent myeloma cell line. Cancer Res 1997;57(ll):2268–2275.

    CAS  PubMed  Google Scholar 

  46. Bezieau S, Devilder MC, Avet-Loiseau H, et al. High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat 2001; 18(3):212–224.

    CAS  PubMed  Google Scholar 

  47. Crowder C, Kopantzev E, Williams K, Lengel C, Miki T, Rudikoff S. An unusual H-Ras mutant isolated from a human multiple myeloma line leads to transformation and factor-independent cell growth. Oncogene 2003;22(5):649–659.

    CAS  PubMed  Google Scholar 

  48. Chesi M, Bergsagel PL, Kuehl WM. The enigma of ectopic expression of FGFR3 in multiple myeloma: A critical initiating event or just a target for mutational activation during tumor progression. Curr Opin Hematol 2002;9(4): 288–293.

    PubMed  Google Scholar 

  49. Winkler JM, Greipp P, Fonseca R. t(4;14)(pl6.3;q32) is strongly associated with a shorter survival in myeloma patients. Br J Haematol 2003;120(l):170–171.

    PubMed  Google Scholar 

  50. Kuehl WM, Brents LA, Chesi M, Huppi K, Bergsagel PL. Dysregulation of c-myc in multiple myeloma. Curr Top Microbiol Immunol 1997;224:277–282.

    CAS  PubMed  Google Scholar 

  51. Chesi M, Bergsagel PL, Shonukan OO, et al. Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 1998;91(12):4457–4463.

    CAS  PubMed  Google Scholar 

  52. Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene 2001; 20(40):5611–5622.

    CAS  PubMed  Google Scholar 

  53. Shaughnessy J, Jr., Gabrea A, Qi Y, et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 2001;98(l):217–223.

    CAS  PubMed  Google Scholar 

  54. Rasmussen T, Theilgaard-Monch K, Hudlebusch HR, Lodahl M, Johnsen HE, Dahl IM. Occurrence of dysregulated oncogenes in primary plasma cells representing consecutive stages of myeloma pathogenesis: Indications for different disease entities. Br J Haematol 2003;123(2):253–262.

    CAS  PubMed  Google Scholar 

  55. Urashima M, Ogata A, Chauhan D, et al. Interleukin-6 promotes multiple myeloma cell growth via phosphorylation of retinoblastoma protein. Blood 1996;88(6):2219–2227.

    CAS  PubMed  Google Scholar 

  56. Urashima M, Teoh G, Ogata A, et al. Role of CDK4 and pl6INK4A in interleukin-6-mediated growth of multiple myeloma. Leukemia 1997;11:1957–1963.

    CAS  PubMed  Google Scholar 

  57. Chauhan D, Hideshima T, Anderson KC. Apoptotic signaling in multiple myeloma: Therapeutic implications. Int J Hematol 2003;78(2): 114–120.

    CAS  PubMed  Google Scholar 

  58. Ogata A, Chauhan D, Urashima M, Teoh G, Treon SP, Anderson KC. Blockade of mitogen-activated protein kinase cascade signaling in interleukin-6 independent multiple myeloma cells. Clinical Cancer Research 1997;3:1017–1022.

    CAS  PubMed  Google Scholar 

  59. Hardin J, MacLeod S, Grigorieva I, et al. Interleukin-6 prevents dexamethasone-induced myeloma cell death. Blood 1994;84(9):3063–3070.

    CAS  PubMed  Google Scholar 

  60. Chauhan D, Pandey P, Ogata A, et al. Dexamethasone induces apoptosis of multiple myeloma cells in a JNK/SAP kinase independent mechanism. Oncogene 1997;15:837–843.

    CAS  PubMed  Google Scholar 

  61. Chauhan D, Pandey P, Ogata A, et al. Cytochrome-c dependent and independent induction of apoptosis in multiple myeloma cells. J Biol Chem 1997;272:29,995–29,997.

    CAS  Google Scholar 

  62. Chauhan D, Kharbanda S, Ogata A, et al. Interleukin-6 inhibits Fas-induced apoptosis and stressactivated protein kinase activation in multiple myeloma cells. Blood 1997;89:227–234.

    CAS  PubMed  Google Scholar 

  63. Xu FH, Sharma S, Gardner A, et al. Interleukin-6-induced inhibition of multiple myeloma cell apoptosis: Support for the hypothesis that protection is mediated via inhibition of the JNK/S APK pathway. Blood 1998;92(1):241–251.

    CAS  PubMed  Google Scholar 

  64. Saxton TM, Pawson T. Morophogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. Proc Natl Acad Sci USA 1999;96(7):3790–3795.

    CAS  PubMed  Google Scholar 

  65. Chauhan D, Pandey P, Hideshima T, et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem 2000;275(36): 27,845–27,850.

    CAS  Google Scholar 

  66. Bossy-Wetzel E, Green DR. Apoptosis: Checkpoint at the mitochondrial frontier. Mutat Res 1999; 434(3):243–251.

    CAS  PubMed  Google Scholar 

  67. Ferri KF, Kroemer G. Mitochondria—the suicide organelles. Bioessays 2001;23(2):111–115.

    CAS  PubMed  Google Scholar 

  68. Chauhan D, Hideshima T, Rosen S, Reed JC, Kharbanda S, Anderson KC. Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells. J Biol Chem 2001;276(27):24,453–24,456.

    CAS  Google Scholar 

  69. Chauhan D, Li G, Sattler M, et al. Superoxide-dependent and-independent mitochondrial signaling during apoptosis in multiple myeloma cells. Oncogene 2003;22(40):6296–6300.

    CAS  PubMed  Google Scholar 

  70. Georgii-Hemming P, Wiklund HJ, Ljunggren O, Nilsson K. Insulin-like growth factor I is a growth and survival factor in human multiple myeloma cell lines. Blood 1996;88:2250.

    CAS  PubMed  Google Scholar 

  71. Jelinek DF, Witzig TE, Arendt BK. A role for insulin-like growth factor in the regulation of IL-6-responsive human myeloma cell line growth. J Immunol 1997;159(l):487–496.

    CAS  PubMed  Google Scholar 

  72. Mitsiades C, Mitsiades N, McMullan C, et al. Inhibition of the insulin-like growth factor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologie malignancies, and solid tumors. Cancer cell 2004;5:221–230.

    CAS  PubMed  Google Scholar 

  73. Tu Y, Gardner A, Lichtenstein A. The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: Roles in cytokine-dependent survival and proliferative responses. Cancer Res 2000;60(23):6763–6770.

    CAS  PubMed  Google Scholar 

  74. Chauhan D, Li G, Podar K, et al. The bortezomib/proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti-multiple myeloma (MM) activity and overcome bortezomib resistance. Blood 2004;103(8):3158–3166.

    CAS  PubMed  Google Scholar 

  75. Akiyama M, Hideshima T, Hayashi T, et al. Cytokines modulate telomerase activity in a human multiple myeloma cell line. Cancer Res 2002;62(13):3876–3882.

    CAS  PubMed  Google Scholar 

  76. Qiang YW, Kopantzev E, Rudikoff S. Insulinlike growth factor-I signaling in multiple myeloma: Downstream elements, functional correlates, and pathway cross-talk. Blood 2002;99(l1):4138–4146.

    CAS  PubMed  Google Scholar 

  77. Qiang YW, Yao L, Tosato G, Rudikoff S. Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood 2004;103(l):301–308.

    CAS  PubMed  Google Scholar 

  78. Abroun S, Ishikawa H, Tsuyama N, et al. Receptor synergy of interleukin-6 (IL-6) and insulin-like growth factor-I in myeloma cells that highly express the IL-6 receptor (alpha). Blood 2004; 103(6): 2291–2298.

    CAS  PubMed  Google Scholar 

  79. Urashima M, Ogata A, Chauhan D, et al. Transforming growth factor-betal: Differential effects on multiple myeloma vs normal B cells. Blood 1996;87(5): 1928–1938.

    CAS  PubMed  Google Scholar 

  80. Kyrtsonis MC, Repa C, Dedoussis GV, et al. Serum transforming growth factor-beta 1 is related to the degree of immunoparesis in patients with multiple myeloma. Med Oncol 1998;15(2):124–128.

    CAS  PubMed  Google Scholar 

  81. Urbaska-Rys H, Wierzbowska A, Robak T. Circulating angiogenic cytokines in multiple myeloma and related disorders. Eur Cytokine Netw 2003;14(l):40–51.

    Google Scholar 

  82. Kawamura C, Kizaki M, Yamato K, et al. Bone morphogenetic protein-2 induces apoptosis in human myeloma cells with modulation of STAT3. Blood 2000;96(6):2005–2011.

    CAS  PubMed  Google Scholar 

  83. Zimmermann P, David G. The syndecans, tuners of transmembrane signaling. FASEB J 1999;13 Suppl:S91–S100.

    CAS  PubMed  Google Scholar 

  84. De Vos J, Couderc G, Tarte K, et al. Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays. Blood 2001;98(3):771–780.

    PubMed  Google Scholar 

  85. Wang YD, De Vos J, Jourdan M, et al. Cooperation between heparin-binding EGF-like growth factor and interleukin-6 in promoting the growth of human myeloma cells. Oncogene 2002;21(16): 2584–2592.

    CAS  PubMed  Google Scholar 

  86. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST. Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 2002;99(4): 1405–1410.

    CAS  PubMed  Google Scholar 

  87. Seidel C, Borset M, Turesson I, et al. Elevated serum concentrations of Hepatocyte growth factor in patients with multiple myeloma. Blood 1998;91:806–812.

    CAS  PubMed  Google Scholar 

  88. Sato N, Hattori Y, Wenlin D, et al. Elevated level of plasma basic fibroblast growth factor in multiple myeloma correlates with increased disease activity. Jpn J Cancer Res 2002;93(4):459–466.

    CAS  PubMed  Google Scholar 

  89. Di Raimondo F, Azzaro MP, Palumbo G, et al. Angiogenic factors in multiple myeloma: Higher levels in bone marrow than in peripheral blood. Haematologica 2000;85(8):800–805.

    PubMed  Google Scholar 

  90. Rajkumar SV, Witzig TE. A review of angiogenesis and antiangiogenic therapy with thalidomide in multiple myeloma. Cancer Treat Rev 2000;26(5):351–362.

    CAS  PubMed  Google Scholar 

  91. Xu JL, Lai R, Kinoshita T, Nakashima N, Nagasaka T. Proliferation, apoptosis, and intratumoral vascularity in multiple myeloma: Correlation with the clinical stage and cytological grade. J Clin Pathol 2002;55(7):530–534.

    CAS  PubMed  Google Scholar 

  92. Dankar B, Padro T, Leo R, et al. Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 2000;95(8):2630–2736.

    Google Scholar 

  93. Podar K, Tai YT, Davies FE, et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 2001;98(2):428–435.

    CAS  PubMed  Google Scholar 

  94. Gupta D, Treon SP, Shima Y, et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: Therapeutic applications. Leukemia 2001;15(12):1950–1961.

    CAS  PubMed  Google Scholar 

  95. Giuliani N, Lunghi P, Morandi F, et al. Downmodulation of ERK protein kinase activity inhibits VEGF secretion by human myeloma cells and myeloma-induced angiogenesis. Leukemia 2004; 18(3):628–635.

    CAS  PubMed  Google Scholar 

  96. Hurt EM, Wiestner A, Rosenwald A, et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 2004;5(2): 191–199.

    CAS  PubMed  Google Scholar 

  97. Podar K, Tai YT, Lin BK, et al. Vascular endothelial growth factor-induced migration of multiple myeloma cells is associated with beta 1 integrin-and phosphatidylinositol 3-kinase-dependent PKCalpha activation. J Biol Chem 2002;277(10):7875–7881.

    CAS  PubMed  Google Scholar 

  98. Lin B, Podar K, Gupta D, et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res 2002;62(17):5019–5026.

    CAS  PubMed  Google Scholar 

  99. Podar K, Catley LP, Tai YT, et al. GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood 2004; 103(9):3474–3479.

    CAS  PubMed  Google Scholar 

  100. Kawano M, Tanaka H, Ishikawa H, al. e. Interleukin-1 accelerates autocrine growth of myeloma cells through interleukin-6 in human myeloma. Blood 1989;73:2145–2148.

    CAS  PubMed  Google Scholar 

  101. Cozzolino F, Torcia M, Aldinucci D, et al. Production of interleukin-1 by bone marrow myeloma cells: Its role in the pathogenesis of lytic bone lesions. Blood 1989;74:380–387.

    CAS  PubMed  Google Scholar 

  102. Costes V Portier M, Lu ZY, Rossi JF, Bataille R, Klein B. Interleukin-1 in multiple myeloma: Producer cells and their role in the control of IL-6 production. Br J Haematol 1998; 103(4): 1152–1160.

    CAS  PubMed  Google Scholar 

  103. Lust JA, Donovan KA. The role of interleukin-1 beta in the pathogenesis of multiple myeloma. Hematol Oncol Clin North Am 1999;13(6):1117–1125.

    CAS  PubMed  Google Scholar 

  104. Donovan KA, Lacy MQ, Gertz MA, Lust JA. IL-lbeta expression in IgM monoclonal gammopathy and its relationship to multiple myeloma. Leukemia 2002;16(3):382–385.

    CAS  PubMed  Google Scholar 

  105. Lacy MQ, Donovan DA, Heimbach JH, et al. Comparison of interleukin-lb expression by in situ hybridization in monoclonal gammopathy of undetermined significance and multiple myeloma. Blood 1999;93:300–305.

    CAS  PubMed  Google Scholar 

  106. Ferguson VL, Simske SJ, Ayers RA, et al. Effect of MPC-11 myeloma and MPC-11 + IL-1 receptor antagonist treatment on mouse bone properties. Bone 2002;30(l):109–116.

    CAS  PubMed  Google Scholar 

  107. Thompson MA, Witzig TE, Kumar S, et al. Plasma levels of tumour necrosis factor alpha and interleukin-6 predict progression-free survival following thalidomide therapy in patients with previously untreated multiple myeloma. Br J Haematol 2003;123(2):305–308.

    CAS  PubMed  Google Scholar 

  108. Alexandrakis MG, Passam FH, Sfiridaki K, et al. Interleukin-18 in multiple myeloma patients: Serum levels in relation to response to treatment and survival. Leuk Res 2004;28(3):259–266.

    CAS  PubMed  Google Scholar 

  109. Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: Therapeutic applications. Oncogene 2001;20(33):4519–4527.

    CAS  PubMed  Google Scholar 

  110. Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and Ikappa Balpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 2003;101(3): 1053–1062.

    CAS  PubMed  Google Scholar 

  111. Hideshima T, Anderson KC. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2002;2(12):927–937.

    CAS  PubMed  Google Scholar 

  112. Hideshima T, Chauhan D, Richardson P, et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002;28:28.

    Google Scholar 

  113. Landowski TH, Olashaw NE, Agrawal D, Dalton WS. Cell adhesion-mediated drug resistance (CAMDR) is associated with activation of NF-kappa B (RelB/p50) in myeloma cells. Oncogene 2003; 22(16):2417–2421.

    CAS  PubMed  Google Scholar 

  114. Westendorf JJ, Ahmann GJ, Armitage RJ, et al. CD40 expression in malignant plasma cells. Role in stimulation of autocrine IL-6 secretion by a human myeloma cell line. J Immunol 1994;152(1): 117–128.

    CAS  PubMed  Google Scholar 

  115. Tong AW, Stone MJ. CD40 and the effect of anti-CD40-binding on human multiple myeloma clonogenicity. Leuk Lymphoma 1996;21(l-2):1–8.

    CAS  PubMed  Google Scholar 

  116. Tai YT, Podar K, Mitsiades N, et al. CD40 induces human multiple myeloma cell migration via phosphatidylinositol 3-kinase/AKT/NF-kappa B signaling. Blood 2003;101(7):2762–2769.

    CAS  PubMed  Google Scholar 

  117. Teoh G, Tai YT, Urashima M, et al. CD40 activation mediates p53-dependent cell cycle regulation in human multiple myeloma cell lines. Blood 2000;95(3): 1039–1046.

    CAS  PubMed  Google Scholar 

  118. Hayashi T, Hideshima T, Akiyama M, et al. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood 2003; 102(4): 1435–1442.

    CAS  PubMed  Google Scholar 

  119. Mackay F, Schneider P, Rennert P, Browning J. BAFF and APRIL: A tutorial on B cell survival. Annu Rev Immunol 2003;21:231–264.

    CAS  PubMed  Google Scholar 

  120. Kalled SL, Ambrose C, Hsu YM. BAFF: B cell survival factor and emerging therapeutic target for autoimmune disorders. Expert Opin Ther Targets 2003;7(l):115–123.

    CAS  PubMed  Google Scholar 

  121. Moreaux J, Legouffe E, Jourdan E, et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin-6 deprivation and dexamethasone. Blood 2004;103(8):3148–3157.

    CAS  PubMed  Google Scholar 

  122. Novak AJ, Darce JR, Arendt BK, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: A mechanism for growth and survival. Blood 2004;103(2):689–694.

    CAS  PubMed  Google Scholar 

  123. Callander NS, Roodman GD. Myeloma bone disease. Semin Hematol 2001;38(3):276–285.

    CAS  PubMed  Google Scholar 

  124. Mundy GR, Raisz LG, Cooper RA, Schecter GP, Salmon SE. Evidence for the secretion of an osteoclast stimulating factor in myeloma. N Engl J Med 1974;291:1041–1046.

    CAS  PubMed  Google Scholar 

  125. Sordillo EM, Pearse RN. RANK-Fc: A therapeutic antagonist for RANK-L in myeloma. Cancer 2003;97(3 Suppl):802–812.

    PubMed  Google Scholar 

  126. Lacey DL, Timms E, Tan H-L, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165–176.

    CAS  PubMed  Google Scholar 

  127. Vanderkerken K, De Leenheer E, Shipman C, et al. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res 2003; 63(2):287–289.

    CAS  PubMed  Google Scholar 

  128. Barille-Nion S, Barlogie B, Bataille R, et al. Advances in biology and therapy of multiple myeloma. Hematology (Am Soc Hematol Educ Program) 2003:248–278.

    Google Scholar 

  129. Choi SJ, Cruz JC, Craig F, et al. Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 2000;96(2):671–675.

    CAS  PubMed  Google Scholar 

  130. Abe M, Hiura K, Wilde J, et al. Role for macrophage inflammatory protein (MIP)-lalpha and MIP1beta in the development of osteolytic lesions in multiple myeloma. Blood 2002;100(6):2195–2202.

    CAS  PubMed  Google Scholar 

  131. Lee JW, Chung HY, Ehrlich LA, et al. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood 2004;103(6):2308–2315.

    CAS  PubMed  Google Scholar 

  132. Oyajobi BO, Franchin G, Williams PJ, et al. Dual effects of macrophage inflammatory protein-1 alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood 2003; 102(l):311–319.

    CAS  PubMed  Google Scholar 

  133. Magrangeas F, Nasser V, Avet-Loiseau H, et al. Gene expression profiling of multiple myeloma reveals molecular portraits in relation to the pathogenesis of the disease. Blood 2003;101(12): 4998–5006.

    CAS  PubMed  Google Scholar 

  134. Zhang XG, Gu JJ, Lu ZY, et al. Ciliary neurotropic factor, interleukin 11, leukemia inhibitory factor, and oncostatin M are growth factors for human myeloma cell lines using the interleukin 6 signal transducer gpl30. J Exp Med 1994; 179(4): 1337–1342.

    CAS  PubMed  Google Scholar 

  135. Chauhan D, Kharbanda SM, Ogata A, et al. Oncostatin M induces association of Grb2 with Janus kinase JAK2 in multiple myeloma cells. J Exp Med 1995;182(6): 1801–1806.

    CAS  PubMed  Google Scholar 

  136. Otsuki T, Yata K, Sakaguchi H, et al. IL-10 in myeloma cells. Leuk Lymphoma 2002;43(5):969–974.

    CAS  PubMed  Google Scholar 

  137. Koskela K, Pelliniemi TT, Pelliniemi LJ, et al. Autocrine production and synergistic growthpromoting activity of interleukin-6 and oncostatin M in a new human myeloma cell line TU-1. Acta Haematol 2002;107(l):23–28.

    CAS  PubMed  Google Scholar 

  138. Zhang XG, Bataille R, Jourdan M, et al. Granulocyte-macrophage colony-stimulating factor synergizes with interleukin-6 in supporting the proliferation of human myeloma cells. Blood 1990;76:2599.

    CAS  PubMed  Google Scholar 

  139. Hussein MA, Sandstrom K, Elson P, et al. GM-CSF safety and effects in the management of advanced/refractory multiple myeloma patients: A phase I trial. J Cancer Res Clin Oncol 2001; 127(10):619–624.

    CAS  PubMed  Google Scholar 

  140. Anderson KC, Morimoto C, Paul SR, et al. Interleukin-11 promotes accessory cell dependent B cell differentiation in man. Blood 1992;80:2797–2804.

    CAS  PubMed  Google Scholar 

  141. Paul SD, Barut BA, Cochran MA, Anderson KC. Lack of a role of interleukin-11 in the growth of multiple myeloma. Leukemia Research 1992; 16:247–252.

    CAS  PubMed  Google Scholar 

  142. Tinhofer I, Marschitz I, Henn T, Egle A, Greil R. Expression of functional interleukin-15 receptor and autocrine production of interleukin-15 as mechanisms of tumor propagation in multiple myeloma. Blood 2000;95(2):610–618.

    CAS  PubMed  Google Scholar 

  143. Brenne AT, Baade Ro T, Waage A, Sundan A, Borset M, Hjorth-Hansen H. Interleukin-21 is a growth and survival factor for human myeloma cells. Blood 2002;99(10):3756–3762.

    CAS  PubMed  Google Scholar 

  144. Sanz-Rodriguez F, Hidalgo A, Teixido J. Chemokine stromal cell-derived factor-lalpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001;97(2):346–351.

    CAS  PubMed  Google Scholar 

  145. Moller C, Stromberg T, Juremalm M, Nilsson K, Nilsson G. Expression and function of chemokine receptors in human multiple myeloma. Leukemia 2003;17(l):203–210.

    CAS  PubMed  Google Scholar 

  146. Urashima M, Chen BP, Chen S, et al. The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood 1997;90(2):754–765.

    CAS  PubMed  Google Scholar 

  147. Yaccoby S, Barlogie B, Epstein J. Primary myeloma cells growting in SCID-hu mice: A model for studying the biology and treatment of myeloma and its manifestations. Blood 1998;92:2908–2913.

    CAS  PubMed  Google Scholar 

  148. Raje N, Hideshima T, Anderson KC. Plasma Cell Tumors. In: Holland JF, Frei III E, Bast RC, Kufe DW, Norton DL, Weichselbaum RR, eds. Cancer Medicine. 4th ed. Bltimore: Williams and Wilkins; 2002:2066–2085.

    Google Scholar 

  149. Dai Y, Landowski TH, Rosen ST, Dent P, Grant S. Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and-resistant myeloma cells through an IL-6-independent mechanism. Blood 2002;100(9):3333–3343.

    CAS  PubMed  Google Scholar 

  150. Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001;61(7):3071–3076.

    CAS  PubMed  Google Scholar 

  151. Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003;348(26):2609–2617.

    CAS  PubMed  Google Scholar 

  152. Hideshima T, Chauhan D, Shima Y, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000;96(9): 2943–2950.

    CAS  PubMed  Google Scholar 

  153. Richardson PG, Schlossman RL, Weiler E, et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 2002; 100(9): 3063–3067.

    CAS  PubMed  Google Scholar 

  154. Mitsiades N, Mitsiades CS, Richardson PG, et al. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 2003;101(10):4055–4062.

    CAS  PubMed  Google Scholar 

  155. Catley L, Weisberg E, Tai YT, et al. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 2003;102(7):2615–2622.

    CAS  PubMed  Google Scholar 

  156. Chauhan D, Catley L, Hideshima T, et al. 2-Methoxyestradiol overcomes drug resistance in multiple myeloma cells. Blood 2002;100(6):2187–2194.

    CAS  PubMed  Google Scholar 

  157. Hayashi T, Hideshima T, Akiyama M, et al. Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. Mol Cancer Ther 2002;l(10):851–860.

    Google Scholar 

  158. Hideshima T, Chauhan D, Hayashi T, et al. Antitumor activity of lysophosphatidic acid acyltransferase-beta inhibitors, a novel class of agents, in multiple myeloma. Cancer Res 2003;63(23): 8428–8436.

    CAS  PubMed  Google Scholar 

  159. Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A 2002;99(22): 14,374–14,379.

    CAS  Google Scholar 

  160. Mitsiades CS, Treon SP, Mitsiades N, et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: Therapeutic applications. Blood 2001;98(3): 795–804.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Chauhan, D., Hideshima, T., Anderson, K.C. (2007). Cytokines in Multiple Myeloma. In: Caligiuri, M.A., Lotze, M.T. (eds) Cytokines in the Genesis and Treatment of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-455-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-455-1_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-820-2

  • Online ISBN: 978-1-59745-455-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics