Skip to main content

Changes in Aqueous Humor Dynamics with Age and Glaucoma

  • Chapter
Book cover Mechanisms of the Glaucomas

Part of the book series: Ophthalmology Research™ ((OPHRES))

  • 1211 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Eye Diseases Prevalence Research Group. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 2004;122:477–485.

    Google Scholar 

  2. Thylefors B, Negrel AD, Pararajasegaram R, Dadzie KY. Global data on blindness. Bull World Health Organ 1995;73:115–121.

    PubMed  CAS  Google Scholar 

  3. Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc 1990;65:375–398.

    PubMed  CAS  Google Scholar 

  4. Kirkwood TB, Holliday R. The evolution of ageing and longevity. Proc R Soc Lond Biol Sci 1979;205: 531–546.

    CAS  Google Scholar 

  5. Gabelt BT, Kaufman PL. Aqueous humor hydrodynamics. In: Kaufman PL, Alm A, eds. Adlers Physiology of the Eye, London, Mosby, 2002:237–289.

    Google Scholar 

  6. Alvarado J, et al. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci 1981;21:714–727.

    PubMed  CAS  Google Scholar 

  7. Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology 1984;91:564–579.

    PubMed  CAS  Google Scholar 

  8. Lütjen-Drecoll E. Functional morphology of the trabecular meshwork in primate eyes. Prog Retinal Eye Res 1998;18:91–119.

    Google Scholar 

  9. Grierson I and Howes RC. Age-related depletion of the cell population in the human trabecular meshwork. Eye 1987;1:204–210.

    Google Scholar 

  10. Grierson I, et al. The effects of age and antiglaucoma drugs on the meshwork cell population. Res Clin Forums 1982;4:69–92.

    Google Scholar 

  11. Armaly MF. The genetic determination of ocular pressure in the normal eye. Arch Ophthalmol 1967;78:187–192.

    PubMed  CAS  Google Scholar 

  12. Rochtchina E, Mitchell P, Wang JJ. Relationship between age and intraocular pressure: the Blue Mountains Eye Study. Clin Exp Ophthalmol 2002;30:173–175.

    Google Scholar 

  13. Hiller R, Sperduto RD, Krueger DE. Race, iris pigmentation, and intraocular pressure. Am J Epidemiol 1982;115:64–683.

    Google Scholar 

  14. Klein BEK, Klein R, Lointon KLP. Intraocular pressure in an American community. The Beaver Dam eye study. Invest Ophthalmol Vis Sci 1992;33:2224–2228.

    PubMed  CAS  Google Scholar 

  15. Nakano T, et al. Long-term physiologic changes of intraocular pressure: a 10-year longitudinal analysis in young and middle-aged Japanese men. Ophthalmology 2005;112:609–616.

    PubMed  Google Scholar 

  16. Nomura H, et al. Age-related changes in intraocular pressure in a large Japanese population: a cross-sectional and longitudinal study. Ophthalmology 1999;106:2016–2022.

    PubMed  CAS  Google Scholar 

  17. Bito LZ, Merritt SQ, DeRousseau CJ. Intraocular pressure of rhesus monkeys (Macaca mulatta). I. An initial survey of two free-breeding colonies. Invest Ophthalmol Vis Sci 1979;18:785–793.

    PubMed  CAS  Google Scholar 

  18. DeRousseau CJ, Bito LZ. Intraocular pressure of rhesus monkeys (Macaca mulatta). II. Juvenile ocular hypertension and its apparent relationship to ocular growth. Exp Eye Res 1981;32:407–417.

    CAS  Google Scholar 

  19. Kaufman PL, Bito LZ. The occurrence of senile cataracts, ocular hypertension and glaucoma in rhesus monkeys. Exp Eye Res 1982;34:287–291.

    PubMed  CAS  Google Scholar 

  20. Gabelt BT, et al. Aqueous humor dynamics and trabecular meshwork and anterior ciliary muscle morphologic changes with age in rhesus monkeys. Invest Ophthalmol Vis Sci 2003;44:2118–2125.

    PubMed  Google Scholar 

  21. Becker B. The decline in aqueous secretion and outflow facility with age. Am J Ophthalmol 1958;46:731–736.

    PubMed  CAS  Google Scholar 

  22. Gaasterland D, et al. Studies of aqueous humour dynamics in man. VI. Effect of age upon parameters of intraocular pressure in normal human eyes. Exp Eye Res 1978;26:651–656.

    PubMed  CAS  Google Scholar 

  23. Kupfer C. Clinical significance of pseudofacility. Sanford R. Gifford memorial lecture. Am J Ophthalmol 1973;75:193–204.

    PubMed  CAS  Google Scholar 

  24. Toris CB, et al. Effects of apraclonidine on aqueous humor dynamics in human eyes. Ophthalmology 1995;102:456–461.

    PubMed  CAS  Google Scholar 

  25. Toris CB, et al. Aqueous humor dynamics in the aging human eye. Am J Ophthalmol 1999;127:407–412.

    PubMed  CAS  Google Scholar 

  26. Bárány EH. Simultaneous measurements of changing intraocular pressure and outflow facility in the vervet monkey by constant pressure infusion. Invest Ophthalmol 1964; 3:135–143.

    PubMed  Google Scholar 

  27. Gabelt BT, Crawford K, Kaufman PL. Outflow facility and its response to pilocarpine decline in aging rhesus monkeys. Arch Ophthalmol 1991;109:879–882.

    PubMed  CAS  Google Scholar 

  28. Kiland JA, et al. Atropine reduces but does not eliminate the age-related decline in perfusion outflow facility in monkeys. Exp Eye Res 1997;64:831–835.

    PubMed  CAS  Google Scholar 

  29. Larsson LI, Rettig ES and Brubaker RF. Aqueous flow in open-angle glaucoma. Arch Ophthalmol 1995;113:283–286.

    PubMed  CAS  Google Scholar 

  30. Linnér E. Ocular hypertension. I. The clinical course during ten years without therapy. Aqueous humour dynamics. Acta Ophthalmol 1976;54:707–720.

    Google Scholar 

  31. Toris CB, Camras CB, Yablonski ME. Aqueous humor dynamics in ocular hypertensive patients. J Glaucoma 2002;11:253–258.

    PubMed  Google Scholar 

  32. Townsend DJ, Brubaker RF. Immediate effect of epinephrine on aqueous formation in the normal human eye as measured by fluorophotometry. Invest Ophthalmol Vis Sci 1980;19:256–266.

    PubMed  CAS  Google Scholar 

  33. Bill A. Aqueous humor dynamics in monkeys (Macaca irus and Cercopithecus ethiops). Exp Eye Res 1971;11:195–206.

    PubMed  CAS  Google Scholar 

  34. Yablonski ME, Cook DJ, Gray J. A fluorophotometric study of the effect of argon laser trabeculoplasty on aqueous humor dynamics. Am J Ophthalmol 1985;99:579–582.

    PubMed  CAS  Google Scholar 

  35. Diestelhorst M, Krieglstein GK. Does aqueous humor secretion decrease with age? Int Ophthalmol 1992;16:305–309.

    Google Scholar 

  36. Brubaker RF, et al. The effect of age on aqueous humor formation in man. Ophthalmology 1981;88:283–287.

    PubMed  CAS  Google Scholar 

  37. Kaufman PL. Aging and aqueous humor dynamics. In: The Fundamental Aging Processes of the Eye. Ed. DiVincentis M. Baccini and Chiappi, Florence, 1987:41–46.

    Google Scholar 

  38. Alvarado J, et al. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci 1981;21:714–727.

    PubMed  CAS  Google Scholar 

  39. Rohen JW, et al. Ultrastructure of the trabecular meshwork in untreated cases of primary open-angle glaucoma (POAG). Exp Eye Res 1993;56:683–692.

    PubMed  CAS  Google Scholar 

  40. Tamm ER, et al. Transforming growth factor-beta 1 induces alpha-smooth muscle-actin expression in cultured human and monkey trabecular meshwork. Exp Eye Res 1996;62:389–397.

    PubMed  CAS  Google Scholar 

  41. Tripathi RC, et al. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res 1994;59:723–727.

    PubMed  CAS  Google Scholar 

  42. Flügel C, et al. Age-related loss of alpha-smooth muscle actin in normal and glaucomatous human trabecular meshwork of different age groups. J Glaucoma 1992;1:165–173.

    Google Scholar 

  43. Zhao X, et al. Gene and protein expression changes in human trabecular meshwork cells treated with transforming growth factor-beta. Invest Ophthalmol Vis Sci 2004;45:4023–4034.

    PubMed  Google Scholar 

  44. Li J, et al. Transforming growth factor-beta 1 and -beta 2 positively regulate TGF-beta 1 mRNA expression in trabecular cells. Invest Ophthalmol Vis Sci 1996;37:2778–2782.

    PubMed  CAS  Google Scholar 

  45. Gottanka J, et al. Effects of TGF-beta2 in perfused human eyes. Invest Ophthalmol Vis Sci 2004;45:153–158.

    PubMed  Google Scholar 

  46. Lütjen-Drecoll E, Rohen JW. Morphologic basis for drug action on aqueous outflow. In: Applied Pharmacology in the Medical Treatment of Glaucomas. Ed. Drance SM. Grune & Stratton, Inc., New York, 1984:459–475.

    Google Scholar 

  47. Lütjen-Drecoll E, Futa R, Rohen JW. Ultrahistochemical studies on tangential sections of the trabecular meshwork in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 1981;21:563–573.

    PubMed  Google Scholar 

  48. Rohen JW. The evolution of the primate eye in relation to the problem of glaucoma. In: Basic Aspects of Glaucoma Research. Ed. Lutjen-Drecoll. Schattauer, Stuttgart 1982:3–33.

    Google Scholar 

  49. Rohen JW. Why is intraocular pressure elevated in chronic simple glaucoma? Anatomical considerations. Ophthalmology 1983;90:758–765.

    PubMed  CAS  Google Scholar 

  50. Rohen JW, Futa R, Lütjen-Drecoll E. The fine structure of the cribriform meshwork in normal and glaucomatous eyes as seen in tangential sections. Invest Ophthalmol Vis Sci 1981;21:574–585.

    PubMed  CAS  Google Scholar 

  51. Lütjen-Drecoll E, et al. Quantitative analysis of ‘plaque material’ between ciliary muscle tips in normal and glaucomatous eyes. Exp Eye Res 1986;42:457–465.

    PubMed  Google Scholar 

  52. Hann CR, et al. Ultrastructural localization of collagen IV, fibronectin, and laminin in the trabecular meshwork of normal and glaucomatous eyes. Ophthalmic Res 2001;33:314–324.

    PubMed  CAS  Google Scholar 

  53. Marshall GE, Konstas AG, Lee WR. Immunogold localization of type IV collagen and laminin in the aging human outflow system. Exp Eye Res 1990;51:691–699.

    PubMed  CAS  Google Scholar 

  54. Marshall GE, Konstas AG, Lee WR. Immunogold ultrastructural localization of collagens in the aged human outflow system. Ophthalmology 1991;98:692–700.

    PubMed  CAS  Google Scholar 

  55. Ueda J, Wentz-Hunter K, Yue BYJT. Distribution of myocilin and extracellular matrix components in the juxtacanalicular tissue of human eyes. Invest Ophthalmol Vis Sci 2002;43:1068–1076.

    PubMed  Google Scholar 

  56. Gong H, Trinkaus-Randall V, Freddo TF. Ultrastructural immunocytochemical localization of elastin in normal human trabecular meshwork. Curr Eye Res 1989;8:1071–1082.

    PubMed  CAS  Google Scholar 

  57. Schlotzer-Schrebardt U, et al. Increased extracellular deposition of fibrillin-containing fibrils in pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 1997;38:970–984.

    Google Scholar 

  58. Ueda J, Yue BYJT. Distribution of myocilin and extracellular matrix components in the corneoscleral meshwork of human eyes. Invest Ophthalmol Vis Sci 2003;44:4772–4779.

    PubMed  Google Scholar 

  59. Kaufman PL, Gabelt BT. Cholinergic mechanisms and aqueous humor dynamics. In: Pharmacology of Glaucoma. Ed. Drance SM, Van Buskirk EM and Neufeld AH. Williams & Wilkins, Baltimore 1992:64–92.

    Google Scholar 

  60. James RJ, et al. Effect of centrally stimulated ciliary muscle contraction on outflow facility in young rhesus monkeys. Invest Ophthalmol Vis Sci 2004;45(Suppl):Abs no. 4669.

    Google Scholar 

  61. Tamm E, et al. Posterior attachment of ciliary muscle in young, accommodating old, presbyopic monkeys. Invest Ophthalmol Vis Sci 1991;32:1678–1692.

    PubMed  CAS  Google Scholar 

  62. Lütjen-Drecoll E, et al. Age changes of the trabecular meshwork. A preliminary morphometric study. In: The Structure of the Eye. Ed. Hollyfield JG. Elsevier. New York 1982:341–348.

    Google Scholar 

  63. Lütjen-Drecoll E. Normal morphology of the uveoscleral outflow pathways. In: Uveoscleral Outflow: Biology and Clinical Aspects. Ed. Alm A and Weinreb RN. Mosby-Wolfe Medical Communications, Barcelona 1998:7–23.

    Google Scholar 

  64. Tamm E, et al. Age-related loss of ciliary muscle mobility in the rhesus monkey: role of the choroid. Arch Ophthalmol 1992;110:871–876.

    PubMed  CAS  Google Scholar 

  65. Tamm S, Tamm E, Rohen JW. Age-related changes of the human ciliary muscle. A quantitative morphometric study. Mech Ageing Dev 1992;62:209–221.

    PubMed  CAS  Google Scholar 

  66. Lütjen-Drecoll E, et al. Quantitative analysis of ‘plaque material’ between ciliary muscle tips in normal and glaucomatous eyes. Exp Eye Res 1986;42:457–465.

    PubMed  Google Scholar 

  67. Rohen JW, Lütjen-Drecoll E. Ageing processes in the anterior segment of the eye. In: Basic Aspects of Glaucoma Research III. Ed. Lütjen-Drecoll E. Schattauer, Stuttgart 1993:191–224.

    Google Scholar 

  68. Croft MA, Oyen MJ, Gange SJ, Fisher MR, Kaufman PL. Aging effects on accommodation and outflow facility responses to pilocarpine in humans. Arch Ophthalmol 1996;114:586–592.

    PubMed  CAS  Google Scholar 

  69. Lütjen-Drecoll E, Tamm E, Kaufman PL. Age changes in rhesus monkey ciliary muscle: light and electron microscopy. Exp Eye Res 1988;47:885–899.

    PubMed  Google Scholar 

  70. Lütjen-Drecoll E, Tamm E, Kaufman PL. Age-related loss of morphologic responses to pilocarpine in rhesus monkey ciliary muscle. Arch Ophthalmol 1988;106:1591–1598.

    Google Scholar 

  71. Gabelt BT, Crawford K, Kaufman PL. Outflow facility and its response to pilocarpine decline in aging rhesus monkeys. Arch Ophthalmol 1991;109:879–882.

    PubMed  CAS  Google Scholar 

  72. Hara K, et al. Structural differences between regions of the ciliary body in primates. Invest Ophthalmol Vis Sci 1977;16:912–924.

    PubMed  CAS  Google Scholar 

  73. Lütjen-Drecoll E. Functional morphology of the ciliary epithelium. In: Basic Aspects of Glaucoma Research. Ed. Lütjen-Drecoll E. F K Schattauer, Stuttgart, Germany 1982:69–87.

    Google Scholar 

  74. Gartner J. Aging changes of the ciliary epithelium border layers and their significance for intraocular pressure. Am J Ophthalmol 1971;72:1079–1093.

    PubMed  CAS  Google Scholar 

  75. Brubaker RF. Flow of aqueous humor in humans. Invest Ophthalmol Vis Sci 1991;32: 3145–3166.

    PubMed  CAS  Google Scholar 

  76. Gottanka J, et al. Severity of optic nerve damage in eyes with POAG is correlated with changes in the trabecular meshwork. J Glaucoma 1997;6:123–132.

    PubMed  CAS  Google Scholar 

  77. Rohen JW, Witmer R. Electron microscopic studies on the trabecular meshwork in glaucoma simplex. Albrcht Von Graefes Arch Klin Exp Ophthalmol 1972;183:251–266.

    CAS  Google Scholar 

  78. Rohen JW, et al. Ultrastructure of the trabecular meshwork in untreated cases of primary open-angle glaucoma (POAG). Exp Eye Res 1993;56:683–692.

    PubMed  CAS  Google Scholar 

  79. Allingham RR, de Kater AW, Ethier CR. Schlemm’s canal and primary open angle glaucoma: correlation between Schlemm’s canal dimensions and outflow facility. Exp Eye Res 1996;62:101–109.

    PubMed  CAS  Google Scholar 

  80. Johnson M, et al. The pore density in the inner wall endothelium of Schlemm’s canal of glaucomatous eyes. Invest Ophthalmol Vis Sci 2002;43:2950–2955.

    PubMed  Google Scholar 

  81. Swiderski RE, et al. Localization of MYOC transcripts in human eye and optic nerve by in situ hybridization. Invest Ophthalmol Vis Sci 2000;41:3420–3428.

    PubMed  CAS  Google Scholar 

  82. Karali A, et al. Localization of myocilin/trabecular meshwork–inducible glucocorticoid response protein in the human eye. Invest Ophthalmol Vis Sci 2000;41:729–740.

    PubMed  CAS  Google Scholar 

  83. Polansky JR, et al. Cellular pharmacology and molecular biology of the trabecular meshwork inducible glucocorticoid response gene product. Ophthalmologica 1997;211: 126–139.

    PubMed  CAS  Google Scholar 

  84. Nguyen TD, et al. Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem 1998;273:6341–6350.

    PubMed  CAS  Google Scholar 

  85. Stone EM, et al. Identification of a gene that causes primary open angle glaucoma. Science 1997;275:668–670.

    PubMed  CAS  Google Scholar 

  86. Gong G, et al. Genetic dissection of myocilin glaucoma. Hum Mol Genet 2004;13: R91–R102.

    Google Scholar 

  87. Caballero M, Borras T. Inefficient processing of an olfactomedin-deficient myocilin mutant: potential physiological relevance to glaucoma. Biochem Biophys Res Commun 2001;282:662–670.

    PubMed  CAS  Google Scholar 

  88. Joe MK, et al. Accumulation of mutant myocilins in ER leads to ER stress and potential cytotoxicity in human trabecular meshwork cells. Biochem Biophys Res Commun 2003;312:592–600.

    PubMed  CAS  Google Scholar 

  89. Jacobson N, et al. Non-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor. Hum Mol Genet 2001;10:117–125.

    Google Scholar 

  90. Aroca-Aguilar JD, et al. Myocilin mutations causing glaucoma inhibit the intracellular endoproteolytic cleavage of myocilin between amino acids Arg226 and Ile227. J Biol Chem 2005;280:21043–21051.

    PubMed  CAS  Google Scholar 

  91. Liu Y, Vollrath D. Reversal of mutant myocilin non-secretion and cell killing: implications for glaucoma. Hum Mol Genet 2004;13:1193–1204.

    PubMed  CAS  Google Scholar 

  92. Zillig M, et al. Overexpression and properties of wild-type and Tyr437His mutated myocilin in the eyes of transgenic mice. Invest Ophthalmol Vis Sci 2005;46:223–234.

    PubMed  Google Scholar 

  93. Sohn S, et al. Expression of wild-type and truncated myocilins in trabecular meshwork cells: their subcellular localizations and cytotoxicities. Invest Ophthalmol Vis Sci 2002;43:3680–3685.

    PubMed  Google Scholar 

  94. Hardy KM, et al. Extracellular trafficking of myocilin in human trabecular meshwork cells. J Biol Chem 2005;280:28917–28926.

    PubMed  CAS  Google Scholar 

  95. Ames BN, Shigenaga MK, Hagen TM. Mitochondrial decay in aging. Biochim Biophys Acta 1995;1271:165–170.

    PubMed  Google Scholar 

  96. Weindruch R, Walford RL. The Retardation of Aging and Disease by Dietary Restriction. Charles C Thomas, Springfield, 1988.

    Google Scholar 

  97. Freedman SF, Anderson PJ, Epstein DL. Superoxide dismutase and catalase of calf trabecular meshwork. Invest Ophthalmol Vis Sci 1985;26:1330–1335.

    PubMed  CAS  Google Scholar 

  98. Rose RC, Richer SP, Bode AM. Ocular oxidants and antioxidant protection. Proc Soc Exp Biol Med 1998;217:397–407.

    PubMed  CAS  Google Scholar 

  99. Spector A, Garner WH. Hydrogen peroxide and human cataract. Exp Eye Res 1981;33:673–681.

    PubMed  CAS  Google Scholar 

  100. Kahn MG, Giblin FJ, Epstein DL. Glutathione in calf trabecular meshwork and its relation to aqueous humor outflow facility. Invest Ophthalmol Vis Sci 1983;24:1283–1287.

    PubMed  CAS  Google Scholar 

  101. Tamm ER, Russell P, Johnson DH, Piatigorsky J. Human and monkey trabecular meshwork accumulate alpha B-crystallin in response to heat shock and oxidative stress. Invest Ophthalmol Vis Sci 1996;37:2402–2413.

    PubMed  CAS  Google Scholar 

  102. Zhou L, Li Y, Yue BYJT. Oxidative stress affects cytoskeletal structure and cell-matrix interactions in cells from a ocular tissue: the trabecular meshwork. J Cell Physiol 1999;180:182–189.

    PubMed  CAS  Google Scholar 

  103. Sacca SC, et al. Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol 2005;123:458–463.

    PubMed  CAS  Google Scholar 

  104. Ferreira SM, et al. Oxidative stress markers in aqueous humor of glaucoma patients. Am J Ophthalmol 2004;137:62–69.

    PubMed  CAS  Google Scholar 

  105. Gherghel D, et al. Systemic reduction in glutathione levels occurs in patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2005;46:877–883.

    PubMed  Google Scholar 

  106. Vijg J. Somatic mutations and aging: a re-evaluation. Mutat Res 2000;447:117–135.

    PubMed  CAS  Google Scholar 

  107. Promislow DE. DNA repair and the evolution of longevity: a critical analysis. J Theor Biol 1994;170:291–300.

    PubMed  CAS  Google Scholar 

  108. Lombard DB, et al. Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol Cell Biol 2000;20:3286–3291.

    PubMed  CAS  Google Scholar 

  109. Lebel M, Leder P. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci USA 1998;95:13097–13102.

    PubMed  CAS  Google Scholar 

  110. Bhattacharya SK. Focus on molecules: cochlin. Exp Eye Res 2006;82:355–356.

    PubMed  CAS  Google Scholar 

  111. Bhattacharya SK, et al. Proteomics reveal Cochlin deposits associated with glaucomatous trabecular meshwork. J Biol Chem 2005;280:6080–6084.

    PubMed  CAS  Google Scholar 

  112. Bhattacharya SK, et al. Cochlin deposits in the trabecular meshwork of the glaucomatous DBA/2J mouse. Exp Eye Res 2005;80:741–744.

    PubMed  CAS  Google Scholar 

  113. Rao PV, Allingham RR, Epstein DL. TIGR/myocilin in human aqueous humor. Exp Eye Res 2000;71:637–641.

    PubMed  CAS  Google Scholar 

  114. Fautsch MP, et al. In vitro and in vivo characterization of disulfide bond use in myocilin complex formation. Mol Vis 2004;10:417–425.

    PubMed  CAS  Google Scholar 

  115. Russell P, et al. The presence and properties of myocilin in the aqueous humor. Invest Ophthalmol Vis Sci 2001;42:983–986.

    PubMed  CAS  Google Scholar 

  116. Fautsch MP, Johnson DH. Characterization of myocilin-myocilin interactions. Invest Ophthalmol Vis Sci 2001;42:2324–2331.

    PubMed  CAS  Google Scholar 

  117. Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 2000;1:72–76.

    PubMed  CAS  Google Scholar 

  118. Packer L, Fuehr K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 1977;267:423–425.

    PubMed  CAS  Google Scholar 

  119. Serra V, von Zglinicki T, Lorenz M, Saretzki G. Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem 2003;278:6824–6830.

    PubMed  CAS  Google Scholar 

  120. Polansky JR, Alvarado JA. Cellular mechanisms influencing the aqueous humor outflow pathway. In: Principles and Practice of Ophthalmology: Basic Science. Eds. Albert D and Jakobiec FA. WB Saunders, Philadelphia 1994:226.

    Google Scholar 

  121. Liton PB, et al. Cellular senescence in the glaucomatous outflow pathway. Exp Gerontol 2005;40:745–748.

    PubMed  CAS  Google Scholar 

  122. Caballero M, et al. Proteasome inhibition by chronic oxidative stress in human trabecular meshwork cells. Biochem Biophys Res Commun 2003;308:346–352.

    PubMed  CAS  Google Scholar 

  123. Caballero M, et al. Effects of donor age on proteasome activity and senescence in trabecular meshwork cells. Biochem Biophys Res Commun 2004;323:1048–1054.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Tan, J.C., Gabelt, B.T., Kaufman, P.L. (2008). Changes in Aqueous Humor Dynamics with Age and Glaucoma. In: Tombran-Tink, J., Barnstable, C.J., Shields, M.B. (eds) Mechanisms of the Glaucomas. Ophthalmology Research™. Humana Press. https://doi.org/10.1007/978-1-59745-373-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-373-8_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-956-7

  • Online ISBN: 978-1-59745-373-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics