Skip to main content

Reactive Oxygen Species as Signaling Molecules

  • Chapter

Part of the book series: Aging Medicine ((AGME))

Summary

Although the pathophysiological role of reactive oxygen species (ROS) has received considerable attention, there is a growing realization that oxidants also can play a normal, physiological role within cells. These observations came from studies initially using cultured cells stimulated by a variety of peptide growth factors. In this context, several groups were able to show that after ligand addition, the subsequent production of ROS was a necessary component of downstream signaling. Subsequent experiments have defined the enzymatic source of ligand activated ROS production and some of the relevant molecular targets. Here, we review these observations and discuss the role of ROS in normal growth factor signaling. In addition, we describe how these observations are currently being extended to the production of ROS emanating from the mitochondria, and how mitochondrial ROS also might be involved in certain signaling events. We also discuss how ROS might be involved in the induction of cellular senescence by acting as important intracellular mediators. Finally, we review the role of ROS in stem cells and how oxidants might again act to regulate the biology of these critical cells. Together, it is hoped that these observations will serve as a framework to more fully understand how ROS participate in aging. In particular, these observations provide the starting point to determine whether ROS participate in aging as random, stochastic damaging agents, or whether they function as mediators of critical redox-dependent pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288:373–6.

    Article  PubMed  CAS  Google Scholar 

  2. Lowenstein CJ, Snyder SH. Nitric oxide, a novel biologic messenger. Cell 1992; 70:705–7.

    Article  PubMed  CAS  Google Scholar 

  3. Bonini MG, Rota C, Tomasi A, Mason RP. The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic Biol Med 2006; 40:968–75.

    Article  PubMed  CAS  Google Scholar 

  4. Miller EW, Albers AE, Pralle A, Isacoff EY, Chang CJ. Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J Am Chem Soc 2005; 127:16652–9.

    Article  PubMed  CAS  Google Scholar 

  5. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995; 270:296–9.

    Article  PubMed  CAS  Google Scholar 

  6. Bae YS, Kang SW, Seo MS et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 1997; 272:217–21.

    Article  PubMed  CAS  Google Scholar 

  7. Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol 2003; 15:247–54.

    Article  PubMed  CAS  Google Scholar 

  8. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 2005; 17:183–9.

    Article  PubMed  CAS  Google Scholar 

  9. Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling. Science 2006; 312:1882–3.

    Article  PubMed  Google Scholar 

  10. Sheppard FR, Kelher MR, Moore EE, McLaughlin NJ, Banerjee A, Silliman CC. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 2005; 78:1025–42.

    Article  PubMed  CAS  Google Scholar 

  11. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004; 4:181–9.

    Article  PubMed  CAS  Google Scholar 

  12. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245–313.

    Article  PubMed  CAS  Google Scholar 

  13. Sundaresan M, Yu ZX, Ferrans VJ et al. Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochem J 1996; 318(2):379–82.

    PubMed  CAS  Google Scholar 

  14. Denu JM, Tanner KG. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 1998; 37:5633–42.

    Article  PubMed  CAS  Google Scholar 

  15. Lee SR, Kwon KS, Kim SR, Rhee SG. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 1998; 273:15366–72.

    Article  PubMed  CAS  Google Scholar 

  16. Salmeen A, Andersen JN, Myers MP et al. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 2003; 423:769–73.

    Article  PubMed  CAS  Google Scholar 

  17. van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 2003; 423:773–7.

    Article  PubMed  Google Scholar 

  18. Chiarugi P, Buricchi F. Protein tyrosine phosphorylation and reversible oxidation: two cross-talking posttranslation modifications. Antioxid Redox Signal 2007; 9:1–24.

    Article  PubMed  CAS  Google Scholar 

  19. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phos-phatases. Cell 2005; 120:649–61.

    Article  PubMed  CAS  Google Scholar 

  20. Semenza GL, Shimoda LA, Prabhakar NR. Regulation of gene expression by HIF-1. Novartis Found Symp 2006; 272:2–8.

    Article  PubMed  CAS  Google Scholar 

  21. Gerald D, Berra E, Frapart YM et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 2004; 118:781–94.

    Article  PubMed  CAS  Google Scholar 

  22. Sanjuan-Pla A, Cervera AM, Apostolova N et al. A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha. FEBS Lett 2005; 579:2669–74.

    Article  PubMed  CAS  Google Scholar 

  23. Mansfield KD, Guzy RD, Pan Y et al. Mitochondrial dysfunction resulting from loss of cyto-chrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 2005; 1:393–9.

    Article  PubMed  CAS  Google Scholar 

  24. Brunelle JK, Bell EL, Quesada NM et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 2005; 1:409–14.

    Article  PubMed  CAS  Google Scholar 

  25. Dimri GP, Lee X, Basile G et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 1995; 92:9363–7.

    Article  PubMed  CAS  Google Scholar 

  26. Mooi WJ, Peeper DS. Oncogene-induced cell senescence—halting on the road to cancer. N Engl J Med 2006; 355:1037–46.

    Article  PubMed  CAS  Google Scholar 

  27. Ben-Porath I, Weinberg RA. When cells get stressed: an integrative view of cellular senescence. J Clin Invest 2004; 113:8–13.

    PubMed  CAS  Google Scholar 

  28. Chen QM, Bartholomew JC, Campisi J, Acosta M, Reagan JD, Ames BN. Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J 1998; 332:43–50.

    PubMed  CAS  Google Scholar 

  29. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88:593–602.

    Article  PubMed  CAS  Google Scholar 

  30. Packer L, Fuehr K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 1977; 267:423–5.

    Article  PubMed  CAS  Google Scholar 

  31. Stewart SA, Weinberg RA. Telomeres: cancer to human aging. Annu Rev Cell Dev Biol 2006; 22:531–57.

    Article  PubMed  CAS  Google Scholar 

  32. von Zglinicki T, Martin-Ruiz CM. Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med 2005; 5:197–203.

    Article  Google Scholar 

  33. Lee AC, Fenster BE, Ito H et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 1999; 274:7936–40.

    Article  PubMed  CAS  Google Scholar 

  34. Wu C, Miloslavskaya I, Demontis S, Maestro R, Galaktionov K. Regulation of cellular response to oncogenic and oxidative stress by Seladin-1. Nature 2004; 432:640–5.

    Article  PubMed  CAS  Google Scholar 

  35. Kondoh H, Lleonart ME, Gil J et al. Glycolytic enzymes can modulate cellular life span. Cancer Res 2005; 65:177–85.

    PubMed  CAS  Google Scholar 

  36. Nicke B, Bastien J, Khanna SJ et al. Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Mol Cell 2005; 20:673–85.

    Article  PubMed  CAS  Google Scholar 

  37. Colavitti R, Finkel T. Reactive oxygen species as mediators of cellular senescence. IUBMB Life 2005; 57:277–81.

    Article  PubMed  CAS  Google Scholar 

  38. Patil CK, Mian IS, Campisi J. The thorny path linking cellular senescence to organismal aging. Mech Ageing Dev 2005; 126:1040–5.

    Article  PubMed  Google Scholar 

  39. Rando TA. Stem cells, ageing and the quest for immortality. Nature 2006; 441:1080–6.

    Article  PubMed  CAS  Google Scholar 

  40. Ito K, Hirao A, Arai F et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431:997–1002.

    Article  PubMed  CAS  Google Scholar 

  41. Barzilai A, Rotman G, Shiloh Y. ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair (Amst) 2002; 1:3–25.

    Article  CAS  Google Scholar 

  42. Tothova Z, Kollipara R, Huntly BJ et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128:325–339.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Rovira, I.I., Finkel, T. (2008). Reactive Oxygen Species as Signaling Molecules. In: Miwa, S., Beckman, K.B., Muller, F.L. (eds) Oxidative Stress in Aging. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-420-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-420-9_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-991-8

  • Online ISBN: 978-1-59745-420-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics