Skip to main content

Stem Cell Biology

  • Chapter
  • 1444 Accesses

Part of the book series: Contemporary Hematology ((CH))

Stem cells are functionally defined as long-lived cells that can both self-renew and differentiate into multiple cell types. Embryonic stem cells, considered totipotent cells, give rise to all embryonic tissue layers and, consequently, all tissue types. Hematologists/oncologists are perhaps most familiar with hematopoietic stem cells (HSCs): the single pluripotent cell that can give rise to all lymphoid, myeloid and erythroid cell lineages, and repopulate an ablated hematopoietic system [1, 2]. Similar paradigms appear to apply in normal nonhematopoietic tissues as well, including the liver, intestinal epithelium, enodothlium, skeletal muscle and brain. Likewise, using the same framework, cancer biologists have identified cells within a variety of tumors with cancer stem cell properties: rare cells that give rise to tumors, have the capacity to sustain a malignancy and, not surprisingly, share many features in common with tissue specific stem cells [35]. These developments create a new sense of urgency to more completely understand the biology of stem cells and their microenvironment: stem cell therapies may become standard outside the subspecialty of hematology, and across disciplines in the emerging field of regenerative medicine, and key molecular differences between normal stem cells and cancer stem cells may emerge as ideal targets for cancer therapy. The goal of this chapter is to provide an overview of current stem cell biology in this context, and its relationship to hematopoietic stem cell transplantation (HSCT).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Becker AJ,, Mc CE and Till JE Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197, 452–4 (1963).

    PubMed  CAS  Google Scholar 

  2. Osawa M, Hanada K, Hamada H and Nakauchi H Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–5 (1996).

    PubMed  CAS  Google Scholar 

  3. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100, 3983–8 (2003).

    PubMed  CAS  Google Scholar 

  4. Bonnet D and Dick JE Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3, 730–7 (1997).

    PubMed  CAS  Google Scholar 

  5. Singh SK et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    PubMed  CAS  Google Scholar 

  6. Wang JC, Doedens M and Dick JE Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 89, 3919–24 (1997).

    PubMed  CAS  Google Scholar 

  7. Morrison SJ, Hemmati HD, Wandycz AM and Weissman IL The purification and characterization of fetal liver hematopoietic stem cells. Proc Natl Acad Sci U S A 92, 10302–6 (1995).

    PubMed  CAS  Google Scholar 

  8. Spangrude GJ, Brooks DM and Tumas DB Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 85, 1006–16 (1995).

    PubMed  CAS  Google Scholar 

  9. Spangrude GJ, Heimfeld S and Weissman IL Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    PubMed  CAS  Google Scholar 

  10. Kiel MJ et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–21 (2005).

    PubMed  CAS  Google Scholar 

  11. Goodell MA et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3, 1337–45 (1997).

    PubMed  CAS  Google Scholar 

  12. Goodell MA, Brose K, Paradis G, Conner AS and Mulligan RC Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183, 1797–806 (1996).

    PubMed  CAS  Google Scholar 

  13. BitMansour A et al. Myeloid progenitors protect against invasive aspergillosis and Pseudomonas aeruginosa infection following hematopoietic stem cell transplantation. Blood 100, 4660–7 (2002).

    PubMed  CAS  Google Scholar 

  14. Uchida N, Aguila HL, Fleming WH, Jerabek L and Weissman IL Rapid and sustained hematopoietic recovery in lethally irradiated mice transplanted with purified Thy-1.1lo Lin-Sca-1+ hematopoietic stem cells. Blood 83, 3758–79 (1994).

    PubMed  CAS  Google Scholar 

  15. Dorrell C, Gan OI, Pereira DS, Hawley RG and Dick JE Expansion of human cord blood CD34(+)CD38(−) cells in ex vivo culture during retroviral transduc-tion without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood 95, 102–10 (2000).

    PubMed  CAS  Google Scholar 

  16. Lapidot T et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255, 1137–41 (1992).

    PubMed  CAS  Google Scholar 

  17. Guenechea G, Gan OI, Dorrell C and Dick JE Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2, 75–82 (2001).

    PubMed  CAS  Google Scholar 

  18. Bhatia M, Bonnet D, Murdoch B, Gan OI and Dick JE A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4, 1038–45 (1998).

    PubMed  CAS  Google Scholar 

  19. McKenzie JL, Gan OI, Doedens M, Wang JC and Dick JE Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nat Immunol 7, 1225–33 (2006).

    PubMed  CAS  Google Scholar 

  20. Schofield R The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

    PubMed  CAS  Google Scholar 

  21. Dexter TM, Allen TD and Lajtha LG Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91, 335–44 (1977).

    PubMed  CAS  Google Scholar 

  22. Taichman R, Reilly M, Verma R, Ehrenman K and Emerson S Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. Br J Haematol 112, 438–48 (2001).

    PubMed  CAS  Google Scholar 

  23. Taichman RS, Reilly MJ, Verma RS and Emerson SG Augmented production of interleukin-6 by normal human osteoblasts in response to CD34+ hematopoietic bone marrow cells in vitro. Blood 89, 1165–72 (1997).

    PubMed  CAS  Google Scholar 

  24. Taichman RS and Emerson SG Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179, 1677–82 (1994).

    PubMed  CAS  Google Scholar 

  25. Deguchi K et al. Excessive extramedullary hematopoiesis in Cbfa1-deficient mice with a congenital lack of bone marrow. Biochem Biophys Res Commun 255, 352–9 (1999).

    PubMed  CAS  Google Scholar 

  26. Visnjic D et al. Hematopoiesis is severely altered in mice with an induced osteob-last deficiency. Blood 103, 3258–64 (2004).

    PubMed  CAS  Google Scholar 

  27. Zhang J et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–41 (2003).

    PubMed  CAS  Google Scholar 

  28. Calvi LM et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–6 (2003).

    PubMed  CAS  Google Scholar 

  29. Sipkins DA et al. In vivo imaging of specialized bone marrow endothelial micro-domains for tumour engraftment. Nature 435, 969–73 (2005).

    PubMed  CAS  Google Scholar 

  30. Avecilla ST et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10, 64–71 (2004).

    PubMed  CAS  Google Scholar 

  31. Wilson A and Trumpp A Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6, 93–106 (2006).

    PubMed  CAS  Google Scholar 

  32. Heissig B et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–37 (2002).

    PubMed  CAS  Google Scholar 

  33. Lechler T and Fuchs E Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–80 (2005).

    PubMed  CAS  Google Scholar 

  34. Betschinger J and Knoblich JA Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 14, R674–85 (2004).

    PubMed  CAS  Google Scholar 

  35. Danet GH, Pan Y, Luongo JL, Bonnet DA and Simon MC Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112, 126–35 (2003).

    PubMed  CAS  Google Scholar 

  36. Cipolleschi MG, Dello Sbarba P and Olivotto M The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82, 2031–7 (1993).

    PubMed  CAS  Google Scholar 

  37. Lennon DP, Edmison JM and Caplan AI Cultivation of rat marrow-derived mes-enchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187, 345–55 (2001).

    PubMed  CAS  Google Scholar 

  38. Janowska-Wieczorek A, Marquez LA, Dobrowsky A, Ratajczak MZ and Cabuhat ML Differential MMP and TIMP production by human marrow and peripheral blood CD34(+) cells in response to chemokines. Exp Hematol 28, 1274–85 (2000).

    PubMed  CAS  Google Scholar 

  39. Peled A et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–8 (1999).

    PubMed  CAS  Google Scholar 

  40. Kollet O et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest 112, 160–9 (2003).

    PubMed  CAS  Google Scholar 

  41. Ceradini DJ et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10, 858–64 (2004).

    PubMed  CAS  Google Scholar 

  42. Staller P et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425, 307–11 (2003).

    PubMed  CAS  Google Scholar 

  43. Lapidot T, Dar A and Kollet O How do stem cells find their way home? Blood 106, 1901–10 (2005).

    PubMed  CAS  Google Scholar 

  44. Cottler-Fox MH et al. Stem cell mobilization. Hematology Am Soc Hematol Educ Program, 419–37 (2003).

    Google Scholar 

  45. Broxmeyer HE et al. Transgenic expression of stromal cell-derived factor-1/CXC chemokine ligand 12 enhances myeloid progenitor cell survival/antiapoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis in vivo. J Immunol 170, 421–9 (2003).

    PubMed  CAS  Google Scholar 

  46. Christopherson KW, 2nd, Hangoc, G. and Broxmeyer, H.E. Cell surface pepti-dase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived fac-tor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 169, 7000–8 (2002).

    PubMed  CAS  Google Scholar 

  47. Christopherson KW, 2nd, Hangoc G, Mantel CR and Broxmeyer HE Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305, 1000–3 (2004).

    PubMed  CAS  Google Scholar 

  48. Levesque JP, Hendy J, Winkler IG, Takamatsu Y and Simmons PJ Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 31, 109–17 (2003).

    PubMed  CAS  Google Scholar 

  49. Levesque JP et al. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 30, 440–9 (2002).

    PubMed  CAS  Google Scholar 

  50. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN and Simmons PJ Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98, 1289–97 (2001).

    PubMed  CAS  Google Scholar 

  51. Pruijt JF et al. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci U S A 99, 6228–33 (2002).

    PubMed  CAS  Google Scholar 

  52. Jilma B et al. Granulocyte colony-stimulating factor (G-CSF) downregulates its receptor (CD114) on neutrophils and induces gelatinase B release in humans. Br J Haematol 111, 314–20 (2000).

    PubMed  CAS  Google Scholar 

  53. Christopherson KW, Cooper S, Hangoc G and Broxmeyer HE CD26 is essential for normal G-CSF-induced progenitor cell mobilization as determined by CD26− /− mice. Exp Hematol 31, 1126–34 (2003).

    PubMed  CAS  Google Scholar 

  54. Broxmeyer HE et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201, 1307–18 (2005).

    PubMed  CAS  Google Scholar 

  55. Barosi G et al. Diagnostic and clinical relevance of the number of circulating CD34(+) cells in myelofibrosis with myeloid metaplasia. Blood 98, 3249–55 (2001).

    PubMed  CAS  Google Scholar 

  56. Guglielmelli P et al. Molecular profiling of CD34+ cells in idiopathic myelofibro-sis identifies a set of disease-associated genes and reveals the clinical significance of Wilms' Tumor Gene 1 (WT1). Stem Cells 25, 165–73 (2007).

    PubMed  CAS  Google Scholar 

  57. Xu M et al. The constitutive mobilization of bone marrow-repopulating cells into the peripheral blood in idiopathic myelofibrosis. Blood 105, 1699–705 (2005).

    PubMed  CAS  Google Scholar 

  58. Xu M et al. Constitutive mobilization of CD34+ cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases. Blood 105, 4508–15 (2005).

    PubMed  CAS  Google Scholar 

  59. Scott MP et al. The molecular organization of the Antennapedia locus of Drosophila. Cell 35, 763–76 (1983).

    PubMed  CAS  Google Scholar 

  60. Levine M, Hafen E, Garber RL and Gehring WJ Spatial distribution of Antennapedia transcripts during Drosophila development. Embo J 2, 2037–46 (1983).

    PubMed  CAS  Google Scholar 

  61. Sauvageau G et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 91, 12223–7 (1994).

    PubMed  CAS  Google Scholar 

  62. Giampaolo A et al. Key functional role and lineage-specific expression of selected HOXB genes in purified hematopoietic progenitor differentiation. Blood 84, 3637–47 (1994).

    PubMed  CAS  Google Scholar 

  63. Lawrence HJ et al. Stage- and lineage-specific expression of the HOXA10 home-obox gene in normal and leukemic hematopoietic cells. Exp Hematol 23, 1160–6 (1995).

    PubMed  CAS  Google Scholar 

  64. Sauvageau G et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 9, 1753–65 (1995).

    PubMed  CAS  Google Scholar 

  65. Stein MI, Zhu J and Emerson SG Molecular pathways regulating the self-renewal of hematopoietic stem cells. Exp Hematol 32, 1129–36 (2004).

    PubMed  CAS  Google Scholar 

  66. Stier S, Cheng T, Dombkowski D, Carlesso N and Scadden DT Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99, 2369–78 (2002).

    PubMed  CAS  Google Scholar 

  67. Carlesso N, Aster JC, Sklar J and Scadden DT Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 93, 838–48 (1999).

    PubMed  CAS  Google Scholar 

  68. Cheng T et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–8 (2000).

    PubMed  CAS  Google Scholar 

  69. Cheng T, Rodrigues N, Dombkowski D, Stier S and Scadden DT Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med 6, 1235–40 (2000).

    PubMed  CAS  Google Scholar 

  70. Park IK et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–5 (2003).

    PubMed  CAS  Google Scholar 

  71. Akashi K et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 101, 383–9 (2003).

    PubMed  CAS  Google Scholar 

  72. Park IK, Morrison SJ and Clarke MF Bmi1, stem cells, and senescence regulation. J Clin Invest 113, 175–9 (2004).

    PubMed  CAS  Google Scholar 

  73. Lessard J and Sauvageau G Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–60 (2003).

    PubMed  CAS  Google Scholar 

  74. Molofsky AV et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–7 (2003).

    PubMed  CAS  Google Scholar 

  75. Bodnar AG et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–52 (1998).

    PubMed  CAS  Google Scholar 

  76. Lee HW et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–74 (1998).

    PubMed  CAS  Google Scholar 

  77. Samper E et al. Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 99, 2767–75 (2002).

    PubMed  CAS  Google Scholar 

  78. Hamburger AW and Salmon SE Primary bioassay of human tumor stem cells. Science 197, 461–3 (1977).

    PubMed  CAS  Google Scholar 

  79. Park CH, Bergsagel DE and McCulloch EA Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst 46, 411–22 (1971).

    PubMed  CAS  Google Scholar 

  80. Bruce WR and Van Der Gaag H A Quantitative Assay For The Number Of Murine Lymphoma Cells Capable Of Proliferation In Vivo. Nature 199, 79–80 (1963).

    PubMed  CAS  Google Scholar 

  81. Fialkow PJ, Jacobson RJ and Papayannopoulou T Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 63, 125–30 (1977).

    PubMed  CAS  Google Scholar 

  82. Sabbath KD, Ball ED, Larcom P, Davis RB and Griffin JD Heterogeneity of clo-nogenic cells in acute myeloblastic leukemia. J Clin Invest 75, 746–53 (1985).

    PubMed  CAS  Google Scholar 

  83. Hope KJ, Jin L and Dick JE Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5, 738–43 (2004).

    PubMed  CAS  Google Scholar 

  84. Dick JE Normal and leukemic human stem cells assayed in SCID mice. Semin Immunol 8, 197–206 (1996).

    PubMed  CAS  Google Scholar 

  85. Zhang J et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–22 (2006).

    PubMed  CAS  Google Scholar 

  86. Yilmaz OH et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–82 (2006).

    PubMed  CAS  Google Scholar 

  87. Xu Q, Thompson JE and Carroll M mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 106, 4261–8 (2005).

    PubMed  CAS  Google Scholar 

  88. Guzman ML et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105, 4163–9 (2005).

    PubMed  CAS  Google Scholar 

  89. Xu Q, Simpson SE, Scialla TJ, Bagg A and Carroll M Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102, 972–80 (2003).

    PubMed  CAS  Google Scholar 

  90. Guzman ML et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci U S A 99, 16220–5 (2002).

    PubMed  CAS  Google Scholar 

  91. Krause DS, Lazarides K, von Andrian UH and Van Etten RA Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 12, 1175–80 (2006).

    PubMed  CAS  Google Scholar 

  92. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F and Dick JE Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12, 1167–74 (2006).

    PubMed  Google Scholar 

  93. Legras S et al. A strong expression of CD44-6v correlates with shorter survival of patients with acute myeloid leukemia. Blood 91, 3401–13 (1998).

    PubMed  CAS  Google Scholar 

  94. Charrad RS et al. Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia. Nat Med 5, 669–76 (1999).

    PubMed  CAS  Google Scholar 

  95. Fraser CJ et al. First report of donor cell-derived acute leukemia as a complication of umbilical cord blood transplantation. Blood 106, 4377–80 (2005).

    PubMed  CAS  Google Scholar 

  96. Weber F et al. Microenvironmental genomic alterations and clinicopathological behavior in head and neck squamous cell carcinoma. Jama 297, 187–95 (2007).

    PubMed  CAS  Google Scholar 

  97. Dave SS et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351, 2159–69 (2004).

    PubMed  CAS  Google Scholar 

  98. Zhang Y, Joe, G, Hexner E, Zhu J and Emerson SG Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat Med 11, 1299–305 (2005).

    PubMed  CAS  Google Scholar 

  99. Luckey CJ et al. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc Natl Acad Sci USA 103, 3304–9 (2006).

    PubMed  CAS  Google Scholar 

  100. Weiden PL, Sullivan KM, Flournoy N, Storb R and Thomas ED Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med 304, 1529–33 (1981).

    PubMed  CAS  Google Scholar 

  101. Weiden PL et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med 300, 1068–73 (1979).

    PubMed  CAS  Google Scholar 

  102. Lambert JF et al. H2-mismatched transplantation with repetitive cell infusions and CD40 ligand antibody infusions without myeloablation. Br J Haematol 119, 155–63 (2002).

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hexner, E.O., Emerson, S.G. (2008). Stem Cell Biology. In: Soiffer, R.J. (eds) Hematopoietic Stem Cell Transplantation. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-438-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-438-4_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-05-3

  • Online ISBN: 978-1-59745-438-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics