Skip to main content

Immune Reconstitution after Allogeneic Transplantation

  • Chapter
  • 1364 Accesses

Part of the book series: Contemporary Hematology ((CH))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Allo:

allogeneic

AML:

acute myelogenous leukemia

ANC:

absolute neutrophil count

ATG:

anti-thymocyte globulin

BM:

bone marrow

CB:

cord blood

CDR3:

complementarity-determining region 3

CM:

central memory

CMV:

cytomegalovirus

DC:

dendritic cells

DLI:

donor leukocyte infusion

EBV:

Epstein Barr Virus

EF:

effector

EM:

effector memory

Foxp3:

forkhead family transcription factor 3

G-CSF:

granulocyte colony stimulating factor

GM-CSF:

granulocyte macrophage colony stimulating factor

GVHD:

Graft-versus-Host Disease

GVT:

Graft-versus-Tumor

HHV-6:

human herpes virus 6

HLA:

human leukocyte antigen

HSCT:

hematopoietic stem cell transplant

HSV:

herpes simplex virus

IFN:

interferon

Ig:

immunoglobulin

IL:

interleukin

KGF:

keratinocyte growth factor

KIR:

killer cell Ig-like receptor

LC:

Langerhans cells

LLME:

L-leucyl-L-leucine methyl ester

NK:

natural killer

NST:

nonmyeloablative stem cell transplant

PBSC:

peripheral blood stem cells

PCR:

polymerase chain reaction

PTLD:

post-transplant lymphoproliferative disease

PWM:

pokeweed mitogen

TCD:

T cell-depleted

TCR:

T cell receptor

Th1:

T helper 1

Th2:

T helper 2

TK:

thymidine kinase

TNF:

tumor necrosis factor

TREC:

TCR rearrangement excision circle

Treg:

T regulatory cells

TT:

tetanus toxoid

VZV:

varicella zoster virus

References

  1. Kernan NA, Bartsch G, Ash RC et al. Analysis of 462 transplantations from unrelated donors facilitated by the National Marrow Donor Program N Engl J Med. 1993;328:593–602.

    PubMed  CAS  Google Scholar 

  2. Bordignon C, Keever CA, Small TN et al. Graft failure after T-cell-depleted human leukocyte antigen identical marrow transplants for leukemia: II. In vitro analyses of host effector mechanisms. Blood. 1989;74:2237–2243.

    PubMed  CAS  Google Scholar 

  3. Wursch AM, Gratama JW, Middeldorp JM et al. The effect of cytomegalovirus infection on T lymphocytes after allogeneic bone marrow transplantation. Clin Exp Immunol. 1985;62:278–287.

    PubMed  CAS  Google Scholar 

  4. Keever-Taylor CA, Klein JP, Eastwood D et al. Factors affecting neutrophil and platelet reconstitution following T cell-depleted bone marrow transplantation: differential effects of growth factor type and role of CD34(+) cell dose. Bone Marrow Transplant. 2001;27:791–800.

    PubMed  CAS  Google Scholar 

  5. Bernstein SH, Nademanee AP, Vose JM et al. A multicenter study of platelet recovery and utilization in patients after myeloablative therapy and hematopoietic stem cell transplantation. Blood. 1998;91:3509–3517.

    PubMed  CAS  Google Scholar 

  6. Korbling M, Anderlini P. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood. 2001;98:2900–2908.

    PubMed  CAS  Google Scholar 

  7. Weaver C, Hazelton B, Birch R et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood. 1995;86:3961–3969.

    PubMed  CAS  Google Scholar 

  8. Lazarus HM. Recombinant cytokines and hematopoietic growth factors in allogeneic and autologous bone marrow transplantation. Cancer Treat Res. 1997;77:255–301.

    PubMed  CAS  Google Scholar 

  9. Martin-Algarra S, Bishop MR, Tarantolo S et al. Hematopoietic growth factors after HLA-identical allogeneic bone marrow transplantation in patients treated with methotrexate-containing graft-vs.-host disease prophylaxis. Exp Hematol. 1995;23:1503–1508.

    PubMed  CAS  Google Scholar 

  10. Atkinson K, Downs K, Ashby M, Dodds A, Concannon A, Biggs J. Recipients of HLA-identical sibling marrow transplants with severe aplastic anemia engraft more quickly, and those with chronic myeloid leukemia more slowly, than those with acute leukemia. Bone Marrow Transplant. 1989;4:23–27.

    PubMed  CAS  Google Scholar 

  11. Slavin S, Nagler A, Naparstek E et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hema-tologic diseases. Blood. 1998;91:756–763.

    PubMed  CAS  Google Scholar 

  12. Sosa R, Weiden PL, Storb R, Syrotuck J, Thomas ED. Granulocyte function in human allogenic marrow graft recipients. Exp Hematol. 1980;8:1183–1189.

    PubMed  CAS  Google Scholar 

  13. Territo MC, Gale RP, Cline MJ. Neutrophil function in bone marrow transplant recipients. Br J Haematol. 1977;35:245–250.

    PubMed  CAS  Google Scholar 

  14. Zimmerli W, Zarth A, Gratwohl A, Speck B. Neutrophil function and pyogenic infections in bone marrow transplant recipients. Blood. 1991;77:393–399.

    PubMed  CAS  Google Scholar 

  15. Peters WP, Stuart A, Affronti ML, Kim CS, Coleman RE. Neutrophil migration is defective during recombinant human granulocyte- macrophage colony-stimulating factor infusion after autologous bone marrow transplantation in humans. Blood. 1988;72:1310–1315.

    PubMed  CAS  Google Scholar 

  16. Brochu S, Perreault C, Belanger R. Evaluation of Fc-dependent monocyte-macrophage function in bone marrow transplant recipients. Exp Hematol. 1989;17:948–951.

    PubMed  CAS  Google Scholar 

  17. Winston DJ, Territo MC, Ho WG, Miller MJ, Gale RP, Golde DW. Alveolar macrophage dysfunction in human bone marrow transplant recipients. Am J Med. 1982;73:859–866.

    PubMed  CAS  Google Scholar 

  18. Shiobara S, Witherspoon RP, Lum LG, Storb R. Immunoglobulin synthesis after HLA-identical marrow grafting. V. The role of peripheral blood monocytes in the regulation of in vitro immunoglobulin secretion stimulated by pokeweed mitogen. J Immunol. 1984;132:2850–2856.

    PubMed  CAS  Google Scholar 

  19. Castenskiold EC, Kelsey SM, Collins PW et al. Functional hyperactivity of monocytes after bone marrow transplantation: possible relevance for the development of post-transplant complications or relapse. Bone Marrow Transplant. 1995;15:879–884.

    PubMed  CAS  Google Scholar 

  20. Storek J, Espino G, Dawson MA, Storer B, Flowers ME, Maloney DG. Low B-cell and monocyte counts on day 80 are associated with high infection rates between days 100 and 365 after allogeneic marrow transplantation. Blood. 2000;96:3290–3293.

    PubMed  CAS  Google Scholar 

  21. Shenoy S, Mohanakumar T, Todd G et al. Immune reconstitution following allogeneic peripheral blood stem cell transplants. Bone Marrow Transplant. 1999;23:335–346.

    PubMed  CAS  Google Scholar 

  22. Volpi I, Perruccio K, Tosti A et al. Postgrafting administration of granulocyte colony-stimulating factor impairs functional immune recovery in recipients of human leukocyte antigen haplotype-mismatched hematopoietic transplants. Blood. 2001;97:2514–2521.

    PubMed  CAS  Google Scholar 

  23. Stroncek DF, Confer DL, Leitman SF. Peripheral blood progenitor cells for HPC transplants involving unrelated donors. Transfusion. 2000;40:731–741.

    PubMed  CAS  Google Scholar 

  24. Mielcarek M, Graf L, Johnson G, Torok-Storb B. Production of interleukin-10 by granulocyte colony-stimulating factor- mobilized blood products: a mechanism for monocyte-mediated suppression of T-cell proliferation. Blood. 1998;92:215–222.

    PubMed  CAS  Google Scholar 

  25. Elmaagacli AH, Basoglu S, Peceny R et al. Improved disease-free-survival after transplantation of peripheral blood stem cells as compared with bone marrow from HLA-identical unrelated donors in patients with first chronic phase chronic myeloid leukemia. Blood. 2002;99:1130–1135.

    PubMed  CAS  Google Scholar 

  26. Perreault C, Pelletier M, Landry D, Gyger M. Study of Langerhans cells after allogeneic bone marrow transplantation. Blood. 1984;63:807–811.

    PubMed  CAS  Google Scholar 

  27. Atkinson K, Munro V, Vasak E, Biggs J. Mononuclear cell subpopulations in the skin defined by monoclonal antibodies after HLA-identical sibling marrow transplantation. Br J Dermatol. 1986;114:145–160.

    PubMed  CAS  Google Scholar 

  28. Witherspoon RP, Matthews D, Storb R et al. Recovery of in vivo cellular immunity after human marrow grafting. Influence of time postgrafting and acute graft-versus-host disease. Transplantation. 1984;37:145–150.

    PubMed  CAS  Google Scholar 

  29. Auffermann-Gretzinger S, Lossos IS, Vayntrub TA et al. Rapid establishment of dendritic cell chimerism in allogeneic hematopoietic cell transplant recipients. Blood. 2002;99:1442–1448.

    PubMed  CAS  Google Scholar 

  30. Chklovskaia E, Nowbakht P, Nissen C, Gratwohl A, Bargetzi M, Wodnar-Filipowicz A. Reconstitution of dendritic and natural killer-cell subsets after allogeneic stem cell transplantation: effects of endogenous flt3 ligand. Blood. 2004;103:3860–3868.

    PubMed  CAS  Google Scholar 

  31. Shlomchik WD, Couzens MS, Tang CB et al. Prevention of graft versus host disease by inactivation of host antigen- presenting cells. Science. 1999;285:412–415.

    PubMed  CAS  Google Scholar 

  32. Klangsinsirikul P, Carter GI, Byrne JL, Hale G, Russell NH. Campath-1G causes rapid depletion of circulating host dendritic cells (DCs) before allogeneic transplantation but does not delay donor DC reconstitution. Blood. 2002;99:2586–2591.

    PubMed  CAS  Google Scholar 

  33. Hale G, Jacobs P, Wood L et al. CD52 antibodies for prevention of graft-versus-host disease and graft rejection following transplantation of allogeneic peripheral blood stem cells. Bone Marrow Transplant. 2000;26:69–76.

    PubMed  CAS  Google Scholar 

  34. Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005;5:201–214.

    PubMed  CAS  Google Scholar 

  35. Raulet DH. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol. 2004;5:996–1002.

    PubMed  CAS  Google Scholar 

  36. Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med. 1998;187:813–818.

    PubMed  CAS  Google Scholar 

  37. Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990;76:2421–2438.

    PubMed  CAS  Google Scholar 

  38. Hansasuta P, Dong T, Thananchai H et al. Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific. Eur J Immunol. 2004;34:1673–1679.

    PubMed  CAS  Google Scholar 

  39. Jacobs R, Stoll M, Stratmamm G, Leo R, Link H, Schmidt RE. CD16-CD56+ Natural Killer cells after bone marrow transplantation. Blood. 1992;79:3239–3244.

    PubMed  CAS  Google Scholar 

  40. Klingemann H. Relevance and Potential of Natural Killer Cells in Stem Cell Transplantation. Biol Blood Marrow Transplant. 2000;6:90–99.

    PubMed  CAS  Google Scholar 

  41. Keever CA, Small TN, Flomenberg N et al. Immune reconstitution following bone marrow transplantation: Comparison of recipients of T-Cell depleted marrow with recipients of conventional marrow grafts. Blood. 1989;73:1340–1350.

    PubMed  CAS  Google Scholar 

  42. Beelen DW, Peceny R, Elmaagacli A et al. Transplantation of highly purified HLA-identical sibling donor peripheral blood CD34+ cells without prophylactic post-transplant immunosuppression in adult patients with first chronic phase chronic myeloid leukemia: results of a phase II study. Bone Marrow Transplant. 2000;26:823–829.

    PubMed  CAS  Google Scholar 

  43. Giraud P, Thuret I, Reviron D et al. Immune reconstitution and outcome after unrelated cord blood transplantation: a single paediatric institution experience. Bone Marrow Transplant. 2000;25:53–57.

    PubMed  CAS  Google Scholar 

  44. Moretta A, Maccario R, Fagioli F et al. Analysis of immune reconstitution in children undergoing cord blood transplantation. Exp Hematol. 2001;29:371–379.

    PubMed  CAS  Google Scholar 

  45. Keever CA, Abu-Hajir M, Graf W et al. Characterization of the alloreactivity and anti-leukemia reactivity of cord blood mononuclear cells. Bone Marrow Transplant. 1995;15:407–419.

    PubMed  CAS  Google Scholar 

  46. Gottschalk LR, Bray RA, Kaizer H, Gebel H. Two populations of CD56 (Leu-a9)+/CD16+ cells in bone marrow transplant recipients. Bone Marrow Transplant. 1990;5:259–264.

    PubMed  CAS  Google Scholar 

  47. Dokhelar MC, Wiels J, Lipinski M et al. Natural killer cell activity in human bone marrow recipents. Early reappearance of peripheral natural killer activity in graft-versus-host disease. Transplantation. 1981;31:61–65.

    PubMed  CAS  Google Scholar 

  48. Keever CA, Klein J, Leong N et al. Effect of GVHD on the recovery of NK cell activity and LAK precursors following BMT. Bone Marrow Transplant. 1993;12:289–295.

    PubMed  CAS  Google Scholar 

  49. Shilling HG, McQueen KL, Cheng NW, Shizuru JA, Negrin RS, Parham P. Reconstitution of NK cell receptor repertoire following HLA-matched hemat-opoietic cell transplantation. Blood. 2003;101:3730–3740.

    PubMed  CAS  Google Scholar 

  50. Leung W, Iyengar R, Turner V et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172:644–650.

    PubMed  CAS  Google Scholar 

  51. Cooley S, McCullar V, Wangen R et al. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood. 2005;106:4370–4376.

    PubMed  CAS  Google Scholar 

  52. Rhoades JL, Cibull ML, Thompson JS et al. Role of natural killer cells in the pathogenesis of human acute graft-versus-host disease. Transplantation. 1993;56:113–120.

    PubMed  CAS  Google Scholar 

  53. Nguyen S, Dhedin N, Vernant JP et al. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood. 2005;105:4135–4142.

    PubMed  CAS  Google Scholar 

  54. Yawata M, Yawata N, Draghi M, Little AM, Partheniou F, Parham P. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med. 2006;203:633–645.

    PubMed  CAS  Google Scholar 

  55. Ruggeri L, Aversa F, Martelli MF, Velardi A. Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol Rev. 2006;214:202–218.

    PubMed  CAS  Google Scholar 

  56. Ruggeri L, Capanni M, Urbani E et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295: 2097–2100.

    PubMed  CAS  Google Scholar 

  57. Ruggeri L, Capanni M, Casucci M et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999;94: 333–339.

    PubMed  CAS  Google Scholar 

  58. Bishara A, De Santis D, Witt CC et al. The beneficial role of inhibitory KIR genes of HLA class I NK epitopes in haploidentically mismatched stem cell allografts may be masked by residual donor-alloreactive T cells causing GVHD. Tissue Antigens. 2004;63:204–211.

    PubMed  CAS  Google Scholar 

  59. Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood. 2005;105:4416–4423.

    PubMed  CAS  Google Scholar 

  60. Hsu KC, Keever-Taylor CA, Wilton A et al. Improved outcome in HLA-identical sibling hematopoietic stem cell transplantation for acute myelogenous leukemia (AML) predicted by KIR and HLA genotypes. Blood. 2005;105:4878–4884.

    Google Scholar 

  61. Beelen DW, Ottinger HD, Ferencik S et al. Genotypic inhibitory killer immu-noglobulin-like receptor ligand incompatibility enhances the long-term antileuke-mic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood. 2005;105:2594–2600.

    PubMed  CAS  Google Scholar 

  62. Elmaagacli AH, Ottinger H, Koldehoff M et al. Reduced risk for molecular disease in patients with chronic myeloid leukemia after transplantation from a KIR-mismatched donor. Transplantation. 2005;79:1741–1747.

    PubMed  CAS  Google Scholar 

  63. Farag SS, Bacigalupo A, Eapen M et al. The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol Blood Marrow Transplant. 2006;12:876–884.

    PubMed  CAS  Google Scholar 

  64. Hsu KC, Gooley T, Malkki M et al. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant. 2006;12:828–836.

    PubMed  CAS  Google Scholar 

  65. Vitale C, Chiossone L, Morreale G et al. Human natural killer cells undergoing in vivo differentiation after allogeneic bone marrow transplantation: analysis of the surface expression and function of activating NK receptors. Mol Immunol. 2005;42:405–411.

    PubMed  CAS  Google Scholar 

  66. De Santis D, Bishara A, Witt CS et al. Natural killer cell HLA-C epitopes and killer cell immunoglobulin-like receptors both influence outcome of mismatched unrelated donor bone marrow transplants. Tissue Antigens. 2005;65:519–528.

    PubMed  Google Scholar 

  67. Sun J Y, Gaidulis L, Dagis A et al. Killer Ig-like receptor (KIR) compatibility plays a role in the prevalence of acute GVHD in unrelated hematopoietic cell transplants for AML. Bone Marrow Transplant. 2005;36:525–530.

    PubMed  CAS  Google Scholar 

  68. Verheyden S, Schots R, Duquet W, Demanet C. A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after relatedHLA-identical hematopoietic stem cell transplantation. Leukemia. 2005;19: 1446–1451.

    PubMed  CAS  Google Scholar 

  69. Kroger N, Binder T, Zabelina T et al. Low number of donor activating killer immunoglobulin-like receptors (KIR) genes but not KIR-ligand mismatch prevents relapse and improves disease-free survival in leukemia patients after in vivo T-cell depleted unrelated stem cell transplantation. Transplantation. 2006;82:1024–1030.

    PubMed  Google Scholar 

  70. Cook M, Briggs D, Craddock C et al. Donor KIR genotype has a major influence on the rate of cytomegalovirus reactivation following T-cell replete stem cell transplantation. Blood. 2006;107:1230–1232.

    PubMed  CAS  Google Scholar 

  71. Chen C, Busson M, Rocha V et al. Activating KIR genes are associated with CMV reactivation and survival after non-T-cell depleted HLA-identical sibling bone marrow transplantation for malignant disorders. Bone Marrow Transplant. 2006;38:437–444.

    PubMed  CAS  Google Scholar 

  72. Spits H, Lanier LL, Philips JH. Development of human T and natural killer cells. Blood. 1995;85:2654–2670.

    PubMed  CAS  Google Scholar 

  73. Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP. The role of the thy-mus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol. 2000;18:529–560.

    PubMed  CAS  Google Scholar 

  74. Gorski J, Yassai M, Zhu X, Kissela B, Keever C, Flomenberg N. Circulating T cell repertoire complexity in normal individuals and bone marrow recipients analyzed by CDR3 size spectratyping. Correlation with immune status. J Immunol. 1994;152:5109–5119.

    PubMed  CAS  Google Scholar 

  75. Douek DC, Vescio RA, Betts MR et al. Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitu-tion. Lancet. 2000;355:1875–1881.

    PubMed  CAS  Google Scholar 

  76. Kameoka J, Sato T, Torimoto Y et al. Differential CD26-mediated activation of the CD3 and CD2 pathways after CD6-depleted allogeneic bone marrow transplantation. Blood. 1995;85:1132–1137.

    PubMed  CAS  Google Scholar 

  77. Soiffer RJ, Bosserman L, Murray C, Cochran K, Daley J, Ritz J. Reconstitution of T-cell function after CD6-depleted allogeneic bone marrow transplantation. Blood. 1990;75:2076–2084.

    PubMed  CAS  Google Scholar 

  78. Reusser P, Riddell SR, Meyers JD, Greenberg PD. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood. 1991;78:1373–1380.

    PubMed  CAS  Google Scholar 

  79. Drobyski WR, Dunne WM, Burd EM et al. Human herpes virus-6 (HHV-6) infection in allogeneic bone marrow transplant recipients: evidence of a marrow-suppres-sive role for HHV-6 in vivo. Journal of Infectious Diseases. 1993;167:735–739.

    PubMed  CAS  Google Scholar 

  80. Wagner H-J, Rooney C, Heslop H. Diagnosis and Treatment of Posttransplantation Lymphoproliferative Disease After Hematopoietic Stem Cell Transplantation. Biol Blood and Marrow Transplant. 2002;8:1–8.

    CAS  Google Scholar 

  81. Gratama JW, Verdonck LF, van der Linden JA et al. Cellular immunity to vaccinations and herpesvirus infections after bone marrow transplantation. Transplantation. 1986;41:719–724.

    PubMed  CAS  Google Scholar 

  82. Fukushi N, Arase H, Wang B et al. Thymus: a direct target tissue in graft-versus-host reaction after allogeneic bone marrow transplantation that results in abrogation of induction of self-tolerance. Proc Nat Aca Sci (USA). 1990;87:6301–6305.

    CAS  Google Scholar 

  83. Muller-Hermelink HK, Sale GE, Borisch B, Storb R. Pathology of the thymus after allogeneic bone marrow transplantation in man. A histologic immunohisto-chemical study of 36 patients. A J Pathology. 1987;129:242–256.

    CAS  Google Scholar 

  84. Abrahamsen IW, Somme S, Heldal D, Egeland T, Kvale D, Tjonnfjord GE. Immune reconstitution after allogeneic stem cell transplantation: the impact of stem cell source and graft-versus-host disease. Haematologica. 2005;90:86–93.

    PubMed  Google Scholar 

  85. Storek J, Dawson MA, Storer B et al. Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood. 2001;97:3380–3389.

    PubMed  CAS  Google Scholar 

  86. Ferrari V, Cacere CR, Machado CM et al. Distinct patterns of regeneration of central memory, effector memory and effector TCD8+ cell subsets after different hematopoi-etic cell transplant types: possible influence in the recovery of anti-cytomegalovirus immune response and risk for its reactivation. Clin Immunol. 2006;119:261–271.

    PubMed  CAS  Google Scholar 

  87. Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol. 2002;2:251–262.

    PubMed  CAS  Google Scholar 

  88. Donnenberg AD, Margolick JB, Beltz LA, Donnenberg VS, Rinaldo CRJ. Apoptosis parallels lymphopoiesis in bone marrow transplantation and HIV disease. Res Immunol. 1995;146:11–21.

    PubMed  CAS  Google Scholar 

  89. Hirokawa M, Horiuchi T, Kitabayashi A et al. Delayed recovery of CDR3 complexity of the T-cell receptor-beta chain in recipients of allogeneic bone marrow transplants who had virus- associated interstitial pneumonia: monitor of T-cell function by CDR3 spectratyping. J Allergy Clin Immunol. 2000;106:S32–39.

    PubMed  CAS  Google Scholar 

  90. Dumont-Girard F, Roux E, van Lier RA et al. Reconstitution of the T-cell compartment after bone marrow transplantation: restoration of the repertoire by thymic emigrants. Blood. 1998;92:4464–4471.

    PubMed  CAS  Google Scholar 

  91. Szabolcs P, Park KD, Reese M, Marti L, Broadwater G, Kurtzberg J. Coexistent naive phenotype and higher cycling rate of cord blood T cells as compared to adult peripheral blood. Exp Hematol. 2003;31:708–714.

    PubMed  Google Scholar 

  92. Parkman R, Cohen G, Carter SL et al. Successful immune reconstitution decreases leukemic relapse and improves survival in recipients of unrelated cord blood transplantation. Biol Blood Marrow Transplant. 2006;12:919–927.

    PubMed  Google Scholar 

  93. Inoue H, Yasuda Y, Hattori K et al. The kinetics of immune reconstitution after cord blood transplantation and selected CD34+ stem cell transplantation in children: comparison with bone marrow transplantation. Int J Hematol. 2003;77:399–407.

    PubMed  Google Scholar 

  94. Talvensaari K, Clave E, Douay C et al. A broad T-cell repertoire diversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood. 2002;99:1458–1464.

    PubMed  CAS  Google Scholar 

  95. Cohen G, Carter SL, Weinberg KI et al. Antigen-specific T-lymphocyte function after cord blood transplantation. Biol Blood Marrow Transplant. 2006;12:1335–1342.

    PubMed  Google Scholar 

  96. Jimenez M, Martinez C, Ercilla G et al. Reduced-intensity conditioning regimen preserves thymic function in the early period after hematopoietic stem cell transplantation. Exp Hematol. 2005;33:1240–1248.

    PubMed  CAS  Google Scholar 

  97. Maris M, Boeckh M, Storer B et al. Immunologic recovery after hematopoi-etic cell transplantation with nonmyeloablative conditioning. Exp Hematol. 2003;31:941–952.

    PubMed  CAS  Google Scholar 

  98. Larosa F, Marmier C, Robinet E et al. Peripheral T-cell expansion and low infection rate after reduced-intensity conditioning and allogeneic blood stem cell transplantation. Bone Marrow Transplant. 2005;35:859–868.

    PubMed  CAS  Google Scholar 

  99. Junghanss C, Boeckh M, Carter RA et al. Incidence and outcome of cytome-galovirus infections following nonmyeloablative compared with myeloabla-tive allogeneic stem cell transplantation, a matched control study. Blood. 2002;99:1978–1985.

    PubMed  CAS  Google Scholar 

  100. Baron F, Storer B, Maris MB et al. Unrelated donor status and high donor age independently affect immunologic recovery after nonmyeloablative conditioning. Biol Blood Marrow Transplant. 2006;12:1176–1187.

    PubMed  Google Scholar 

  101. Bacigalupo A. Antilymphocyte/thymocyte globulin for graft versus host disease prophylaxis: efficacy and side effects. Bone Marrow Transplant. 2005;35:225–231.

    PubMed  CAS  Google Scholar 

  102. Small T, Avigan D, Dupont B et al. Immune reconstitution following T-cell depleted bone marrow transplantation: effect of age and post-transplant graft rejection prophylaxis. Biol Blood Marrow Transplant. 1997;3:65–75.

    PubMed  CAS  Google Scholar 

  103. Fehse N, Fehse B, Kroger N et al. Influence of anti-thymocyte globulin as part of the conditioning regimen on immune reconstitution following matched related bone marrow transplantation. J Hematother Stem Cell Res. 2003;12:237–242.

    PubMed  Google Scholar 

  104. Chen X, Hale GA, Barfield R et al. Rapid immune reconstitution after a reduced-intensity conditioning regimen and a CD3-depleted haploidentical stem cellgraft for paediatric refractory haematological malignancies. Br J Haematol. 2006;135:524–532.

    PubMed  Google Scholar 

  105. Meijer E, Bloem AC, Dekker AW, Verdonck LF. Effect of antithymocyte globulin on quantitative immune recovery and graft-versus-host disease after partially T-cell-depleted bone marrow transplantation: a comparison between recipients of matched related and matched unrelated donor grafts. Transplantation. 2003;75:1910–1913.

    PubMed  CAS  Google Scholar 

  106. Handgretinger R, Schumm M, Lang P et al. Transplantation of megadoses of purified haploidentical stem cells. Ann N Y Acad Sci. 1999;872:351–352.

    PubMed  CAS  Google Scholar 

  107. Handgretinger R, Klingebiel T, Lang P et al. Megadose transplantation of purified peripheral blood CD34+progenitor cells from HLA-mismatched parental donors in children. Bone Marrow Transplant. 2001;27:777–783.

    PubMed  CAS  Google Scholar 

  108. Eyrich M, Lang P, Lal S et al. A prospective analysis of the pattern of immune reconstitution in a paediatric cohort following transplantation of positively selected human leucocyte antigen-disparate haematopoietic stem cells from parental donors. Br J Haematol. 2001;114:422–432.

    PubMed  CAS  Google Scholar 

  109. Handgretinger R, Lang P, Schumm M et al. Immunological aspects of haploidenti-cal stem cell transplantation in children. Ann N Y Acad Sci. 2001;938:340–357.

    PubMed  CAS  Google Scholar 

  110. Eyrich M, Leiler C, Croner T et al. Impaired T-cell activation and cytokine productivity after transplantation of positively selected CD34+ allogeneic hematopoi-etic stem cells. Hematol J. 2004;5:329–340.

    PubMed  CAS  Google Scholar 

  111. Chakraverty R, Robinson S, Peggs K et al. Excessive T cell depletion of peripheral blood stem cells has an adverse effect upon outcome following allogeneic stem cell transplantation Bone Marrow Transplant. 2001;28:827–834.

    PubMed  CAS  Google Scholar 

  112. Urbano-Ispizua A, Brunet.S, Solano C et al. Allogeneic transplantation of CD34+ -selected cells from peripheral blood in patients with myeloid malignancies in early phase: a case control comparison with unmodified peripheral blood transplantation. Bone Marrow Transplant. 2001;28:349–354.

    PubMed  CAS  Google Scholar 

  113. Gorski J, Yassai M, Keever C, Flomenberg N. Analysis of reconstituting T cell receptor repertoires in bone marrow transplant recipients. Arch Immunol Ther Exp. 1995;43:93–97.

    CAS  Google Scholar 

  114. Roux E, Helg C, Chapuis B, Jeannet M, Roosnek E. T-cell repertoire complexity after allogeneic bone marrow transplantation. Human Immunology. 1996;48:135–138.

    PubMed  CAS  Google Scholar 

  115. Godthelp BC, van Tol MJ, Vossen JM, van Den Elsen PJ. T-Cell immune reconsti-tution in pediatric leukemia patients after allogeneic bone marrow transplantation with T-cell-depleted or unmanipulated grafts: evaluation of overall and antigen-specific T-cell repertoires. Blood. 1999;94:4358–4369.

    PubMed  CAS  Google Scholar 

  116. Mackall CL, Fleisher TA, Brown MR et al. Age, thymopoiesis, and CD4+ T-lym-phocyte regeneration after intensive chemotherapy. N Engl J Med. 1995;332:143–149.

    PubMed  CAS  Google Scholar 

  117. Eyrich M, Wollny G, Tzaribaschev N et al. Onset of thymic recovery and plateau of thymic output are differentially regulated after stem cell transplantation in children. Biol Blood Marrow Transplant. 2005;11:194–205.

    PubMed  Google Scholar 

  118. Fujimaki K, Maruta A, Yoshida M et al. Immune reconstitution assessed during five years after allogeneic bone marrow transplantation. Bone Marrow Transplant. 2001;27:1275–1281.

    PubMed  CAS  Google Scholar 

  119. Storek J, Joseph A, Espino G et al. Immunity of patients surviving 20 to 30 years after allogeneic or syngeneic bone marrow transplantation. Blood. 2001;98: 3505–3512.

    PubMed  CAS  Google Scholar 

  120. Klein AK, Patel DD, Gooding ME et al. T-Cell recovery in adults and children following umbilical cord blood transplantation. Biol Blood Marrow Transplant. 2001;7:454–466.

    PubMed  CAS  Google Scholar 

  121. Atkinson K, Farewell V, Storb R et al. Analysis of late infections after human bone marrow transplantation: role of genotypic nonidentity between marrow donor and recipient and of nonspecific suppressor cells in patients with chronic graft-versus-host disease. Blood. 1982;60:714–720.

    PubMed  CAS  Google Scholar 

  122. Kook H, Goldman F, Padley D et al. Reconstruction of the immune system after unrelated or partially matched T-cell-depleted bone marrow transplantation in children: immunophenotypic analysis and factors affecting the speed of recovery. Blood. 1996;88:1089–1097.

    PubMed  CAS  Google Scholar 

  123. Niehues T, Rocha V, Filipovich AH et al. Factors affecting lymphocyte subset reconstitution after either related or unrelated cord blood transplantation in children — a Eurocord analysis. Br J Haematol. 2001;114:42–48.

    PubMed  CAS  Google Scholar 

  124. Imamura M, Tsutsumi Y, Miura Y, Toubai T, Tanaka J. Immune reconstitution and tolerance after allogeneic hematopoietic stem cell transplantation. Hematology. 2003;8:19–26.

    PubMed  CAS  Google Scholar 

  125. Liu C, He M, Rooney B, Kepler TB, Chao NJ. Longitudinal analysis of T-cell receptor variable beta chain repertoire in patients with acute graft-versus-host disease after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2006;12:335–345.

    PubMed  Google Scholar 

  126. Weinberg K, Blazar BR, Wagner JE et al. Factors affecting thymic function after allogeneic hematopoietic stem cell transplantation. Blood. 2001;97:1458–1466.

    PubMed  CAS  Google Scholar 

  127. Yoshida H, Maeda T, Ishikawa J et al. Expression of CD27 on peripheral CD4+ T-lymphocytes correlates with the development of severe acute fraft-versus-host disease after allogeneic bone marrow transplantation. Int J Hematol. 2006;84:367–376.

    PubMed  CAS  Google Scholar 

  128. Lin MT, Tseng LH, Frangoul H et al. Increased apoptosis of peripheral blood T cells following allogeneic hematopoietic cell transplantation. Blood. 2000;95:3832–3839.

    PubMed  CAS  Google Scholar 

  129. Zorn E, Kim HT, Lee SJ et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood. 2005;106:2903–2911.

    PubMed  CAS  Google Scholar 

  130. Rezvani K, Mielke S, Ahmadzadeh M et al. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood. 2006;108:1291–1297.

    PubMed  CAS  Google Scholar 

  131. Rieger K, Loddenkemper C, Maul J et al. Mucosal FOXP3+ regulatory T cells are numerically deficient in acute and chronic GvHD. Blood. 2006;107:1717–1723.

    PubMed  CAS  Google Scholar 

  132. Lamb LS, Abhyankar SA, Hazlett L et al. Expression of CD134 (0X-40) on T cells during the first 100 days following allogeneic bone marrow transplantation as a marker for lymphocyte activation and therapy-resistant graft-versus-host disease. Cytometry. 1999;38:238–243.

    PubMed  Google Scholar 

  133. Small TN, Papadopoulos EB, Boulad F et al. Comparison of immune reconstitution after unrelated and related T-cell-depleted bone marrow transplantation: effect of patient age and donor leukocyte infusions. Blood. 1999;93:467–480.

    PubMed  CAS  Google Scholar 

  134. Walter E, Greenberg P, Gilbert M et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333:1038–1044.

    PubMed  CAS  Google Scholar 

  135. Autran B, Leblond V, Sadat-Sowti B et al. A soluble factor released by CD8+CD57+ lymphocytes from bone marrow transplanted patients inhibits cell-mediated cytolysis. Blood. 1991;77:2237–2241.

    PubMed  CAS  Google Scholar 

  136. Sadat-Sowti B, Debre P, Mollet L et al. An inhibitor of cytotoxic functions produced by CD8+CD57+ T lymphocytes from patients suffering from AIDS and immunosuppressed bone marrow recipients. Eur J Immunol. 1994;24:2882–2888.

    PubMed  CAS  Google Scholar 

  137. Gorochov G, Debre P, Leblond V, Sadat-Sowti B, Sigaux F, Autran B. Oligoclonal expansion of CD8+ CD57+ T cells with restricted T-cell receptor beta chain variability after bone marrow transplantation. Blood. 1994;83:587–595.

    PubMed  CAS  Google Scholar 

  138. Rowbottom A, Garland R, Lepper M et al. Functional analysis of the CD8+CD57+ cell population in normal healthy individuals and matched unrelated T-cell-depleted bone marrow transplant recipients. Br J Haematol. 2000;110:315–321.

    PubMed  CAS  Google Scholar 

  139. Morley JK, Batliwalla FM, Hingorani R, Gregersen PK. Oligoclonal CD8+ T cells are preferentially expanded in the CD57+ subset. J Immunol. 1995;154: 6182–6190.

    PubMed  CAS  Google Scholar 

  140. Kern F, Khatamzas E, Surel I et al. Distribution of human CMV-specific memory T cells among the CD8pos. subsets defined by CD57, CD27, and CD45 isoforms. Eur J Immunol. 1999;29:2908–2915.

    PubMed  CAS  Google Scholar 

  141. Meyers JD, Flournoy N, Thomas ED. Infection with herpes simplex virus and cell-mediated immunity after marrow transplant. J Infect Dis. 1980;142:338–346.

    PubMed  CAS  Google Scholar 

  142. Meyers JD, Flournoy N, Thomas ED. Cell-mediated immunity to varicella-zoster virus after allogeneic marrow transplant. J Infect Dis. 1980;141:479–487.

    PubMed  CAS  Google Scholar 

  143. Wade JC, Day LM, Crowley JJ, Meyers JD. Recurrent infection with herpes simplex virus after marrow transplantation: role of the specific immune response and acyclovir treatment. J Infect Dis. 1984;149:750–756.

    PubMed  CAS  Google Scholar 

  144. Lopez-Botet M, De Landazuri MO, Izquierdo M, Ramirez A, Camara R, Fernandez-Ranada J. Defective interleukin 2 receptor expression is associated with the T cell disfunction subsequent to bone marrow transplantation. Eur J Immunol. 1987;17:1167–1174.

    PubMed  CAS  Google Scholar 

  145. Yamagami M, McFadden PW, Koethe SM, Ratanatharathorn V, Lum LG. Failure of T cell receptor-anti-CD3 monoclonal antibody interaction in T cells from marrow recipients to induce increases in intracellular ionized calcium. J Clin Invest. 1990;86:1347–1351.

    PubMed  CAS  Google Scholar 

  146. Hebart H, Daginik S, Stevanovic S et al. Sensitive detection of human cytomega-lovirus peptide-specific cytotoxic T-lymphocyte responses by interferon-gamma -enzyme-linked immunospot assay and flow cytometry in healthy individuals and in patients after allogeneic stem cell transplantation. Blood. 2002;99:3830–3837.

    PubMed  CAS  Google Scholar 

  147. Hakki M, Riddell SR, Storek J et al. Immune reconstitution to cytomegalovirus after allogeneic hematopoietic stem cell transplantation: impact of host factors, drug therapy, and subclinical reactivation. Blood. 2003.

    Google Scholar 

  148. Lacey SF, Diamond DJ, Zaia JA. Assessment of cellular immunity to human cytomegalovirus in recipients of allogeneic stem cell transplants. Biol Blood Marrow Transplant. 2004;10:433–447.

    PubMed  Google Scholar 

  149. Duncombe AS, Grundy JE, Oblakowski P et al. Bone marrow transplant recipients have defective MHC-unrestricted cytotoxic responses against cytomegalovirus in comparison with Epstein-Barr virus: the importance of target cell expression of lymphocyte function-associated antigen 1 (LFA1). Blood. 1992;79:3059–3066.

    PubMed  CAS  Google Scholar 

  150. Gross TG, Steinbuch M, DeFor T et al. B cell lymphoproliferative disorders following hematopoietic stem cell transplantation: risk factors, treatment and outcome. Bone Marrow Transplant. 1999;23:251–258.

    PubMed  CAS  Google Scholar 

  151. Meijer E, Slaper-Cortenbach IC, Thijsen SF, Dekker AW, Verdonck LF. Increased incidence of EBV-associated lymphoproliferative disorders after allogeneic stem cell transplantation from matched unrelated donors due to a change of T cell depletion technique. Bone Marrow Transplant. 2002;29:335–339.

    PubMed  CAS  Google Scholar 

  152. Lucas KG, Small TN, Heller G, Dupont B, O'Reilly RJ. The development of cellular immunity to Epstein-Barr virus after allogeneic bone marrow transplantation. Blood. 1996;87:2594–2603.

    PubMed  CAS  Google Scholar 

  153. Aljurf M, Ezzat A, M OM. Emerging role of gammadelta T-cells in health and disease. Blood Rev. 2002;16:203–206.

    PubMed  Google Scholar 

  154. Drobyski WR, Majewski D, Hanson G. Graft-facilitating doses of ex vivo activated gamma/delta T cells do not cause lethal murine graft-vs.-host disease. Biol Blood Marrow Transplant. 1999;5:222–230.

    PubMed  CAS  Google Scholar 

  155. Kawanishi Y, Passweg J, Drobyski WR et al. Effect of T cell subset dose on outcome of T cell-depleted bone marrow transplantation. Bone Marrow Transplant. 1997;19:1069–1077.

    PubMed  CAS  Google Scholar 

  156. Gratama JW, Fibbe WE, Visser JW, Kluin-Nelemans HC, Ginsel LA, Bolhuis RL. CD3+, 4+ and/or 8+ T cells and CD3+, 4−, 8− T cells repopulate at different rates after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1989;4:291–296.

    PubMed  CAS  Google Scholar 

  157. Dechanet J, Merville P, Lim A et al. Implication of gamma/delta T cells in the human immune response to cytomegalovirus. J Clin Invest. 1999;103:1437–1449.

    PubMed  CAS  Google Scholar 

  158. Cela ME, Holladay MS, Rooney CM et al. Gamma delta T lymphocyte regeneration after T lymphocyte-depleted bone marrow transplantation from mismatched family members or matched unrelated donors. Bone Marrow Transplant. 1996;17:243–247.

    PubMed  CAS  Google Scholar 

  159. van der Harst D, Brand A, van Luxemburg-Heijs SA, Kooij-Winkelaar YM, Zwaan FE, Koning F. Selective outgrowth of CD45RO+ V gamma 9+/V delta 2+ T-cell receptor gamma/delta T cells early after bone marrow transplantation. Blood. 1991;78:1875–1881.

    PubMed  Google Scholar 

  160. Travers PJ, Knight A, Grace S, Kottaridis P, Mackinnon S. Asymmetric reconsti-tution of gamma/delta T cell subsets after hemapoietic stem cell transplantation. Blood. 2006;108:823a.

    Google Scholar 

  161. Liu W, Putnam AL, Xu-Yu Z et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med. 2006;203:1701–1711.

    PubMed  CAS  Google Scholar 

  162. Clark FJ, Gregg R, Piper K et al. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25high regulatory T cells. Blood. 2004;103:2410–2416.

    PubMed  CAS  Google Scholar 

  163. Miura Y, Thoburn CJ, Bright EC et al. Association of Foxp3 regulatory gene expression with graft-versus-host disease. Blood. 2004;104:2187–2193.

    PubMed  CAS  Google Scholar 

  164. Seidel MG, Ernst U, Printz D et al. Expression of the putatively regulatory T-cell marker FOXP3 by CD4(+)CD25+ T cells after pediatric hematopoietic stem cell transplantation. Haematologica. 2006;91:566–569.

    PubMed  CAS  Google Scholar 

  165. Le NT, Chao N. Regulating regulatory T cells. Bone Marrow Transplant. 2007;39:1–9.

    PubMed  CAS  Google Scholar 

  166. Johnson BD, Konkol MC, Truitt RL. CD25+ immunoregulatory T-cells of donor origin suppress alloreactivity after BMT. Biol Blood Marrow Transplant. 2002;8:525–535.

    PubMed  Google Scholar 

  167. Small TN, Keever CA, Weiner-Fedus S, Heller G, O'Reilly RJ, Flomenberg N. B-Cell differentiation following autologous, conventional or T-cell depleted bone marrow transplantation: A recapitulation of normal B-cell ontogeny. Blood. 1990;76:1647–1656.

    PubMed  CAS  Google Scholar 

  168. Storek J, Saxon A. Reconstitution of B cell immunity following bone marrow transplantation. Bone Marrow Transplant. 1992;9:395–408.

    PubMed  CAS  Google Scholar 

  169. D'Costa S, Slobod KS, Benaim E et al. Effect of extended immunosuppressive drug treatment on B cell vs T cell reconstitution in pediatric bone marrow transplant recipients. Bone Marrow Transplant. 2001;28:573–580.

    PubMed  Google Scholar 

  170. Ault KA, Antin JH, Ginsburg D et al. Phenotype of recovering lymphoid cell populations after marrow transplantation. J Exp Med. 1985;161:1483.

    PubMed  CAS  Google Scholar 

  171. Storek J, Witherspoon RP, Luthy D, Storb R. Low IgG production by mononu-clear cells from marrow transplant survivors and from normal neonates is due to a defect of B cells. Bone Marrow Transplant. 1995;15:679–684.

    PubMed  CAS  Google Scholar 

  172. Storek J, Ferrara S, Ku N, Giorgi JV, Champlin RE, Saxon A. B cell reconstitu-tion after human bone marrow transplantation: recapitulation of ontogeny? Bone Marrow Transplant. 1993;12:387–398.

    CAS  Google Scholar 

  173. Chan EY, Lawton JW, Lie AK, Lau CS. Autoantibody formation after allogeneic bone marrow transplantation: correlation with the reconstitution of CD5+ B cells and occurrence of graft-versus-host disease. Pathology. 1997;29:184–188.

    PubMed  CAS  Google Scholar 

  174. Fumoux F, Guigou V, Blaise D, Maraninchi D, Fougereau M, Schiff C. Reconstitution of human immunoglobulin VH repertoire after bone marrow transplantation mimics B-cell ontogeny. Blood. 1993;81:3153–3157.

    PubMed  CAS  Google Scholar 

  175. Storek J, King L, Ferrara S, Marcelo D, Saxon A, Braun J. Abundance of a restricted fetal B cell repertoire in marrow transplant recipients. Bone Marrow Transplant. 1994;14:783–790.

    PubMed  CAS  Google Scholar 

  176. Gokmen E, Raaphorst FM, Boldt DH, Teale JM. Ig heavy chain third complementarity determining regions (H CDR3s) after stem cell transplantation do notresemble the developing human fetal H CDR3s in size distribution and Ig gene utilization. Blood. 1998 92:2802–2814.

    PubMed  CAS  Google Scholar 

  177. Suzuki I, Milner EC, Glas AM et al. Immunoglobulin heavy chain variable region gene usage in bone marrow transplant recipients: lack of somatic mutation indicates a maturational arrest. Blood. 1996;87:1873–1880.

    PubMed  CAS  Google Scholar 

  178. Raaphorst FM. Reconstitution of the B cell repertoire after bone marrow transplantation does not recapitulate human fetal development. Bone Marrow Transplant. 1999;24:1267–1272.

    PubMed  CAS  Google Scholar 

  179. Lum LG, Seigneuret MC, Storb RF, Witherspoon RP, Thomas ED. In vitro regulation of immunoglobulin synthesis after marrow transplantation. I. T-cell and B-cell deficiencies in patients with and without chronic graft-versus-host disease. Blood. 1981;58:431–439.

    PubMed  CAS  Google Scholar 

  180. Witherspoon RP, Goehle S, Kretschmer M, Storb R. Regulation of immunoglobu-lin production after human marrow grafting. The role of helper and suppressor T cells in acute graft-versus-host disease. Transplantation. 1986;41:328–335.

    PubMed  CAS  Google Scholar 

  181. Klingemann HG, Lum LG, Storb R. Phenotypical and functional studies on a subtype of suppressor cells (CD8+/CD11+) in patients after bone marrow transplantation. Transplantation. 1987;44:381–386.

    PubMed  CAS  Google Scholar 

  182. Kelsey SM, Lowdell MW, Newland AC. IgG subclass levels and immune recon-stitution after T cell-depleted allogeneic bone marrow transplantation. Clin Exp Immunol. 1990;80:409–412.

    PubMed  CAS  Google Scholar 

  183. Noel DR, Witherspoon RP, Storb R et al. Does graft-versus-host disease influence the tempo of immunologic recovery after allogeneic human marrow transplantation? An observation on 56 long-term survivors. Blood. 1978;51:1087–1105.

    PubMed  CAS  Google Scholar 

  184. Sheridan JF, Tutschka PJ, Sedmak DD, Copelan EA. Immunoglobulin G subclass deficiency and pneumococcal infection after allogeneic bone marrow transplantation. Blood. 1990;75:1583–1586.

    PubMed  CAS  Google Scholar 

  185. Izutsu KT, Sullivan KM, Schubert MM et al. Disordered salivary immunoglobu-lin secretion and sodium transport in human chronic graft-versus-host disease. Transplantation. 1983;35:441–446.

    PubMed  CAS  Google Scholar 

  186. Lortan JE, Rochfort NC, el-Tumi M, Vellodi A. Autoantibodies after bone marrow transplantation in children with genetic disorders: relation to chronic graft-versus-host disease. Bone Marrow Transplant. 1992;9:325–330.

    PubMed  CAS  Google Scholar 

  187. Abedi MR, Hammarstrom L, Ringden O, Smith CI. Development of IgA deficiency after bone marrow transplantation. The influence of acute and chronic graft-versus-host disease. Transplantation. 1990;50:415–421.

    PubMed  CAS  Google Scholar 

  188. Saryan JA, Rappeport J, Leung DY, Parkman R, Geha RS. Regulation of human immu-noglobulin E synthesis in acute graft versus host disease. J Clin Invest. 1983;71:556–564.

    PubMed  CAS  Google Scholar 

  189. Walker SA, Rogers TR, Perry D, Hobbs JR, Riches PG. Increased serum IgE concentrations during infection and graft versus host disease after bone marrow transplantation. J Clin Pathol. 1984;37:460–462.

    PubMed  CAS  Google Scholar 

  190. Lum LG, Munn NA, Schanfield MS, Storb R. The detection of specific antibody formation to recall antigens after human bone marrow transplantation. Blood. 1986;67:582–587.

    PubMed  CAS  Google Scholar 

  191. Lum LG, Noges JE, Beatty P et al. Transfer of specific immunity in marrow recipients given HLA-mismatched, T cell-depleted, or HLA-identical grafts. Bone Marrow Transp. 1988;3:399–406.

    CAS  Google Scholar 

  192. Wahren B, Gahrton G, Linde A et al. Transfer and persistence of viral antibody-producing cells in bone marrow transplantation. J Infect Dis. 1984;150:358–365.

    PubMed  CAS  Google Scholar 

  193. Saxon A, Mitsuyasu R, Stevens R, Champlin RE, Kimata H, Gale RP. Designed transfer of specific immune responses with bone marrow transplantation. J Clin Invest. 1986;78:959–967.

    PubMed  CAS  Google Scholar 

  194. Wimperis JZ, Brenner MK, Prentice HG et al. Transfer of a functioning humoral immune system in transplantation of T-lymphocyte-depleted bone marrow. Lancet. 1986;1:339–343.

    PubMed  CAS  Google Scholar 

  195. Shiobara S, Lum LG, Witherspoon RP, Storb R. Antigen-specific antibody responses of lymphocytes to tetanus toxoid after human marrow transplantation. Transplantation. 1986;41:587–592.

    PubMed  CAS  Google Scholar 

  196. Vavassori M, Maccario R, Moretta A et al. Restricted TCR repertoire and long-term persistence of donor-derived antigen-experienced CD4+ T cells in allogeneic bone marrow transplantation recipients. J Immunol. 1996;157:5739–5747.

    PubMed  CAS  Google Scholar 

  197. Chaushu S, Chaushu G, Garfunkel AA, Slavin S, Or R, Yefenof E. Salivary immu-noglobulins in recipients of bone marrow grafts. I. A longitudinal follow-up. Bone Marrow Transplant. 1994;14:871–876.

    PubMed  CAS  Google Scholar 

  198. Wimperis JZ, Brenner MK, Prentice HG, Thompson EJ, Hoffbrand AV. B cell development and regulation after T cell-depleted marrow transplantation. J Immunol. 1987;138:2445–2450.

    PubMed  CAS  Google Scholar 

  199. Ljungman P, Duraj V, Magnius L. Response to immunization against polio after allogeneic marrow transplantation. Bone Marrow Transplant. 1991;7:89–93.

    PubMed  CAS  Google Scholar 

  200. Witherspoon RP, Storb R, Ochs HD et al. Recovery of antibody production in human allogeneic marrow graft recipients: influence of time posttransplantation, the presence or absence of chronic graft-versus-host disease, and antithymocyte globulin treatment. Blood. 1981;58:360–368.

    PubMed  CAS  Google Scholar 

  201. Guinan EC, Molrine DC, Antin JH et al. Polysaccharide conjugate vaccine responses in bone marrow transplant patients. Transplantation. 1994;57:677–684.

    PubMed  CAS  Google Scholar 

  202. King SM, Saunders EF, Petric M, Gold R. Response to measles, mumps and rubella vaccine in paediatric bone marrow transplant recipients. Bone Marrow Transplant. 1996;17:633–636.

    PubMed  CAS  Google Scholar 

  203. Gerritsen EJ, Van Tol MJ, Van't Veer MB et al. Clonal dysregulation of the antibody response to tetanus-toxoid after bone marrow transplantation. Blood. 1994;84:4374–4382.

    PubMed  CAS  Google Scholar 

  204. Engelhard D, Nagler A, Hardan I et al. Antibody response to a two-dose regimen of influenza vaccine in allogeneic T cell-depleted and autologous BMT recipients. Bone Marrow Transplant. 1993;11:1–5.

    PubMed  CAS  Google Scholar 

  205. Engelhard D, Handsher R, Naparstek E et al. Immune response to polio vaccination in bone marrow transplant recipients. Bone Marrow Transplant. 1991;8:295–300.

    PubMed  CAS  Google Scholar 

  206. Mohty M, Kuentz M, Michallet M et al. Chronic graft-versus-host disease after allogeneic blood stem cell transplantation: long-term results of a randomized study. Blood. 2002;100:3128–3134.

    PubMed  CAS  Google Scholar 

  207. Nemunaitis J, Rosenfeld CS, Ash R et al. Phase III randomized, double-blind placebo-controlled trial of rhGM-CSF following allogeneic bone marrow transplantation. Bone Marrow Transplant. 1995;15:949–954.

    PubMed  CAS  Google Scholar 

  208. Powles R, Smith C, Milan S et al. Human recombinant GM-CSF in allogeneic bone-marrow transplantation for leukaemia: double-blind, placebo-controlled trial. Lancet. 1990;336:1417–1420.

    PubMed  CAS  Google Scholar 

  209. Lazarus HM, Rowe JM. Clinical use of hematopoietic growth factors in allogeneic bone marrow transplantation. Blood Rev. 1994;8:169–178.

    PubMed  CAS  Google Scholar 

  210. Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res. 2004;91:69–136.

    PubMed  CAS  Google Scholar 

  211. Min D, Taylor PA, Panoskaltsis-Mortari A et al. Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood. 2002;99:4592–4600.

    PubMed  CAS  Google Scholar 

  212. Alpdogan O, Hubbard VM, Smith OM et al. Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood. 2006;107:2453–2460.

    PubMed  CAS  Google Scholar 

  213. Welte K, Ciobanu N, Moore MA, Gulati S, O'Reilly RJ, Mertelsmann R. Defective interleukin 2 production in patients after bone marrow transplantation and in vitro restoration of defective T lymphocyte proliferation by highly purified interleukin 2. Blood. 1984;64:380–385.

    PubMed  CAS  Google Scholar 

  214. Welte K, Keever CA, Levick J et al. Interleukin-2 production and response to interleukin-2 by peripheral blood mononuclear cells from patients after bone marrow transplantation. II. Patients receiving soybean lectin-separated and T cell-depleted bone marrow. Blood. 1987;70:1595–1603.

    PubMed  CAS  Google Scholar 

  215. Robinson N, Sanders JE, Benyunes MC et al. Phase I trial of interleukin-2 after unmodified HLA-matched sibling bone marrow transplantation for children with acute leukemia. Blood. 1996;87:1249–1254.

    PubMed  CAS  Google Scholar 

  216. Soiffer R, Murray C, Cochran K et al. Clinical and immunologic effects of prolonged infusion of low-dose recombinant interleukin-2 after autologous and T-cell-depleted allogeneic bone marrow transplantation. Blood. 1992;79: 517–526.

    PubMed  CAS  Google Scholar 

  217. Soiffer R, Murray C, Gonin R, Ritz J. Effect of low-dose interleukin-2 on disease relapse after T-cell- depleted allogeneic bone marrow transplantation Blood. 1994;84:964–971.

    PubMed  CAS  Google Scholar 

  218. Zhang H, Chua KS, Guimond M et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nat Med. 2005;11:1238–1243.

    PubMed  CAS  Google Scholar 

  219. Fry TJ, Mackall CL. Interleukin-7: from bench to clinic. Blood. 2002;99: 3892–3904.

    PubMed  CAS  Google Scholar 

  220. Snyder KM, Mackall CL, Fry TJ. IL-7 in allogeneic transplant: clinical promise and potential pitfalls. Leuk Lymphoma. 2006;47:1222–1228.

    PubMed  CAS  Google Scholar 

  221. Abdul-Hai A, Or R, Slavin S et al. Stimulation of immune reconstitution by interleukin-7 after syngeneic bone marrow transplantation in mice. Exp Hematol. 1996;24:1416–1422.

    PubMed  CAS  Google Scholar 

  222. Alpdogan O, Schmaltz C, Muriglan SJ et al. Administration of interleukin-7 after allogeneic bone marrow transplantation improves immune reconstitution without aggravating graft-versus-host disease. Blood. 2001;98:2256–2265.

    PubMed  CAS  Google Scholar 

  223. Bolotin E, Smogorzewska M, Smith S, Widmer M, Weinberg K. Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood. 1996;88:1887–1894.

    PubMed  CAS  Google Scholar 

  224. Fry TJ, Christensen BL, Komschlies KL, Gress RE, Mackall CL. Interleukin-7 restores immunity in athymic T-cell-depleted hosts. Blood. 2001;97:1525–1533.

    PubMed  CAS  Google Scholar 

  225. Geiselhart LA, Humphries CA, Gregorio TA, Mou S, Subleski J, Komschlies KL. IL-7 administration alters the CD4:CD8 ratio, increases T cell numbers, and increases T cell function in the absence of activation. J Immunol. 2001;166: 3019–3027.

    PubMed  CAS  Google Scholar 

  226. Mackall CL, Fry TJ, Bare C, Morgan P, Galbraith A, Gress RE. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood. 2001;97:1491–1497.

    PubMed  CAS  Google Scholar 

  227. Alpdogan O, Muriglan SJ, Eng JM et al. IL-7 enhances peripheral T cell recon-stitution after allogeneic hematopoietic stem cell transplantation. J Clin Invest. 2003;112:1095–1107.

    PubMed  CAS  Google Scholar 

  228. Sinha ML, Fry TJ, Fowler DH, Miller G, Mackall CL. Interleukin 7 worsens graft-versus-host disease. Blood. 2002;100:2642–2649.

    PubMed  CAS  Google Scholar 

  229. Rosenberg SA, Sportes C, Ahmadzadeh M et al. IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J Immunother. 2006;29:313–319.

    PubMed  CAS  Google Scholar 

  230. Sportes C, Krumlauf M, Babb R et al. IL7 administration in humans results in preferential expansion of naive and memory CD4+ & CD8+ T cells with a relative decrease in regulatory T-cells (T-Regs). Blood. 2006;108:261a.

    Google Scholar 

  231. Alpdogan O, Eng JM, Muriglan SJ et al. Interleukin-15 enhances immune reconstitution after allogeneic bone marrow transplantation. Blood. 2005;105: 865–873.

    PubMed  CAS  Google Scholar 

  232. Storb R, Doney KC, Thomas ED et al. Marrow transplantation with or without donor buffy coat cells for 65 transfused aplastic anemia patients. Blood. 1982;59:236–246.

    PubMed  CAS  Google Scholar 

  233. Mackinnon S, Papadopoulos EB, Carabasi MH et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood. 1995;86:1261–1268.

    PubMed  CAS  Google Scholar 

  234. Papadopoulos EB, Ladanyi M, Emanuel D et al. Infusions of donor leukocytes to treat Epstein-barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med. 1994;330:1185–1191.

    PubMed  CAS  Google Scholar 

  235. Roback JD. Vaccine-Enhanced Donor Lymphocyte Infusion (veDLI). Hematology Am Soc Hematol Educ Program. 2006:486–491.

    Google Scholar 

  236. Shenoy AG, Solomon SR, Pichon S, Cadoz M, Hensel NA, Barett J. Protecting stem cell transplant recipients against CMV reactivation by vaccinating their don-ros with a canarypox pp65 vacine (ALVAC). Blood. 2006;108:#590.

    Google Scholar 

  237. Tiberghien P, Ferrand C, Lioure B et al. Administration of herpes simplex-thy-midine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood. 2001;97:63–72.

    PubMed  CAS  Google Scholar 

  238. Ciceri F, Bonini C, Gallo-Stampino C, Bordignon C. Modulation of GvHD by suicide-gene transduced donor T lymphocytes: clinical applications in mismatched transplantation. Cytotherapy. 2005;7:144–149.

    PubMed  CAS  Google Scholar 

  239. Robinet E, Fehse B, Ebeling S, Sauce D, Ferrand C, Tiberghien P. Improving the ex vivo retroviral-mediated suicide-gene transfer process in T lymphocytes to preserve immune function. Cytotherapy. 2005;7:150–157.

    PubMed  CAS  Google Scholar 

  240. Alyea EP, Canning C, Neuberg D et al. CD8+ cell depletion of donor lymphocyte infusions using CD8 monoclonal antibody-coated high-density microparticles (CD8-HDM) after allogeneic hematopoietic stem cell transplantation: a pilot study. Bone Marrow Transplant. 2004;34:123–128.

    PubMed  CAS  Google Scholar 

  241. Nimer SD, Giorgi J, Gajewski JL et al. Selective depletion of CD8+ cells for prevention of graft-versus-host disease after bone marrow transplantation. A randomized controlled trial. Transplantation. 1994;57:82–87.

    PubMed  CAS  Google Scholar 

  242. Corradini P, Raganato A, Carniti C et al. CD8-depleted donor lymphocyte infusions can boost immune reconstitution after haploidentica stem cell transplantation following a reduced -intensity conditioning regimen. Blood. 2006;108:#3138.

    Google Scholar 

  243. Meyer RG, Britten CM, Wehler D et al. Prophylactic transfer of CD8-depleted donor lymphocytes after T-cell depleted reduced-intensity transplantation. Blood. 2006.

    Google Scholar 

  244. Thiele DL, Lipsky PE. The action of leucyl-leucine methyl ester on cytotoxic lymphocytes requires uptake by a novel dipeptide-specific facilitated transport system and dipeptidyl peptidase I-mediated conversion to membranolytic products. J Exp Med. 1990;172:183–194.

    PubMed  CAS  Google Scholar 

  245. Thiele DL, Lipsky PE. Mechanism of L-leucyl-L-leucine methyl ester-mediated killing of cytotoxic lymphocytes: dependence on a lysosomal thiol protease, dipeptidyl peptidase I, that is enriched in these cells. Proc Natl Acad Sci U S A. 1990;87:83–87.

    PubMed  CAS  Google Scholar 

  246. Thiele DL, Lipsky PE. Apoptosis is induced in cells with cytolytic potential by L-leucyl-L- leucine methyl ester. J Immunol. 1992;148:3950–3957.

    PubMed  CAS  Google Scholar 

  247. Charley M, Thiele DL, Bennett M, Lipsky PE. Prevention of lethal murine graft versus host disease by treatment of donor cells with L-leucyl-L-leucine methyl ester. J Clin Invest. 1986;78:1415–1420.

    PubMed  CAS  Google Scholar 

  248. Pecora AL, Bordignon C, Fumagalli L et al. Characterization of the in vitro sensitivity of human lymphoid and hematopoietic progenitors to L-leucyl-L-leucine methyl ester. Transplantation. 1991;51:524–531.

    PubMed  CAS  Google Scholar 

  249. Rosenfeld CS, Thiele DL, Shadduck RK, Zeigler ZR, Schindler J. Ex vivo purging of allogeneic marrow with L-Leucyl-L-leucine methyl ester. A phase I study. Transplantation. 1995;60:678–683.

    PubMed  CAS  Google Scholar 

  250. Hsieh MH, Varadi G, Flomenberg N, Korngold R. Leucyl-leucine methyl ester-treated haploidentical donor lymphocyte infusions can mediate graft-versus-leukemia activity with minimal graft-versus-host disease risk. Biol Blood Marrow Transplant. 2002;8:303–315.

    PubMed  CAS  Google Scholar 

  251. Filicko J, Grosso D, Flomenberg P et al. Accelerated immune recovery following LLME treated donor lymphocyte infusion. Biol Blood and Marrow Transplant. 2006;12:77.

    Google Scholar 

  252. Amrolia PJ, Muccioli-Casadei G, Huls H et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood. 2006;108:1797–1808.

    PubMed  CAS  Google Scholar 

  253. Andre-Schmutz I, Le Deist F, Hacein-Bey-Abina S et al. Immune reconstitution without graft-versus-host disease after haemopoietic stem-cell transplantation: a phase 1/2 study. Lancet. 2002;360:130–137.

    PubMed  Google Scholar 

  254. Andre-Schmutz I, Dal Cortivo L, Fischer A, Cavazzana-Calvo M. Improving immune reconstitution while preventing GvHD in allogeneic stem cell transplantation. Cytotherapy. 2005;7:102–108.

    PubMed  CAS  Google Scholar 

  255. Boumedine RS, Roy DC. Elimination of alloreactive T cells using photodynamic therapy. Cytotherapy. 2005;7:134–143.

    PubMed  CAS  Google Scholar 

  256. Le NT, Chen BJ, Chao NJ. Selective elimination of alloreactivity from immu-notherapeutic T cells by photodynamic cell purging and memory T-cell sorting. Cytotherapy. 2005;7:126–133.

    PubMed  CAS  Google Scholar 

  257. Greenberg PD, Reusser P, Goodrich JM, Riddell SR. Development of a treatment regimen for human cytomegalovirus (CMV) infection in bone marrow transplantation recipients by adoptive transfer of donor-derived CMV-specific T cell clones expanded in vitro. Ann N Y Acad Sci. 1991;636:184–195.

    PubMed  CAS  Google Scholar 

  258. Peggs K, Verfuerth S, Mackinnon S. Induction of cytomegalovirus (CMV)-spe-cific T-cell responses using dendritic cells pulsed with CMV antigen: a novel culture system free of live CMV virions Blood. 2001;97:994–1000.

    PubMed  CAS  Google Scholar 

  259. Riddell S, Walter B, Gilbert M, Greenberg P. Selective reconstitution of CD8+ cyto-toxic T lymphocyte responses in immunodeficient bone marrow transplant recipients by the adoptive transfer of T cell clones. Bone Marrow Transplant. 1994;14:78–84.

    Google Scholar 

  260. Sun Q, Pollok K, Burton R et al. Simultaneous ex vivo expansion of cytomegalo-virus and Epstein-Barr virus-specific cytotoxic T lymphocytes using B-lymphob-lastoid cell lines expressing cytomegalovirus pp65. Blood. 1999;94:3242–3250.

    PubMed  CAS  Google Scholar 

  261. Einsele H, Roosnek E, Rufer N et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood. 2002;99:3916–3922.

    PubMed  CAS  Google Scholar 

  262. Peggs KS. Reconstitution of adaptive and innate immunity following allogeneic hematopoietic stem cell transplantation in humans. Cytotherapy. 2006;8:427–436.

    PubMed  CAS  Google Scholar 

  263. Heslop HE, Ng CYC, Li C et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nature Med. 1996;2:551–555.

    PubMed  CAS  Google Scholar 

  264. Rooney CM, Smith CA, Ng CY et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92:1549–1555.

    PubMed  CAS  Google Scholar 

  265. Regn S, Raffegerst S, Chen X, Schendel D, Kolb H-J, Roskrow M. Ex vivo generation of cytotoxic T lymphocytes specific for one or two distinct viruses for the prophylaxis of patients receiving an allogeneic bone marrow transplant. Bone Marrow Transplant. 2001;27:53–64.

    PubMed  CAS  Google Scholar 

  266. Leen AM, Myers GD, Sili U et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immuno-compromised individuals. Nat Med. 2006;12:1160–1166.

    PubMed  CAS  Google Scholar 

  267. Ramadan G, Davies B, Kurup VP, Keever-Taylor CA. Generation of Th1 T cell responses directed to a HLA Class II restricted epitope from the Aspergillus f16 allergen. Clin Exp Immunol. 2005;139:257–267.

    PubMed  CAS  Google Scholar 

  268. Ramadan G, Davies B, Kurup VP, Keever-Taylor CA. Generation of cytotoxic T cell responses directed to human leucocyte antigen Class I restricted epitopes from the Aspergillus f16 allergen. Clin Exp Immunol. 2005;140:81–91.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Keever-Taylor, C.A. (2008). Immune Reconstitution after Allogeneic Transplantation. In: Soiffer, R.J. (eds) Hematopoietic Stem Cell Transplantation. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-438-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-438-4_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-05-3

  • Online ISBN: 978-1-59745-438-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics