Skip to main content

Roles of Corneal Epithelial Ion Transport Mechanisms in Mediating Responses to Cytokines and Osmotic Stress

  • Chapter
Book cover Ocular Transporters In Ophthalmic Diseases And Drug Delivery

Part of the book series: Ophthalmology Research ((OPHRES))

  • 1041 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Klyce SD. Transport of Na, Cl, and water by the rabbit corneal epithelium at resting potential. Am J Physiol 1975;228:1446–1452.

    PubMed  CAS  Google Scholar 

  2. 2. Maurice DM. The permeability to sodium ions of the living rabbit's cornea. J Physiol 1951;112:367–391.

    PubMed  CAS  Google Scholar 

  3. 3. Maurice DM. Influence on corneal permeability of bathing with solutions of differing reaction and tonicity. Br J Ophthalmol 1955;39:463–473.

    PubMed  CAS  Google Scholar 

  4. 4. Maurice DM. The location of the fluid pump in the cornea. J Physiol 1972;221:43–54.

    PubMed  CAS  Google Scholar 

  5. 5. Zucker BB. Hydration and transparency of corneal stroma. Arch Ophthalmol 1966;75: 228–231.

    PubMed  CAS  Google Scholar 

  6. 6. Klyce SD, Wong RK. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium. J Physiol 1977;266:777–799.

    PubMed  CAS  Google Scholar 

  7. 7. Klyce SD. Enhancing fluid secretion by the corneal epithelium. Invest Ophthalmol Vis Sci 1977;16:968–973.

    PubMed  CAS  Google Scholar 

  8. 8. Li HF, Petroll WM, Moller-Pedersen T, Maurer JK, Cavanagh HD, Jester JV. Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF). Curr Eye Res 1997;16:214–221.

    PubMed  CAS  Google Scholar 

  9. 9. Jakus M. The fine structure of the hyman cornea. In: Smelser G, ed. The structure of the eye. New York: Academia, 1969:344.

    Google Scholar 

  10. 10. Baum JP, Maurice DM, McCarey BE. The active and passive transport of water across the corneal endothelium. Exp Eye Res 1984;39:335–342.

    PubMed  CAS  Google Scholar 

  11. 11. Zadunaisky JA, Lande MA, Chalfie M, Neufeld AH. Ion pumps in the cornea and their stimulation by epinephrine and cyclic-AMP. Exp Eye Res 1973;15:577–584.

    PubMed  CAS  Google Scholar 

  12. 12. Klyce SD, Palkama KA, Harkonen M, Marshall WS, Huhtaniitty S, Mann KP, Neufeld AH. Neural serotonin stimulates chloride transport in the rabbit corneal epithelium. Invest Ophthalmol Vis Sci 1982;23:181–192.

    PubMed  CAS  Google Scholar 

  13. 13. Pesin SR, Candia OA. Acetylcholine concentration and its role in ionic transport by the corneal epithelium. Invest Ophthalmol Vis Sci 1982;22:651–659.

    PubMed  CAS  Google Scholar 

  14. 14. Candia OA, Podos SM, Neufeld AH. Modification by timolol of catecholamine stimulation of chloride transport in isolated corneas. Invest Ophthalmol Vis Sci 1979;18:691–695.

    PubMed  CAS  Google Scholar 

  15. 15. Chu TC, Candia OA. Role of alpha 1- and alpha 2-adrenergic receptors in Cl- transport across frog corneal epithelium. Am J Physiol 1988;255:C724–730.

    PubMed  CAS  Google Scholar 

  16. 16. Montoreano R, Candia OA, Cook P. alpha- and beta-adrenergic receptors in regulation of ionic transport in frog cornea. Am J Physiol 1976;230:1487–1493.

    PubMed  CAS  Google Scholar 

  17. 17. Cavanagh HD, Colley AM. Cholinergic, adrenergic, and PGE1 effects on cyclic nucleotides and growth in cultured corneal epithelium. Metab Pediatr Syst Ophthalmol 1982;6:63–74.

    PubMed  CAS  Google Scholar 

  18. 18. Lu L, Reinach PS, Kao WW. Corneal epithelial wound healing. Exp Biol Med (Maywood) 2001;226:653–664.

    CAS  Google Scholar 

  19. 19. Yang H, Wang Z, Miyamoto Y, Reinach PS. Cell signaling pathways mediating epidermal growth factor stimulation of Na:K:2Cl cotransport activity in rabbit corneal epithelial cells. J Membr Biol 2001;183:93–101.

    PubMed  CAS  Google Scholar 

  20. 20. Roderick C, Reinach PS, Wang L, Lu L. Modulation of rabbit corneal epithelial cell proliferation by growth factor-regulated K(+) channel activity. J Membr Biol 2003;196:41–50.

    PubMed  CAS  Google Scholar 

  21. 21. Candia OA, Grillone LR, Chu TC. Forskolin effects on frog and rabbit corneal epithelium ion transport. Am J Physiol 1986;251:C448–454.

    PubMed  CAS  Google Scholar 

  22. 22. Candia OA. Ouabain and sodium effects on chloride fluxes across the isolated bullfrog cornea. Am J Physiol 1972;223:1053–1057.

    PubMed  CAS  Google Scholar 

  23. 23. Wu X, Yang H, Iserovich P, Fischbarg J, Reinach PS. Regulatory volume decrease by SV40-transformed rabbit corneal epithelial cells requires ryanodine-sensitive Ca2+-induced Ca2+ release. J Membr Biol 1997;158:127–136.

    PubMed  CAS  Google Scholar 

  24. 24. Capo-Aponte JE, Iserovich P, Reinach PS. Characterization of regulatory volume behavior by fluorescence quenching in human corneal epithelial cells. J Membr Biol 2005;207:11–22.

    PubMed  CAS  Google Scholar 

  25. 25. Farris RL. Tear osmolarity–a new gold standard? Adv Exp Med Biol 1994;350:495–503.

    PubMed  CAS  Google Scholar 

  26. 26. Bildin VN, Yang H, Fischbarg J, Reinach PS. Effects of chronic hypertonic stress on regulatory volume increase and Na-K-2Cl cotransporter expression in cultured corneal epithelial cells. Adv Exp Med Biol 1998;438:637–642.

    PubMed  CAS  Google Scholar 

  27. 27. Bildin VN, Wang Z, Iserovich P, Reinach PS. Hypertonicity-induced p38MAPK activation elicits recovery of corneal epithelial cell volume and layer integrity. J Membr Biol 2003;193:1–13.

    PubMed  CAS  Google Scholar 

  28. 28. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998;78:247–306.

    PubMed  CAS  Google Scholar 

  29. 29. Capo-Aponte JE, Wang Z, Bildin VN, Pokorny KS, Reinach PS. Fate of Hypertonicity-Stressed Corneal Epithelial Cells Depends on Differential MAPK Activation and p38MAPK/Na-K-2Cl Cotransporter1 Interaction. Exp Eye Res 2007;84:361–372.

    PubMed  CAS  Google Scholar 

  30. 30. Saika S, Okada Y, Miyamoto T, Yamanaka O, Ohnishi Y, Ooshima A, Liu CY, Weng D, Kao WW. Role of p38 MAP kinase in regulation of cell migration and proliferation in healing corneal epithelium. Invest Ophthalmol Vis Sci 2004;45:100–109.

    PubMed  Google Scholar 

  31. 31. Sharma GD, He J, Bazan HE. p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades. J Biol Chem 2003;278:21989–21997.

    PubMed  CAS  Google Scholar 

  32. 32. Kang SS, Li T, Xu D, Reinach PS, Lu L. Inhibitory effect of PGE2 on EGF-induced MAP kinase activity and rabbit corneal epithelial proliferation. Invest Ophthalmol Vis Sci 2000;41:2164–2169.

    PubMed  CAS  Google Scholar 

  33. 33. Kang SS, Wang L, Kao WW, Reinach PS, Lu L. Control of SV-40 transformed RCE cell proliferation by growth-factor-induced cell cycle progression. Curr Eye Res 2001;23:397–405.

    PubMed  CAS  Google Scholar 

  34. 34. Wang Z, Yang H, Tachado SD, Capo-Aponte JE, Bildin VN, Koziel H, Reinach PS. Phosphatase-Mediated Crosstalk Control of ERK and p38 MAPK Signaling in Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2006;47:5267–5275.

    PubMed  Google Scholar 

  35. 35. Lu L. Stress-induced corneal epithelial apoptosis mediated by K(+) channel activation. Prog Retin Eye Res 2006;25:515–538.

    PubMed  CAS  Google Scholar 

  36. 36. Zadunaisky JA, Lande MA. Active chloride transport and control of corneal transparency. Am J Physiol 1971;221:1837–1844.

    PubMed  CAS  Google Scholar 

  37. 37. Candia OA, Reinach PS, Alvarez L. Amphotericin B-induced active transport of K+ and the Na+-K+ flux ratio in frog corneal epithelium. Am J Physiol 1984;247:C454–461.

    PubMed  CAS  Google Scholar 

  38. 38. Davson H. The influence of the lyotropic series of anions on cation permeability. Biochem J 1940;34:917–925.

    PubMed  CAS  Google Scholar 

  39. 39. Ljubimov AV, Atilano SR, Garner MH, Maguen E, Nesburn AB, Kenney MC. Extracellular matrix and Na+,K+-ATPase in human corneas following cataract surgery: comparison with bullous keratopathy and Fuchs’ dystrophy corneas. Cornea 2002;21:74–80.

    PubMed  Google Scholar 

  40. 40. Cejkova J, Lojda Z, Brunova B, Vacik J, Michalek J. Disturbances in the rabbit cornea after short-term and long-term wear of hydrogel contact lenses. Usefulness of histochemical methods. Histochemistry 1988;89:91–97.

    PubMed  CAS  Google Scholar 

  41. 41. Conners MS, Urbano F, Vafeas C, Stoltz RA, Dunn MW, Schwartzman ML. Alkali burn-induced synthesis of inflammatory eicosanoids in rabbit corneal epithelium. Invest Ophthalmol Vis Sci 1997;38:1963–1971.

    PubMed  CAS  Google Scholar 

  42. 42. Masferrer JL, Rios AP, Schwartzman ML. Inhibition of renal, cardiac and corneal (Na(+)-K+)ATPase by 12(R)-hydroxyeicosatetraenoic acid. Biochem Pharmacol 1990;39:1971–1974.

    PubMed  CAS  Google Scholar 

  43. 43. Schwartzman ML, Balazy M, Masferrer J, Abraham NG, McGiff JC, Murphy RC. 12(R)-hydroxyicosatetraenoic acid: a cytochrome-P450-dependent arachidonate metabolite that inhibits Na+,K+-ATPase in the cornea. Proc Natl Acad Sci USA 1987;84:8125–8129.

    PubMed  CAS  Google Scholar 

  44. 44. Vafeas C, Mieyal PA, Urbano F, Falck JR, Chauhan K, Berman M, Schwartzman ML. Hypoxia stimulates the synthesis of cytochrome P450-derived inflammatory eicosanoids in rabbit corneal epithelium. J Pharmacol Exp Ther 1998;287:903–910.

    PubMed  CAS  Google Scholar 

  45. 45. Ottino P TF, Bazan HE. Growth factor-induced proliferation in corneal epithelial cells is mediated by 12(S)-HETE. Exp Eye Res 2003;76:613–622.

    PubMed  CAS  Google Scholar 

  46. 46. Bildin VN, Yang H, Crook RB, Fischbarg J, Reinach PS. Adaptation by corneal epithelial cells to chronic hypertonic stress depends on upregulation of Na:K:2Cl cotransporter gene and protein expression and ion transport activity. J Membr Biol 2000;177:41–50.

    PubMed  CAS  Google Scholar 

  47. 47. Al-Nakkash L, Iserovich P, Coca-Prados M, Yang H, Reinach PS. Functional and molecular characterization of a volume-activated chloride channel in rabbit corneal epithelial cells. J Membr Biol 2004;201:41–49.

    PubMed  CAS  Google Scholar 

  48. 48. Wehner F, Olsen H, Tinel H, Kinne-Saffran E, Kinne RK. Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev Physiol Biochem Pharmacol 2003;148:1–80.

    PubMed  CAS  Google Scholar 

  49. 49. Jakab M, Ritter M. Cell volume regulatory ion transport in the regulation of cell migration. Contrib Nephrol 2006;152:161–180.

    PubMed  CAS  Google Scholar 

  50. 50. Gobbels M, Spitznas M. Corneal epithelial permeability of dry eyes before and after treatment with artificial tears. Ophthalmology 1992;99:873–878.

    PubMed  CAS  Google Scholar 

  51. 51. Fleiszig SM, Zaidi TS, Pier GB. Mucus and Pseudomonas aeruginosa adherence to the cornea. Adv Exp Med Biol 1994;350:359–362.

    PubMed  CAS  Google Scholar 

  52. 52. Xu KP, Yagi Y, Tsubota K. Decrease in corneal sensitivity and change in tear function in dry eye. Cornea 1996;15:235–239.

    PubMed  CAS  Google Scholar 

  53. 53. Imanishi J, Kamiyama K, Iguchi I, Kita M, Sotozono C, Kinoshita S. Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res 2000;19:113–129.

    PubMed  CAS  Google Scholar 

  54. 54. Bildin VN, Iserovich P, Fischbarg J, Reinach PS. Differential expression of Na:K:2Cl cotransporter, glucose transporter 1, and aquaporin 1 in freshly isolated and cultured bovine corneal tissues. Exp Biol Med (Maywood) 2001;226:919–926.

    CAS  Google Scholar 

  55. 55. Bortner CD, Cidlowski JA. Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am J Physiol 1996;271:C950–961.

    PubMed  CAS  Google Scholar 

  56. 56. Wilson SE, Mohan RR, Hong J, Lee J, Choi R, Liu JJ. Apoptosis in the cornea in response to epithelial injury: significance to wound healing and dry eye. Adv Exp Med Biol 2002;506:821–826.

    PubMed  Google Scholar 

  57. 57. Capo-Aponte JE, Wang Z, Bildin VN, Iserovich P, Pan Z, Zhang F, Pokorny KS, Reinach PS. Functional and molecular characterization of multiple K-Cl cotransporter isoforms in corneal epithelial cells. Exp Eye Res 2007;84:1090–1103.

    PubMed  CAS  Google Scholar 

  58. 58. Shen MR, Chou CY, Hsu KF, Liu HS, Dunham PB, Holtzman EJ, Ellory JC. The KCl cotransporter isoform KCC3 can play an important role in cell growth regulation. Proc Natl Acad Sci USA 2001;98:14714–14719.

    PubMed  CAS  Google Scholar 

  59. 59. Shen MR, Chou CY, Hsu KF, Hsu YM, Chiu WT, Tang MJ, Alper SL, Ellory JC. KCl cotransport is an important modulator of human cervical cancer growth and invasion. J Biol Chem 2003;278:39941–39950.

    PubMed  CAS  Google Scholar 

  60. 60. Shen MR, Lin AC, Hsu YM, Chang TJ, Tang MJ, Alper SL, Ellory JC, Chou CY. Insulin-like growth factor 1 stimulates KCl cotransport, which is necessary for invasion and proliferation of cervical cancer and ovarian cancer cells. J Biol Chem 2004;279:40017–40025.

    PubMed  CAS  Google Scholar 

  61. 61. Bonanno JA, Polse KA. Corneal acidosis during contact lens wear: effects of hypoxia and CO2. Invest Ophthalmol Vis Sci 1987;28:1514–1520.

    PubMed  CAS  Google Scholar 

  62. 62. Korbmacher C, Helbig H, Forster C, Wiederholt M. Evidence for Na+/H+ exchange and pH sensitive membrane voltage in cultured bovine corneal epithelial cells. Curr Eye Res 1988;7:619–626.

    PubMed  CAS  Google Scholar 

  63. 63. Korbmacher C, Helbig H, Forster C, Wiederholt M. Characterization of Na+/H+ exchange in a rabbit corneal epithelial cell line (SIRC). Biochim Biophys Acta 1988;943:405–410.

    PubMed  CAS  Google Scholar 

  64. 64. Bonanno JA. K(+)-H+ exchange, a fundamental cell acidifier in corneal epithelium. Am J Physiol 1991;260:C618–625.

    PubMed  CAS  Google Scholar 

  65. 65. Shepard AR, Rae JL. Ion transporters and receptors in cDNA libraries from lens and cornea epithelia. Curr Eye Res 1998;17:708–719.

    PubMed  CAS  Google Scholar 

  66. 66. Wu X, Torres-zamorano V, Yang H, Reinach PS. ETA receptor mediated inhibition of intracellular pH regulation in cultured bovine corneal epithelial cells. Exp Eye Res 1998;66:699–708.

    PubMed  CAS  Google Scholar 

  67. 67. Reinach P, Ganapathy V, Torres-Zamorano V. A Na:H exchanger subtype mediates volume regulation in bovine corneal epithelial cells. Adv Exp Med Biol 1994;350:105–110.

    PubMed  CAS  Google Scholar 

  68. 68. Takagi H, Reinach PS, Tachado SD, Yoshimura N. Endothelin-mediated cell signaling and proliferation in cultured rabbit corneal epithelial cells. Invest Ophthalmol Vis Sci 1994;35:134–142.

    PubMed  CAS  Google Scholar 

  69. 69. Takagi H, Reinach PS, Yoshimura N, Honda Y. Endothelin-1 promotes corneal epithelial wound healing in rabbits. Curr Eye Res 1994;13:625–628.

    PubMed  CAS  Google Scholar 

  70. 70. Tao W, Liou GI, Wu X, Abney TO, Reinach PS. ETB and epidermal growth factor receptor stimulation of wound closure in bovine corneal epithelial cells. Invest Ophthalmol Vis Sci 1995;36:2614–2622.

    PubMed  CAS  Google Scholar 

  71. 71. Fischbarg J, Hernandez J, Liebovitch LS, Koniarek JP. The mechanism of fluid and electrolyte transport across corneal endothelium: critical revision and update of a model. Curr Eye Res 1985;4:351–360.

    PubMed  CAS  Google Scholar 

  72. 72. Bonanno JA. Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog Retin Eye Res 2003;22:69–94.

    PubMed  CAS  Google Scholar 

  73. 73. Candia OA, Montoreano R, Podos SM. Effect of the ionophore A23187 on chloride transport across isolated frog cornea. Am J Physiol 1977;233:F94–101.

    PubMed  CAS  Google Scholar 

  74. 74. Leiper LJ, Walczysko P, Kucerova R, Ou J, Shanley LJ, Lawson D, Forrester JV, McCaig CD, Zhao M, Collinson JM. The roles of calcium signaling and ERK1/2 phosphorylation in a Pax6+/- mouse model of epithelial wound-healing delay. BMC Biol 2006;4:27.

    PubMed  Google Scholar 

  75. 75. Yang H, Sun X, Wang Z, Ning G, Zhang F, Kong J, Lu L, Reinach PS. EGF stimulates growth by enhancing capacitative calcium entry in corneal epithelial cells. J Membr Biol 2003;194:47–58.

    PubMed  CAS  Google Scholar 

  76. 76. Reinach P, Holmberg N. Ca-stimulated Mg dependent ATPase activity in a plasma membrane enriched fraction of bovine corneal epithelium. Curr Eye Res 1987;6:399–405.

    PubMed  CAS  Google Scholar 

  77. 77. Reinach PS, Holmberg N, Chiesa R. Identification of calmodulin-sensitive Ca(2+)-transporting ATPase in the plasma membrane of bovine corneal epithelial cell. Biochim Biophys Acta 1991;1068:1–8.

    PubMed  CAS  Google Scholar 

  78. 78. Verma AK, Filoteo AG, Stanford DR, Wieben ED, Penniston JT, Strehler EE, Fischer R, Heim R, Vogel G, Mathews S, et al. Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem 1988;263:14152–14159.

    PubMed  CAS  Google Scholar 

  79. 79. Johnson JA, Grande JP, Roche PC, Campbell RJ, Kumar R. Immuno-localization of the calcitriol receptor, calbindin-D28k and the plasma membrane calcium pump in the human eye. Curr Eye Res 1995;14:101–108.

    PubMed  CAS  Google Scholar 

  80. 80. Talarico EF, Jr., Kennedy BG, Marfurt CF, Loeffler KU, Mangini NJ. Expression and immunolocalization of plasma membrane calcium ATPase isoforms in human corneal epithelium. Mol Vis 2005;11:169–178.

    PubMed  CAS  Google Scholar 

  81. 81. Rich A, Rae JL. Calcium entry in rabbit corneal epithelial cells: evidence for a nonvoltage dependent pathway. J Membr Biol 1995;144:177–184.

    PubMed  CAS  Google Scholar 

  82. 82. Tao W, Wu X, Liou GI, Abney TO, Reinach PS. Endothelin receptor-mediated Ca2+ signaling and isoform expression in bovine corneal epithelial cells. Invest Ophthalmol Vis Sci 1997;38:130–141.

    PubMed  CAS  Google Scholar 

  83. 83. Socci RR, Tachado SD, Aronstam RS, Reinach PS. Characterization of the muscarinic receptor subtypes in the bovine corneal epithelial cells. J Ocul Pharmacol Ther 1996;12:259–269.

    PubMed  CAS  Google Scholar 

  84. 84. Yang H, Mergler S, Sun X, Wang Z, Lu L, Bonanno JA, Pleyer U, Reinach PS. TRPC4 knockdown suppresses epidermal growth factor-induced store-operated channel activation and growth in human corneal epithelial cells. J Biol Chem 2005;280:32230–32237.

    PubMed  CAS  Google Scholar 

  85. 85. Zhang F, Wen Q, Mergler S, Yang H, Wang Z, Bildin VN, Reinach PS. PKC isoform-specific enhancement of capacitative calcium entry in human corneal epithelial cells. Invest Ophthalmol Vis Sci 2006;47:3989–4000.

    PubMed  Google Scholar 

  86. 86. Bonanno JA. Lactate-proton cotransport in rabbit corneal epithelium. Curr Eye Res 1990;9:707–712.

    PubMed  CAS  Google Scholar 

  87. 87. Klyce SD. Stromal lactate accumulation can account for corneal oedema osmotically following epithelial hypoxia in the rabbit. J Physiol 1981;321:49–64.

    PubMed  CAS  Google Scholar 

  88. 88. Lambert SR, Klyce SD. The origins of Sattler's veil. Am J Ophthalmol 1981;91:51–56.

    PubMed  CAS  Google Scholar 

  89. 89. Kumagai AK, Glasgow BJ, Pardridge WM. GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. Invest Ophthalmol Vis Sci 1994;35:2887–2894.

    PubMed  CAS  Google Scholar 

  90. 90. Takahashi H, Kaminski AE, Zieske JD. Glucose transporter 1 expression is enhanced during corneal epithelial wound repair. Exp Eye Res 1996;63:649–659.

    PubMed  CAS  Google Scholar 

  91. 91. Loike JD, Cao L, Kuang K, Vera JC, Silverstein SC, Fischbarg J. Role of facilitative glucose transporters in diffusional water permeability through J774 cells. J Gen Physiol 1993;102:897–906.

    PubMed  CAS  Google Scholar 

  92. 92. Ito A, Yamaguchi K, Tomita H, Suzuki T, Onogawa T, Sato T, Mizutamari H, Mikkaichi T, Nishio T, Unno M, Sasano H, Abe T, Tamai M. Distribution of rat organic anion transporting polypeptide-E (oatp-E) in the rat eye. Invest Ophthalmol Vis Sci 2003;44:4877–4884.

    PubMed  Google Scholar 

  93. 93. Coulombre AJ, Coulombre JL. Corneal Development. 3. The Role of the Thyroid in Dehydration and the Development of Transparency. Exp Eye Res 1964;75:105–114.

    Google Scholar 

  94. 94. Jain-Vakkalagadda B, Dey S, Pal D, Mitra AK. Identification and functional characterization of a Na+-independent large neutral amino acid transporter, LAT1, in human and rabbit cornea. Invest Ophthalmol Vis Sci 2003;44:2919–2927.

    PubMed  Google Scholar 

  95. 95. Jain-Vakkalagadda B, Pal D, Gunda S, Nashed Y, Ganapathy V, Mitra AK. Identification of a Na+-dependent cationic and neutral amino acid transporter, B(0,+), in human and rabbit cornea. Mol Pharm 2004;1:338–346.

    PubMed  CAS  Google Scholar 

  96. 96. Katragadda S, Talluri RS, Pal D, Mitra AK. Identification and characterization of a Na+-dependent neutral amino acid transporter, ASCT1, in rabbit corneal epithelial cell culture and rabbit cornea. Curr Eye Res 2005;30:989–1002.

    PubMed  CAS  Google Scholar 

  97. 97. Takami Y, Gong H, Amemiya T. Riboflavin deficiency induces ocular surface damage. Ophthalmic Res 2004;36:156–165.

    PubMed  CAS  Google Scholar 

  98. 98. Stern JJ. The ocular manifestations of riboflavin deficiency. Am J Ophthalmol 1950;33:1127–1136.

    PubMed  CAS  Google Scholar 

  99. 99. Jackson CR. Riboflavin deficiency with ocular signs: report of a case. Br J Ophthalmol 1950;34: 259–260.

    PubMed  CAS  Google Scholar 

  100. 100. Hariharan S, Janoria KG, Gunda S, Zhu X, Pal D, Mitra AK. Identification and functional expression of a carrier-mediated riboflavin transport system on rabbit corneal epithelium. Curr Eye Res 2006;31:811–824.

    PubMed  CAS  Google Scholar 

  101. 101. Ringvold A, Anderssen E, Kjonniksen I. Impact of the environment on the mammalian corneal epithelium. Invest Ophthalmol Vis Sci 2003;44:10–15.

    PubMed  Google Scholar 

  102. 102. Choy CK, Benzie IF, Cho P. Is ascorbate in human tears from corneal leakage or from lacrimal secretion? Clin Exp Optom 2004;87:24–27.

    PubMed  Google Scholar 

  103. 103. Brubaker RF, Bourne WM, Bachman LA, McLaren JW. Ascorbic acid content of human corneal epithelium. Invest Ophthalmol Vis Sci 2000;41:1681–1683.

    PubMed  CAS  Google Scholar 

  104. 104. Williams RN, Paterson CA. Modulation of corneal lipoxygenase by ascorbic acid. Exp Eye Res 1986;43:7–13.

    PubMed  CAS  Google Scholar 

  105. 105. Shimmura S, Masumizu T, Nakai Y, Urayama K, Shimazaki J, Bissen-Miyajima H, Kohno M, Tsubota K. Excimer laser-induced hydroxyl radical formation and keratocyte death in vitro. Invest Ophthalmol Vis Sci 1999;40:1245–1249.

    PubMed  CAS  Google Scholar 

  106. 106. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 1999;399:70–75.

    PubMed  CAS  Google Scholar 

  107. 107. Talluri RS, Katragadda S, Pal D, Mitra AK. Mechanism of L-ascorbic acid uptake by rabbit corneal epithelial cells: evidence for the involvement of sodium-dependent vitamin C transporter 2. Curr Eye Res 2006;31:481–489.

    PubMed  CAS  Google Scholar 

  108. 108. Janoria KG, Hariharan S, Paturi D, Pal D, Mitra AK. Biotin uptake by rabbit corneal epithelial cells: role of sodium-dependent multivitamin transporter (SMVT). Curr Eye Res 2006;31:797–809.

    PubMed  CAS  Google Scholar 

  109. 109. Shioda R, Reinach PS, Hisatsune T, Miyamoto Y. Osmosensitive taurine transporter expression and activity in human corneal epithelial cells. Invest Ophthalmol Vis Sci 2002;43:2916–2922.

    PubMed  Google Scholar 

  110. 110. Nilius B, Voets T. TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch 2005;451:1–10.

    PubMed  CAS  Google Scholar 

  111. 111. Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 2005;57:509–526.

    PubMed  CAS  Google Scholar 

  112. 112. Goldstein SA, Wang KW, Ilan N, Pausch MH. Sequence and function of the two P domain potassium channels: implications of an emerging superfamily. J Mol Med 1998;76:13–20.

    PubMed  CAS  Google Scholar 

  113. 113. Chandy KG, Gutman GA. Nomenclature for mammalian potassium channel genes. Trends Pharmacol Sci 1993;14:434.

    PubMed  CAS  Google Scholar 

  114. 114. Desir G. Molecular physiology of renal potassium channels. Semin Nephrol 1992;12: 531–540.

    PubMed  CAS  Google Scholar 

  115. 115. Faber ES, Sah P. Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 2003;9:181–194.

    PubMed  CAS  Google Scholar 

  116. 116. Giebisch G. Renal potassium channels: function, regulation, and structure. Kidney Int 2001;60:436–445.

    PubMed  CAS  Google Scholar 

  117. 117. Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev 2005;85:319–371.

    PubMed  CAS  Google Scholar 

  118. 118. Korn SJ, Trapani JG. Potassium channels. IEEE Trans Nanobiosci 2005;4:21–33.

    Google Scholar 

  119. 119. MacKinnon R. Potassium channels. FEBS Lett 2003;555:62–65.

    PubMed  CAS  Google Scholar 

  120. 120. Wolosin JM, Candia OA. Cl- secretagogues increase basolateral K+ conductance of frog corneal epithelium. Am J Physiol 1987;253:C555–560.

    PubMed  CAS  Google Scholar 

  121. 121. Farrugia G, Rae JL. Regulation of a potassium-selective current in rabbit corneal epithelium by cyclic GMP, carbachol and diltiazem. J Membr Biol 1992;129:99–107.

    PubMed  CAS  Google Scholar 

  122. 122. Bockman CS, Griffith M, Watsky MA. Properties of whole-cell ionic currents in cultured human corneal epithelial cells. Invest Ophthalmol Vis Sci 1998;39:1143–1151.

    PubMed  CAS  Google Scholar 

  123. 123. Takahira M, Sakurada N, Segawa Y, Shirao Y. Two types of K+ currents modulated by arachidonic acid in bovine corneal epithelial cells. Invest Ophthalmol Vis Sci 2001;42:1847–1854.

    PubMed  CAS  Google Scholar 

  124. 124. Watsky MA, Cooper K, Rae JL. Sodium channels in ocular epithelia. Pflugers Arch 1991;419:454–459.

    PubMed  CAS  Google Scholar 

  125. 125. Nagel W, Reinach P. Mechanism of stimulation by epinephrine of active transepithelial Cl transport in isolated frog cornea. J Membr Biol 1980;56:73–79.

    PubMed  CAS  Google Scholar 

  126. 126. Yang H, Reinach PS, Koniarek JP, Wang Z, Iserovich P, Fischbarg J. Fluid transport by cultured corneal epithelial cell layers. Br J Ophthalmol 2000;84:199–204.

    PubMed  CAS  Google Scholar 

  127. 127. Hartzell C, Putzier I, Arreola J. Calcium-activated chloride channels. Annu Rev Physiol 2005;67:719–758.

    PubMed  CAS  Google Scholar 

  128. 128. Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev 2002;82:503–568.

    PubMed  CAS  Google Scholar 

  129. 129. Nilius B, Droogmans G. Amazing chloride channels: an overview. Acta Physiol Scand 2003;177: 119–147.

    PubMed  CAS  Google Scholar 

  130. 130. Pusch M. Structural insights into chloride and proton-mediated gating of CLC chloride channels. Biochemistry 2004;43:1135–1144.

    PubMed  CAS  Google Scholar 

  131. 131. Marshall WS, Hanrahan JW. Anion channels in the apical membrane of mammalian corneal epithelium primary cultures. Invest Ophthalmol Vis Sci 1991;32:1562–1568.

    PubMed  CAS  Google Scholar 

  132. 132. Al-Nakkash L, Reinach PS. Activation of a CFTR-mediated chloride current in a rabbit corneal epithelial cell line. Invest Ophthalmol Vis Sci 2001;42:2364–2370.

    PubMed  CAS  Google Scholar 

  133. 133. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005;57:411–425.

    PubMed  CAS  Google Scholar 

  134. 134. Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000;16:521–555.

    PubMed  CAS  Google Scholar 

  135. 135. McDonald TF, Pelzer S, Trautwein W, Pelzer DJ. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 1994;74:365–507.

    PubMed  CAS  Google Scholar 

  136. 136. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985;260:3440–3450.

    PubMed  CAS  Google Scholar 

  137. 137. Du JW, Zhang F, Capo-Aponte JE, Tachado SD, Zhang J, Yu FS, Sack RA, Koziel H, Reinach PS. AsialoGM1-mediated IL-8 release by human corneal epithelial cells requires coexpression of TLR5. Invest Ophthalmol Vis Sci 2006;47:4810–4818.

    PubMed  Google Scholar 

  138. 138. Clapham DE. TRP channels as cellular sensors. Nature 2003;426:517–524.

    PubMed  CAS  Google Scholar 

  139. 139. Clapham DE, Julius D, Montell C, Schultz G. International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 2005;57:427–450.

    PubMed  CAS  Google Scholar 

  140. 140. Montell C. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 2001;2001:re1.

    PubMed  CAS  Google Scholar 

  141. 141. Montell C. The TRP superfamily of cation channels. Sci STKE 2005;2005:re3.

    PubMed  Google Scholar 

  142. 142. Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium 2005;38: 233–252.

    PubMed  CAS  Google Scholar 

  143. 143. Sanchez MG, Sanchez AM, Collado B, Malagarie-Cazenave S, Olea N, Carmena MJ, Prieto JC, Diaz-Laviada II. Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue. Eur J Pharmacol 2005;515:20–27.

    PubMed  CAS  Google Scholar 

  144. 144. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 2004;430:748–754.

    PubMed  CAS  Google Scholar 

  145. 145. Weil A, Moore SE, Waite NJ, Randall A, Gunthorpe MJ. Conservation of functional and pharmacological properties in the distantly related temperature sensors TRVP1 and TRPM8. Mol Pharmacol 2005;68:518–527.

    PubMed  CAS  Google Scholar 

  146. 146. Liedtke W. TRPV4 as osmosensor: a transgenic approach. Pflugers Arch 2005;451:176–180.

    PubMed  CAS  Google Scholar 

  147. 147. Kochukov MY, McNearney TA, Fu Y, Westlund KN. Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. Am J Physiol Cell Physiol 2006;291:C424–432.

    PubMed  CAS  Google Scholar 

  148. 148. Zhang L, Jones S, Brody K, Costa M, Brookes SJ. Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am J Physiol Gastrointest Liver Physiol 2004;286:G983–991.

    PubMed  CAS  Google Scholar 

  149. 149. Mergler S, Pleyer U, Reinach P, Bednarz J, Dannowski H, Engelmann K, Hartmann C, Yousif T. EGF suppresses hydrogen peroxide induced Ca2+ influx by inhibiting L-type channel activity in cultured human corneal endothelial cells. Exp Eye Res 2005;80:285–293.

    PubMed  CAS  Google Scholar 

  150. 150. Hsu JK, Cavanagh HD, Jester JV, Ma L, Petroll WM. Changes in corneal endothelial apical junctional protein organization after corneal cold storage. Cornea 1999;18:712–720.

    PubMed  CAS  Google Scholar 

  151. 151. Lindstrom RL. Advances in corneal preservation. Trans Am Ophthalmol Soc 1990;88:555–648.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was support by grants EY04795 (PR) and by an unrestricted grant from Research to Prevent Blindness, Inc., NY (KP).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Reinach, P.S., Capó-Aponte, J.E., Mergler, S., Pokorny, K.S. (2008). Roles of Corneal Epithelial Ion Transport Mechanisms in Mediating Responses to Cytokines and Osmotic Stress. In: Tombran-Tink, J., Barnstable, C.J. (eds) Ocular Transporters In Ophthalmic Diseases And Drug Delivery. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-375-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-375-2_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-958-1

  • Online ISBN: 978-1-59745-375-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics