Skip to main content

Roles of Oxidative Stress in the Aging Process of Drosophila melanogaster

  • Chapter
Oxidative Stress in Aging

Part of the book series: Aging Medicine ((AGME))

Summary

The oxidative stress hypothesis of aging predicts that progression of the aging process could be retarded and the life spans of animals could be extended by decreases in oxidant production, enhancement of antioxidant defenses, or augmentation of repair capabilities. Some of the results from studies of Drosophila support this idea, but much of the existing evidence seems to be at odds with the most straightforward predictions of the hypothesis. In fact, the most conservative interpretation of the existing studies is that the predictions of the hypothesis need to be revised, in recognition of the physiological roles of oxidant production, the limited access of antioxidants to some sites of oxidant production, and the influence of confounding factors, such as altered rates of metabolism, in studies of life spans in poikilotherms, including Drosophila. Indeed, effects on life span alone do not provide a sufficient basis to infer the efficacy of any experimental treatment on mechanisms of aging in the poikilotherm. Consideration of such issues suggests that despite its wide appeal, further lines of investigation are necessary to verify or falsify the oxidative stress hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956;11:298–300.

    PubMed  CAS  Google Scholar 

  2. Sohal RS. The free radical hypothesis of aging: an appraisal of the current status. Aging Clin Exp Res 1993;5:3–17.

    CAS  Google Scholar 

  3. Sohal RS, Agarwal A, Agarwal S, Orr WC. Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem 1995;270:15671–15674.

    Article  PubMed  CAS  Google Scholar 

  4. Rebrin I, Bayne AC, Mockett RJ, Orr WC, Sohal RS. Free aminothiols, glutathione redox state and protein mixed disulphides in aging Drosophila melanogaster. Biochem J 2004;382: 131–136.

    Article  PubMed  CAS  Google Scholar 

  5. Sohal RS, Allen RG, Farmer KJ, Newton RK, Toy PL. Effects of exogenous antioxidants on the levels of endogenous antioxidants, lipid-soluble fluorescent material and life span in the housefly, Musca domestica. Mech Ageing Dev 1985;31:329–336.

    Article  PubMed  CAS  Google Scholar 

  6. Climent I, Levine RL. Oxidation of the active site of glutamine synthetase: conversion of arginine-344 to γ-glutamyl semialdehyde. Arch Biochem Biophys 1991;289:371–375.

    Article  PubMed  CAS  Google Scholar 

  7. Levine RL, Berlett BS, Moskovitz J, Mosoni L, Stadtman ER. Methionine residues may protect proteins from critical oxidative damage. Mech Ageing Dev 1999;107:323–332.

    Article  PubMed  CAS  Google Scholar 

  8. Yarian CS, Rebrin I, Sohal RS. Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem Biophys Res Commun 2005;330:151–156.

    Article  PubMed  CAS  Google Scholar 

  9. Halliwell B. Can oxidative DNA damage be used as a biomarker of cancer risk in humans? Problems, resolutions and preliminary results from nutritional supplementation studies. Free Radic Res 1998;29:469–486.

    Article  PubMed  CAS  Google Scholar 

  10. Sohal RS, Mockett RJ, Orr WC. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 2002;33:575–586.

    Article  PubMed  CAS  Google Scholar 

  11. Lamb MJ. The effects of radiation on the longevity of female Drosophila subobscura. J Insect Physiol 1964;10:487–497.

    Article  CAS  Google Scholar 

  12. Fleming JE, Leon HA, Miquel J. Effects of ethidium bromide on development and aging of Drosophila: implications for the free radical theory of aging. Exp Gerontol 1981;16:287–293.

    Article  PubMed  CAS  Google Scholar 

  13. Rubner M. Das problem der lebensdauer und seine beziehungen zu wachstum und ernahrung. Munich, Germany: Oldenburg, 1908.

    Google Scholar 

  14. Pearl R. The rate of living. New York: Alfred A. Knopf, Inc., 1928.

    Google Scholar 

  15. Sohal RS. The rate of living theory: a contemporary interpretation. In: Collatz K-G, Sohal RS, eds. Insect aging. Berlin, Germany: Springer-Verlag, 1986:23–44.

    Google Scholar 

  16. de Magalhães JP, Costa J, Church GM. An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol Biol Sci 2007;62A:149–160.

    Google Scholar 

  17. Speakman JR, Talbot DA, Selman C et al. Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 2004;3:87–95.

    Article  PubMed  CAS  Google Scholar 

  18. Van Voorhies WA , Khazaeli AA, Curtsinger JW. Testing the “rate of living” model: further evidence that longevity and metabolic rate are not inversely correlated in Drosophila mela-nogaster. J Appl Physiol 2004;97:1915–1922.

    Article  PubMed  Google Scholar 

  19. Hulbert AJ, Clancy DJ, Mair W, Braeckman BP, Gems D, Partridge L. Metabolic rate is not reduced by dietary-restriction or by lowered insulin/IGF-1 signalling and is not correlated with individual lifespan in Drosophila melanogaster. Exp Gerontol 2004;39:1137–1143.

    Article  PubMed  CAS  Google Scholar 

  20. Miquel J, Lundgren PR, Bensch KG, Atlan H. Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech Ageing Dev 1976;5:347–370.

    Article  PubMed  CAS  Google Scholar 

  21. Nicholls DG. Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease. Int J Biochem Cell Biol 2002;34:1372–1381.

    Article  PubMed  CAS  Google Scholar 

  22. Miwa S, St-Pierre J, Partridge L, Brand MD. Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic Biol Med 2003;35:938–948.

    Article  PubMed  CAS  Google Scholar 

  23. Hulbert AJ. On the importance of fatty acid composition of membranes for aging. J Theor Biol 2005;234:277–288.

    Article  PubMed  CAS  Google Scholar 

  24. Pamplona R, Barja G, Portero-Otín M. Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span. Ann NY Acad Sci 2002;959:475–490.

    Article  PubMed  CAS  Google Scholar 

  25. Stark WS, Lin T-N, Brackhahn D, Christianson JS, Sun GY. Fatty acids in the lipids of Drosophila heads: effects of visual mutants, carotenoid deprivation and dietary fatty acids. Lipids 1993;28:345–350.

    Article  PubMed  CAS  Google Scholar 

  26. Sohal RS, Müller A, Koletzko B, Sies H. Effect of age and ambient temperature on n-pentane production in adult housefly, Musca domestica. Mech Ageing Dev 1985;29:317–326.

    Article  PubMed  CAS  Google Scholar 

  27. Hochachka PW, Somero GN. Biochemical adaptation. Princeton, New Jersey: Princeton University Press, 1984.

    Google Scholar 

  28. Mair W, Piper MDW, Partridge L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 2005;3:e223.

    Article  PubMed  Google Scholar 

  29. Arking R, Buck S, Berrios A, Dwyer S, Baker III GT. Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev Genet 1991;12:362–370.

    Article  PubMed  CAS  Google Scholar 

  30. Baret P, Fouarge A, Bullens P, Lints FA. Life-span of Drosophila melanogaster in highly oxygenated atmospheres. Mech Ageing Dev 1994;76:25–31.

    Article  PubMed  CAS  Google Scholar 

  31. Mockett RJ, Sohal RS. Oxidative stress may be a causal factor in senescence of animals. In: Robine J-M, Vaupel JW, Jeune B, Allard M, eds. Longevity: to the limits and beyond. Berlin, Germany: Springer-Verlag, 1997:139–154.

    Google Scholar 

  32. Mockett RJ, Bayne A-CV, Kwong LK, Orr WC, Sohal RS. Ectopic expression of catalase in Drosophila mitochondria increases stress resistance but not longevity. Free Radic Biol Med 2003;34:207–217.

    Article  PubMed  CAS  Google Scholar 

  33. Bayne A-CV, Mockett RJ, Orr WC, Sohal RS. Enhanced catabolism of mitochondrial super-oxide/hydrogen peroxide and aging in transgenic Drosophila. Biochem J 2005;391:277–284.

    Article  PubMed  CAS  Google Scholar 

  34. Schriner SE, Linford NJ, Martin GM et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005;308:1909–1911.

    Article  PubMed  CAS  Google Scholar 

  35. Choi CQ. Old mice hard to replicate. Scientist 2007;21:64.

    Google Scholar 

  36. Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med 2000;28:463–499.

    Article  PubMed  CAS  Google Scholar 

  37. Fridell Y-WC, Sánchez-Blanco A, Silvia BA, Helfand SL. Targeted expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life span in the fly. Cell Metab 2005;1:145–152.

    Article  PubMed  CAS  Google Scholar 

  38. Conti B, Sanchez-Alavez M, Winsky-Sommerer R et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 2006;314:825–828.

    Article  PubMed  CAS  Google Scholar 

  39. Herbert V, Shaw S, Jayatilleke E, Stopler-Kasdan T. Most free-radical injury is iron-related: it is promoted by iron, hemin, holoferritin and vitamin C, and inhibited by desferoxamine and apoferritin. Stem Cells 1994;12:289–303.

    Article  PubMed  CAS  Google Scholar 

  40. Massie HR, Aiello VR, Williams TR. Inhibition of iron absorption prolongs the life span of Drosophila. Mech Ageing Dev 1993;67:227–237.

    Article  PubMed  CAS  Google Scholar 

  41. Ferguson M, Mockett RJ, Shen Y, Orr WC, Sohal RS. Age-associated decline in mito-chondrial respiration and electron transport in Drosophila melanogaster. Biochem J 2005;390:501–511.

    Article  PubMed  CAS  Google Scholar 

  42. Campian JL, Gao X, Qian M, Eaton JW. Cytochrome c oxidase activity and oxygen tolerance. J Biol Chem 2007;282:12430–12438.

    Article  PubMed  CAS  Google Scholar 

  43. Sagi O, Wolfson M, Utko N, Muradian K, Fraifeld V. p66ShcA and ageing: modulation by longevity-promoting agent aurintricarboxylic acid. Mech Ageing Dev 2005;126:249–254.

    Article  PubMed  CAS  Google Scholar 

  44. Miquel J, Fleming J, Economos AC. Antioxidants, metabolic rate and aging in Drosophila. Arch Gerontol Geriatr 1982;1:159–165.

    Article  PubMed  CAS  Google Scholar 

  45. Brack C, Bechter-Thüring E, Labuhn M. N-Acetylcysteine slows down ageing and increases the life span of Drosophila melanogaster. Cell Mol Life Sci 1997;53:960–966.

    PubMed  CAS  Google Scholar 

  46. Bonilla E, Medina-Leendertz S, Díaz S. Extension of life span and stress resistance of Drosophila melanogaster by long-term supplementation with melatonin. Exp Gerontol 2002;37:629–638.

    Article  PubMed  CAS  Google Scholar 

  47. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004;430:686–689.

    Article  PubMed  CAS  Google Scholar 

  48. Massie HR, Shumway ME, Whitney SJP, Sternick SM, Aiello VR. Ascorbic acid in Drosophila and changes during aging. Exp Gerontol 1991;26:487–494.

    Article  PubMed  CAS  Google Scholar 

  49. Cui X, Dai X-G, Li W-B, Zhang B-L, Fang Y-Z. Effects of lu-duo-wei capsule on prolonging life span of housefly and Drosophila melanogaster. Am J Chin Med. 1999;27:407–413.

    Article  PubMed  CAS  Google Scholar 

  50. Driver C, Georgiou A. How to re-energise old mitochondria without shooting yourself in the foot. Biogerontology 2002;3:103–106.

    Article  PubMed  CAS  Google Scholar 

  51. Sun J, Tower J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase trans-gene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 1999;19:216–228.

    PubMed  CAS  Google Scholar 

  52. Orr WC, Mockett RJ, Benes JJ, Sohal RS. Effects of overexpression of copper-zinc and manganese superoxide dismutases, catalase, and thioredoxin reductase genes on longevity in Drosophila melanogaster. J Biol Chem 2003;278:26418–26422.

    Article  PubMed  CAS  Google Scholar 

  53. Spencer CC, Howell CE, Wright AR, Promislow DEL. Testing an ‘aging gene’ in long-lived Drosophila strains: increased longevity depends on sex and genetic background. Aging Cell 2003;2:123–130.

    Article  PubMed  CAS  Google Scholar 

  54. Tower J. Aging mechanisms in fruit flies. Bioessays 1996;18:799–807.

    Article  PubMed  CAS  Google Scholar 

  55. Tatar M. Transgenes in the analysis of life span and fitness. Am Nat 1999;154:S67–S81.

    Article  Google Scholar 

  56. Haenold R, Wassef DM, Heinemann SH, Hoshi T. Oxidative damage, aging and anti-aging strategies. Age 2005;27:183–199.

    Article  CAS  Google Scholar 

  57. Phillips JP, Campbell SD, Michaud D, Charbonneau M, Hilliker AJ. Null mutation of copper/ zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci U S A 1989;86:2761–2765.

    Article  PubMed  CAS  Google Scholar 

  58. Duttaroy A, Paul A, Kundu M, Belton A. A Sod2 null mutation confers severely reduced adult life span in Drosophila. Genetics 2003;165:2295–2299.

    PubMed  CAS  Google Scholar 

  59. Mackay WJ, Bewley GC. The genetics of catalase in Drosophila melanogaster: isolation and characterization of acatalasemic mutants. Genetics 1989;122:643–652.

    PubMed  CAS  Google Scholar 

  60. Mockett RJ, Radyuk SN, Benes JJ, Orr WC, Sohal RS. Phenotypic effects of familial amyo-trophic lateral sclerosis mutant Sod alleles in transgenic Drosophila. Proc Natl Acad Sci USA 2003;100:301–306.

    Article  PubMed  CAS  Google Scholar 

  61. Orr WC, Sohal RS. The effects of catalase gene overexpression on life span and resistance to oxida-tive stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 1992;297:35–41.

    Article  PubMed  CAS  Google Scholar 

  62. Orr WC, Sohal RS. Effects of Cu-Zn superoxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 1993;301:34–40.

    Article  PubMed  CAS  Google Scholar 

  63. Mockett RJ, Sohal RS, Orr WC. Overexpression of glutathione reductase extends survival in trans-genic Drosophila melanogaster under hyperoxia but not normoxia. FASEB J 1999;13:1733–1742.

    PubMed  CAS  Google Scholar 

  64. Mockett RJ, Orr WC, Rahmandar JJ, Benes JJ, Radyuk SN, Klichko VI, Sohal RS. Overexpression of Mn-containing superoxide dismutase in transgenic Drosophila mela-nogaster. Arch Biochem Biophys 1999;371:260–269.

    Article  PubMed  CAS  Google Scholar 

  65. Orr WC, Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994;263:1128–1130.

    Article  PubMed  CAS  Google Scholar 

  66. Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 1998;19:171–174.

    Article  PubMed  CAS  Google Scholar 

  67. Sun J, Molitor J, Tower J. Effects of simultaneous over-expression of Cu / ZnSOD and MnSOD on Drosophila melanogaster life span. Mech Ageing Dev 2004;125:341–349.

    Article  PubMed  CAS  Google Scholar 

  68. Sun J, Folk D, Bradley TJ, Tower J. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 2002;161:661–672.

    PubMed  CAS  Google Scholar 

  69. Orr WC, Radyuk SN, Prabhudesai L et al. Overexpression of glutamate-cysteine ligase extends life span in Drosophila melanogaster. J Biol Chem 2005;280:37331–37338.

    Article  PubMed  CAS  Google Scholar 

  70. Winterbourn CC. Superoxide as an intracellular radical sink. Free Radic Biol Med 1993;14:85–90.

    Article  PubMed  CAS  Google Scholar 

  71. Ruan H, Tang XD, Chen M-L et al. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci U S A 2002;99:2748–2753.

    Article  PubMed  CAS  Google Scholar 

  72. Chavous DA, Jackson FR, O'Connor CM. Extension of the Drosophila lifespan by overexpression of a protein repair methyltransferase. Proc Natl Acad Sci U S A 2001;98:14814–14818.

    Article  PubMed  CAS  Google Scholar 

  73. Bhole D, Allikian MJ, Tower J. Doxycycline-regulated over-expression of hsp22 has negative effects on stress resistance and life span in adult Drosophila melanogaster. Mech Ageing Dev 2004;125:651–663.

    Article  PubMed  CAS  Google Scholar 

  74. Morrow G, Samson M, Michaud S, Tanguay RM. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 2004;18:598–599.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health-National Institute on Aging grants R01 AG7657 (to R.S.S.) and R01 AG15122 (to W.C.O.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Mockett, R.J., Sohal, R.S., Orr, W.C. (2008). Roles of Oxidative Stress in the Aging Process of Drosophila melanogaster . In: Miwa, S., Beckman, K.B., Muller, F.L. (eds) Oxidative Stress in Aging. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-420-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-420-9_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-991-8

  • Online ISBN: 978-1-59745-420-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics