Skip to main content

Pathophysiology of Pericyte-containing Retinal Microvessels

Roles of Ion Channels and Transporters

  • Chapter
  • 999 Accesses

Part of the book series: Ophthalmology Research ((OPHRES))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. 1. Tilton RG. Capillary pericytes: perspectives and future trends. J Electron Microsc Tech 1991;19:327–344.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Hirschi KK and D'Amore PA. Pericytes in the microvasculature. Cardiovasc Res 1996;32:687–698.

    PubMed  CAS  Google Scholar 

  3. 3. Kawamura H, Sugiyama T, Wu DM, Kobayashi M, Yamanishi S, Katsumura K, Puro DG. ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina. J Physiol 2003;551:787–799.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Kawamura H, Kobayashi M, Li Q, Yamanishi S, Katsumura K, Minami M, Wu DM, Puro DG. Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina. J Physiol 2004;561:671–683.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Wu DM, Kawamura H, Sakagami K, Kobayashi M, Puro DG. Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol 2003;284:H2083–H2090.

    CAS  Google Scholar 

  6. 6. Yamanishi S, Katsumura K, Kobayashi T, Puro DG. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am J Physiol 2006;290:H925–H934.

    CAS  Google Scholar 

  7. 7. Puro DG. Vasoactive signals and pericyte function in the retina. In: Shepro D and D'Amore PA, editors. Microvascular Research: Biology and Pathology. USA: Elsevier; 2006. p. 265–269.

    Google Scholar 

  8. 8. Dodge AB, Hechtman HB, Shepro D. Microvascular endothelial-derived autacoids regulate pericyte contractility. Cell Motil Cytoskeleton 1991;18:180–188.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Haefliger IO, Zschauer A, Anderson DR. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. Invest Ophthalmol Vis Sci 1994;35:991–997.

    PubMed  CAS  Google Scholar 

  10. 10. Kelley C, D'Amore P, Hechtman HB, Shepro D. Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall. J Cell Biol 1987;104:483–490.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Kelley C, D'Amore P, Hechtman HB, Shepro D. Vasoactive hormones and cAMP affect pericyte contraction and stress fibres in vitro. J Muscle Res Cell Motil 1988;9:184–194.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Funk RH. Blood supply of the retina. Ophthalmic Res 1997;29:320–325.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Ye XD, Laties AM, Stone RA. Peptidergic innervation of the retinal vasculature and optic nerve head. Invest Ophthalmol Vis Sci 1990;31:1731–1737.

    PubMed  CAS  Google Scholar 

  14. 14. Shepro D and Morel NM. Pericyte physiology. FASEB J 1993;7:1031–1038.

    PubMed  CAS  Google Scholar 

  15. 15. Frank RN, Turczyn TJ, Das A. Pericyte coverage of retinal and cerebral capillaries. Invest Ophthalmol Vis Sci 1990;31:999–1007.

    PubMed  CAS  Google Scholar 

  16. 16. Puro DG. Physiology and pathobiology of the pericyte-containing retinal microvasculature: new developments. Microcirculation 2007;14:1–10.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001;414:782–787.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 1961;166:366–378.

    Google Scholar 

  19. 19. Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 1996;97:2883–2890.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Kohner EM, Patel V, Rassam SM. Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy. Diabetes 1995;44:603–607.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Cunha-Vaz J, Faria de Abreu JR, Campos AJ. Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol 1975;59:649–656.

    Article  PubMed  CAS  Google Scholar 

  22. 22. Trick GL and Berkowitz BA. Retinal oxygenation response and retinopathy. Prog Retin Eye Res 2005;24:259–274.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Matsushita K and Puro DG. Topographical heterogeneity of KIR currents in pericyte-containing microvessels of the rat retina: effect of diabetes. J Physiol 2006;573:483–495.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Sugiyama T, Kobayashi M, Kawamura H, Li Q, Puro DG. Enhancement of P2X7-induced pore formation and apoptosis: an early effect of diabetes on the retinal microvasculature. Invest Ophthalmol Vis Sci 2004;45:1026–1032.

    Article  PubMed  Google Scholar 

  25. 25. Chrissobolis S, and Sobey CG. Inwardly rectifying potassium channels in the regulation of vascular tone. Curr Drug Targets 2003;4:281–289.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K+ current in K+-mediated vasodilation. Circ Res 2000:87:160–166.

    PubMed  CAS  Google Scholar 

  27. 27. Edwards FR, Hirst GD, Silverberg GD. Inward rectification in rat cerebral arterioles; involvement of potassium ions in autoregulation. J Physiol 1988;404:455–466.

    PubMed  CAS  Google Scholar 

  28. 28. Oku H, Kodama T, Sakagami K, Puro DG. Diabetes-induced disruption of gap junction pathways within the retinal microvasculature. Invest Ophthalmol Vis Sci 2001;42: 1915–1920.

    PubMed  CAS  Google Scholar 

  29. 29. Wu DM, Miniami M, Kawamura H, Puro DG. Electrotonic transmission within pericyte-containing retinal microvessels. Microcirculation 2006;13:353–363.

    Article  PubMed  Google Scholar 

  30. 30. Nicoletti R, Venza I, Ceci G, Visalli M, Teti D, Reibaldi A. Vitreous polyamines spermidine, putrescine, and spermine in human proliferative disorders of the retina. Br J Ophthalmol 2003;87:1038–1042.

    Article  PubMed  CAS  Google Scholar 

  31. 31. Grunwald J and Bursell S-E. Hemodyanmic changes as early markers of diabetic retinopathy. Curr Opin Endocrin Diab 1996;3:298–306.

    Article  Google Scholar 

  32. 32. North RA. Molecular physiology of P2X receptors. Physiol Rev 2002;82:1013–1067.

    PubMed  CAS  Google Scholar 

  33. 33. Sugiyama T, Kawamura H, Yamanishi S, Kobayashi M, Katsumura K, Puro DG. Regulation of P2X7-induced pore formation and cell death in pericyte-containing retinal microvessels. Am J Physiol 2005;288:C568–576.

    Article  CAS  Google Scholar 

  34. Liao SD and Puro DG. NAD+-induced vasotoxicity in the pericyte-containing microvasculature of the rat retina: effect of diabetes. Invest Ophthalmol Vis Sci 2006; in press.

    Google Scholar 

  35. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–986.

    Google Scholar 

  36. 36. Wiederholt M, Berwick S, Helbig H. Electrophysiological properties of cultured retinal capillary pericytes. Prog Retina Eye Res 1995;14:437–451.

    Article  Google Scholar 

  37. 37. Quignard JF, Harley EA, Duhault J, Vanhoutte PM, Feletou M. K+ channels in cultured bovine retinal pericytes: effects of beta-adrenergic stimulation. J Cardiovasc Pharmacol 2003;42:379–388.

    Article  PubMed  CAS  Google Scholar 

  38. 38. McGinty A, Scholfield CN, Liu WH, Anderson P, Hoey DE, Trimble ER. Effect of glucose on endothelin-1-induced calcium transients in cultured bovine retinal pericytes. J Biol Chem 1999;274:25250–25253.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Stitt, A.W., and Curtis, T.M. (2005) Advanced glycation and retinal pathology during diabetes. Pharmacol Rep 2005;57(Suppl):156–168.

    PubMed  Google Scholar 

  40. 40. Hughes SJ, Wall N, Scholfield CN, McGeown JG, Gardiner TA, Stitt AW, Curtis TM. Advanced glycation endproduct modified basement membrane attenuates endothelin-1 induced [Ca2+]i signalling and contraction in retinal microvascular pericytes. Mol Vis 2004;10:996–1004.

    PubMed  CAS  Google Scholar 

  41. 41. Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Diabetes 1998;47:1953–1959.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Antonetti DA, Lieth E, Barber AJ, Gardner TW. Molecular mechanisms of vascular permeability in diabetic retinopathy. Semin Ophthalmol 1999;14:240–248.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Sakagami K, Wu DM, Puro DG. Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules. J Physiol 1999;521:637–650.

    Article  PubMed  CAS  Google Scholar 

  44. 44. Le Roith D. Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl J Med 1997;336:633–640.

    Article  PubMed  CAS  Google Scholar 

  45. 45. Sakagami K, Kawamura H, Wu DM, Puro DG. Nitric oxide/cGMP-induced inhibition of calcium and chloride currents in retinal pericytes. Microvasc Res 2001;62:196–203.

    Article  PubMed  CAS  Google Scholar 

  46. 46. Sakagami K, Kodama T, and Puro DG. PDGF-induced coupling of function with metabolism in microvascular pericytes of the retina. Invest Ophthalmol Vis Sci 2001;42:1939–1944.

    PubMed  CAS  Google Scholar 

  47. 47. Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997;277:242–245.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

National Insitiute of Health grants EY12505, EY07003 and a senior investigator award from Research to Prevent Blindness, Inc. provided support to the author.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Puro, D.G. (2008). Pathophysiology of Pericyte-containing Retinal Microvessels. In: Tombran-Tink, J., Barnstable, C.J. (eds) Ocular Transporters In Ophthalmic Diseases And Drug Delivery. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-375-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-375-2_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-958-1

  • Online ISBN: 978-1-59745-375-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics