Skip to main content

Roles of CYP1B1, Optineurin, and WDR36 Gene Mutations in Glaucoma

  • Chapter
Book cover Mechanisms of the Glaucomas

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Luise, V. P. and Anderson, D. R. (1983). Primary infantile glaucoma (congenital glaucoma). Surv. Ophthalmol. 28, 1–19.

    Article  Google Scholar 

  2. Sarfarazi, M., Akarsu, A. N., Hossain, A., Turacli, M. E., Aktan, S. G., Barsoum-Homsy, M., Chevrette, L. and Sayli, B. S. (1995). Assignment of a locus (GLC3A) for primary congenital glaucoma (Buphthalmos) to 2p21 and evidence for genetic heterogeneity. Genomics 30, 171–177.

    Article  PubMed  CAS  Google Scholar 

  3. Stoilov, I., Akarsu, A. N. and Sarfarazi, M. (1997). Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum. Mol. Genet. 6, 641–647.

    Article  PubMed  CAS  Google Scholar 

  4. Bejjani, B. A., Lewis, R. A., Tomey, K. F., Anderson, K. L., Dueker, D. K., Jabak, M., Astle, W. F., Otterud, B., Leppert, M. and Lupski, J. R. (1998). Mutations in CYP1B1, the gene for cytochrome P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. Am. J. Hum. Genet. 62, 325–333.

    Article  PubMed  CAS  Google Scholar 

  5. Plasilova, M., Stoilov, I., Sarfarazi, M., Kadasi, L., Ferakova, E. and Ferak, V. (1999). Identification of a single ancestral CYP1B1 mutation in Slovak Gypsies (Roms) affected with primary congenital glaucoma. J. Med. Genet.36, 290–294.

    PubMed  CAS  Google Scholar 

  6. Stoilov, I., Akarsu, A. N., Alozie, I., Child, A., Barsoum-Homsy, M., Turacli, M. E., Or, M., Lewis, R. A., Ozdemir, N., Brice, G., Aktan, S. G., Chevrette, L., Coca-Prados, M. and Sarfarazi, M. (1998). Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am. J. Hum. Genet. 62, 573–584.

    Article  PubMed  CAS  Google Scholar 

  7. Sarfarazi, M., Stoilov, I. and Schenkman, J. B. (2003). Genetics and biochemistry of primary congenital glaucoma. Ophthalmol. Clin. North Am. 16(4), 543–554.

    Article  PubMed  Google Scholar 

  8. Akarsu, A. N., Turacli, M. E., Aktan, S. G., Barsoum-Homsy, M., Chevrette, L., Sayli, B. S. and Sarfarazi, M. (1996). A second locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the 1p36 region. Hum. Mol. Genet. 5, 1199–1203.

    Article  PubMed  CAS  Google Scholar 

  9. Sarfarazi, M. and Stoilov, I. (2002). The third genetic locus (GLC3C) for primary congenital glaucoma (PCG) maps to chromosome 14q24.3. Am. J. Hum. Genet. (Supplement). 71(4), A455.

    Google Scholar 

  10. Vincent, A., Billingsley, G., Priston, M., Williams-Lyn, D., Sutherland, J., Glaser, T., Oliver, E., Walter, M. A., Heathcote, G., Levin, A. and Heon, E. (2001). Phenotypic heterogeneity of CYP1B1: mutations in a patient with Peters’ anomaly. J. Med. Genet. 38, 324–326.

    Article  PubMed  CAS  Google Scholar 

  11. Edward, D., Al Rajhi, A., Lewis, R. A., Curry, S., Wang, Z. and Bejjani, B. (2004). Molecular basis of Peters anomaly in Saudi Arabia. Ophthalmic Genet. 25, 257–270.

    Google Scholar 

  12. Churchill, A. J. and Yeung, A. (2005). A compound heterozygous change found in Peters’ anomaly. Mol. Vis. 11, 66–70.

    PubMed  CAS  Google Scholar 

  13. Vincent, A., Billingsley, G., Priston, M., Glaser, T., Oliver, E., Walter, M., Ritch, R., Levin, A. and Heon, E. (2006). Further support of the role of CYP1B1 in patients with Peters anomaly. Mol. Vis. 12, 506–510.

    PubMed  CAS  Google Scholar 

  14. Chavarria-Soley, G., Michels-Rautenstrauss, K., Caliebe, A., Kautza, M., Mardin, C. and Rautenstrauss, B. (2006). Novel CYP1B1 and known PAX6 mutations in anterior segment dysgenesis (ASD). J. Glaucoma 15, 499–504.

    Article  PubMed  Google Scholar 

  15. Melki, R., Colomb, E., Lefort, N., Brezin, A. P. and Garchon, H. J. (2004). CYP1B1 mutations in French patients with early-onset primary open-angle glaucoma. J. Med. Genet. 41, 647–651.

    Article  PubMed  CAS  Google Scholar 

  16. Acharya, M., Mookherjee, S., Bhattacharjee, A., Bandyopadhyay, A. K., Daulat Thakur, S. K., Bhaduri, G., Sen, A. and Ray, K. (2006). Primary role of CYP1B1 in Indian juvenile-onset POAG patients. Mol. Vis. 12, 399–404.

    PubMed  CAS  Google Scholar 

  17. Lopez-Garrido, M. P., Sanchez-Sanchez, F., Lopez-Martinez, F., Aroca-Aguilar, J. D., Blanco-Marchite, C., Coca-Prados, M. and Escribano, J. (2006). Heterozygous CYP1B1 gene mutations in Spanish patients with primary open-angle glaucoma. Mol. Vis. 12, 748–755.

    PubMed  CAS  Google Scholar 

  18. Sarfarazi, M. and Stoilov, I. (2000). Molecular genetics of primary congenital glaucoma. Eye 14, 422–428.

    PubMed  Google Scholar 

  19. Bejjani, B. A., Stockton, D. W., Lewis, R. A., Tomey, K. F., Dueker, D. K., Jabak, M., Astle, W. F. and Lupski, J. R. (2000). Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus [erratum in Hum. Mol. Genet. 2000; 9(7):1141]. Hum. Mol. Genet. 9, 367–374.

    Article  PubMed  CAS  Google Scholar 

  20. Vincent, A. L., Billingsley, G., Buys, Y., Levin, A. V., Priston, M., Trope, G., Williams-Lyn, D. and Heon, E. (2002). Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am. J. Hum. Genet. 70, 448–460.

    Article  PubMed  CAS  Google Scholar 

  21. Stone, E. M., Fingert, J. H., Alward, W. L., Nguyen, T. D., Polansky, J. R., Sunden, S. L., Nishimura, D., Clark, A. F., Nystuen, A., Nichols, B. E., Mackey, D. A., Ritch, R., Kalenak, J. W., Craven, E. R. and Sheffield, V. C. (1997). Identification of a gene that causes primary open angle glaucoma. Science 275, 668–670.

    Article  PubMed  CAS  Google Scholar 

  22. Rezaie, T., Child, A., Hitchings, R., Brice, G., Miller, L., Coca-Prados, M., Heon, E., Krupin, T., Ritch, R., Kreutzer, D., Crick, R. P. and Sarfarazi, M. (2002). Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295, 1077–1079.

    Article  PubMed  CAS  Google Scholar 

  23. Monemi, S., Spaeth, G., Dasilva, A., Popinchalk, S., Ilitchev, E., Liebmann, J., Ritch, R., Heon, E., Crick, R. P., Child, A. and Sarfarazi, M. (2005). Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum. Mol. Genet. 14, 725–733.

    Article  PubMed  CAS  Google Scholar 

  24. Choudhary, D., Jansson, I., Sarfarazi, M. and Schenkman, J. B. (2006). Physiological significance and expression of P450s in the developing eye. Drug Metab. Rev. 38,337–352.

    Article  PubMed  CAS  Google Scholar 

  25. Doshi, M., Marcus, C., Bejjani, B. A. and Edward, D. P. (2006). Immunolocalization of CYP1B1 in normal, human, fetal and adult eyes. Exp. Eye Res. 82, 24–32.

    Article  PubMed  CAS  Google Scholar 

  26. Savas, U., Bhattacharyya, K. K., Christou, M., Alexander, D. L. and Jefcoate, C. R. (1994). Mouse cytochrome P-450EF, representative of a new 1B subfamily of cytochrome P-450s. Cloning, sequence determination, and tissue expression. J. Biol. Chem. 269, 14905–14911.

    PubMed  CAS  Google Scholar 

  27. Shimada, T., Hayes, C. L., Yamazaki, H., Amin, S., Hecht, S. S., Guengerich, F. P. and Sutter, T. R. (1996). Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res. 56, 2979–2984.

    PubMed  CAS  Google Scholar 

  28. Murray, G. I., Taylor, M. C., McFadyen, M. C., McKay, J. A., Greenlee, W. F., Burke, M. D. and Melvin, W. T. (1997). Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res. 57, 3026–3031.

    PubMed  CAS  Google Scholar 

  29. Buters, J. T., Sakai, S., Richter, T., Pineau, T., Alexander, D. L., Savas, U., Doehmer, J., Ward, J. M., Jefcoate, C. R. and Gonzalez, F. J. (1999). Cytochrome P450 CYP1B1 determines susceptibility to 7, 12-dimethylbenz[a]anthracene-induced lymphomas. Proc. Natl. Acad. Sci. U.S.A 96, 1977–1982.

    Article  PubMed  CAS  Google Scholar 

  30. Carnell, D. M., Smith, R. E., Daley, F. M., Barber, P. R., Hoskin, P. J., Wilson, G. D., Murray, G. I. and Everett, S. A. (2004). Target validation of cytochrome P450 CYP1B1 in prostate carcinoma with protein expression in associated hyperplastic and premalignant tissue. Int. J. Radiat. Oncol. Biol. Phys. 58, 500–509.

    PubMed  CAS  Google Scholar 

  31. McFadyen, M. C., Melvin, W. T. and Murray, G. I. (2004). Cytochrome P450 CYP1B1 activity in renal cell carcinoma. Br. J. Cancer 91, 966–971.

    PubMed  CAS  Google Scholar 

  32. McKay, J. A., Melvin, W. T., Ah-See, A. K., Ewen, S. W., Greenlee, W. F., Marcus, C. B., Burke, M. D. and Murray, G. I. (1995). Expression of cytochrome P450 CYP1B1 in breast cancer. FEBS Lett. 374, 270–272.

    Article  PubMed  CAS  Google Scholar 

  33. Tang, Y. M., Wo, Y. Y., Stewart, J., Hawkins, A. L., Griffin, C. A., Sutter, T. R. and Greenlee, W. F. (1996). Isolation and characterization of the human cytochrome P450 CYP1B1 gene. J. Biol. Chem. 271, 28324–28330.

    Article  PubMed  CAS  Google Scholar 

  34. Shimada, T., Gillam, E. M., Sutter, T. R., Strickland, P. T., Guengerich, F. P. and Yamazaki, H. (1997). Oxidation of xenobiotics by recombinant human cytochrome P450 1B1. Drug Metab. Dispos. 25, 617–622.

    PubMed  CAS  Google Scholar 

  35. Shimada, T., Oda, Y., Gillam, E. M., Guengerich, F. P. and Inoue, K. (2001). Metabolic activation of polycyclic aromatic hydrocarbons and other procarcinogens by cytochromes P450 1A1 and P450 1B1 allelic variants and other human cytochromes P450 in Salmonella typhimurium NM2009. Drug Metab. Dispos. 29, 1176–1182.

    PubMed  CAS  Google Scholar 

  36. Savas, U., Carstens, C. P. and Jefcoate, C. R. (1997). Biological oxidations and P450 reactions. Recombinant mouse CYP1B1 expressed in Escherichia coli exhibits selective binding by polycyclic hydrocarbons and metabolism which parallels C3H10T1/2 cell microsomes, but differs from human recombinant CYP1B1. Arch. Biochem. Biophys. 347, 181–192.

    Article  PubMed  CAS  Google Scholar 

  37. Kupfer, D. (1982). Endogenous substrates of monooxygenses: fatty acids and prostaglandins. In: Hepatic Cytochrome P450 Monooxygenase System, J. B. Schenkman and D. Kupfer, editors. Pergamon Press: New York. pp. 157–187.

    Google Scholar 

  38. Estabrook, R. W., Cooper, D. Y. and Rosenthal, O. (1963). The light reversible carbon monoxide inhibition of the steroid C21-hydroxylase system of the adrenal cortex. Biochem. Z. 338, 741–755.

    PubMed  CAS  Google Scholar 

  39. Guengerich, F. P. (1994). Catalytic selectivity of human cytochrome P450 enzymes: relevance to drug metabolism and toxicity. Toxicol. Lett. 70, 133–138.

    Article  PubMed  CAS  Google Scholar 

  40. Stoilov, I., Jansson, I., Sarfarazi, M. and Schenkman, J. B. (2001). Roles of cytochrome p450 in development. Drug Metabol. Drug Interact. 18, 33–55.

    PubMed  CAS  Google Scholar 

  41. Hakkola, J., Pasanen, M., Pelkonen, O., Hukkanen, J., Evisalmi, S., Anttila, S., Rane, A., Mantyla, M., Purkunen, R., Saarikoski, S., Tooming, M. and Raunio, H. (1997). Expression of CYP1B1 in human adult and fetal tissues and differential inducibility of CYP1B1 and CYP1A1 by Ah receptor ligands in human placenta and cultured cells. Carcinogenesis 18, 391–397.

    Article  PubMed  CAS  Google Scholar 

  42. Jansson, I., Stoilov, I., Sarfarazi, M. and Schenkman, J. B. (2001). Effect of two mutations of human CYP1B1, G61E and R469W, on stability and endogenous steroid substrate metabolism. Pharmacogenetics 11, 793–801.

    Article  PubMed  CAS  Google Scholar 

  43. Jansson, I., Stoilov, I., Sarfarazi, M. and Schenkman, J. B. (2000). Enhanced expression of CYP1B1 in Escherichia coli. Toxicology 144, 211–219.

    Article  PubMed  CAS  Google Scholar 

  44. Sogawa, K. and Fujii-Kuriyama, Y. (1993). Regulation of cytochrome P450 expression. In: Cytochrome P450, J. B. Schenkman and H. Greim, editors. Springer-Verlag: New York. pp. 493–501.

    Google Scholar 

  45. Shen, Z., Liu, J., Wells, R. L. and Elkind, M. M. (1994). cDNA cloning, sequence analysis, and induction by aryl hydrocarbons of a murine cytochrome P450 gene, Cyp1b1. DNA Cell Biol. 13, 763–769.

    PubMed  CAS  Google Scholar 

  46. Shimada, T., Inoue, K., Suzuki, Y., Kawai, T., Azuma, E., Nakajima, T., Shindo, M., Kurose, K., Sugie, A., Yamagishi, Y., Fujii-Kuriyama, Y. and Hashimoto, M. (2002). Arylhydrocarbon receptor-dependent induction of liver and lung cytochromes P450 1A1, 1A2, and 1B1 by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in genetically engineered C57BL/6J mice. Carcinogenesis 23, 1199–1207.

    Article  PubMed  CAS  Google Scholar 

  47. Tsuchiya, Y., Nakajima, M. and Yokoi, T. (2003). Critical enhancer region to which AhR/ARNT and Sp1 bind in the human CYP1B1 gene. J. Biochem. (Tokyo) 133, 583–592.

    CAS  Google Scholar 

  48. Larsen-Su, S. A. and Williams, D. E. (2001). Transplacental exposure to indole-3-carbinol induces sex-specific expression of CYP1A1 and CYP1B1 in the liver of Fischer 344 neonatal rats. Toxicol. Sci. 64, 162–168.

    Article  PubMed  CAS  Google Scholar 

  49. Libby, R. T., Smith, R. S., Savinova, O. V., Zabaleta, A., Martin, J. E., Gonzalez, F. J. and John, S. W. (2003). Modification of ocular defects in mouse developmental glaucoma models by tyrosinase. Science 299, 1578–1581.

    Article  PubMed  CAS  Google Scholar 

  50. Choudhary, D., Jansson, I., Schenkman, J. B., Sarfarazi, M. and Stoilov, I. (2003). Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch. Biochem. Biophys. 414, 91–100.

    Article  PubMed  CAS  Google Scholar 

  51. Choudhary, D., Jansson, I., Stoilov, I., Sarfarazi, M. and Schenkman, J. B. (2004). Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab. Dispos. 32, 840–847.

    Article  PubMed  CAS  Google Scholar 

  52. Choudhary, D., Jansson, I., Sarfarazi, M. and Schenkman, J. B. (2004). Xenobiotic-metabolizing cytochromes P450 in ontogeny: evolving perspective. Drug Metab. Rev. 36, 549–568.

    Article  PubMed  CAS  Google Scholar 

  53. Abraham, N. G., Feldman, E., Falck, J. R., Lutton, J. D. and Schwartzman, M. L. (1991). Modulation of erythropoiesis by novel human bone marrow cytochrome P450-dependent metabolites of arachidonic acid. Blood 78, 1461–1466.

    PubMed  CAS  Google Scholar 

  54. Amruthesh, S. C., Falck, J. R. and Ellis, E. F. (1992). Brain synthesis and cerebrovascular action of epoxygenase metabolites of arachidonic acid. J. Neurochem. 58, 503–510.

    Article  PubMed  CAS  Google Scholar 

  55. Escalante, B., Omata, K., Sessa, W., Lee, S. G., Falck, J. R. and Schwartzman, M. L. (1993). 20-hydroxyeicosatetraenoic acid is an endothelium-dependent vasoconstrictor in rabbit arteries. Eur. J. Pharmacol. 235, 1–7.

    Article  PubMed  CAS  Google Scholar 

  56. Moffat, M. P., Ward, C. A., Bend, J. R., Mock, T., Farhangkhoee, P. and Karmazyn, M. (1993). Effects of epoxyeicosatrienoic acids on isolated hearts and ventricular myocytes. Am. J. Physiol. 264, H1154–1160.

    PubMed  CAS  Google Scholar 

  57. Omata, K., Abe, K., Sheu, H. L., Yoshida, K., Tsutsumi, E., Yoshinaga, K., Abraham, N. G. and Laniado-Schwartzman, M. (1992). Roles of renal cytochrome P450-dependent arachidonic acid metabolites in hypertension. Tohoku J. Exp. Med. 166, 93–106.

    Article  PubMed  CAS  Google Scholar 

  58. Oyekan, A. O., McGiff, J. C. and Quilley, J. (1991). Cytochrome P-450-dependent vasodilator responses to arachidonic acid in the isolated, perfused kidney of the rat. Circ. Res. 68, 958–965.

    PubMed  CAS  Google Scholar 

  59. Sarubbi, D. and Quilley, J. (1991). Evidence against a role of arachidonic acid metabolites in autoregulatory responses of the isolated perfused kidney of the rat. Eur. J. Pharmacol. 197, 27–31.

    Article  PubMed  CAS  Google Scholar 

  60. Escalante, B., Erlij, D., Falck, J. R. and McGiff, J. C. (1993). Cytochrome P450-dependent arachidonate metabolites affect renal transport in the rabbit. J. Cardiovasc. Pharmacol. 22(Suppl 2), S106–S108.

    Article  PubMed  CAS  Google Scholar 

  61. Xu, F., Straub, W. O., Pak, W., Su, P., Maier, K. G., Yu, M., Roman, R. J., Ortiz De Montellano, P. R. and Kroetz, D. L. (2002). Antihypertensive effect of mechanism-based inhibition of renal arachidonic acid omega-hydroxylase activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R710–R720.

    PubMed  CAS  Google Scholar 

  62. Maden, M. (1999). Heads or tails? Retinoic acid will decide. Bioessays 21, 809–812.

    Article  PubMed  CAS  Google Scholar 

  63. Dickman, E. D., Thaller, C. and Smith, S. M. (1997). Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development 124, 3111–3121.

    PubMed  CAS  Google Scholar 

  64. de Roos, K., Sonneveld, E., Compaan, B., ten Berge, D., Durston, A. J. and van der Saag, P. T. (1999). Expression of retinoic acid 4-hydroxylase (CYP26) during mouse and Xenopus laevis embryogenesis. Mech. Dev. 82, 205–211.

    Article  PubMed  Google Scholar 

  65. White, J. C., Shankar, V. N., Highland, M., Epstein, M. L., DeLuca, H. F. and Clagett-Dame, M. (1998). Defects in embryonic hindbrain development and fetal resorption resulting from vitamin A deficiency in the rat are prevented by feeding pharmacological levels of all-trans-retinoic acid. Proc. Natl. Acad. Sci. U.S.A. 95,13459–13464.

    Article  PubMed  CAS  Google Scholar 

  66. Swindell, E. C., Thaller, C., Sockanathan, S., Petkovich, M., Jessell, T. M. and Eichele, G. (1999). Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev. Biol. 216, 282–296.

    Article  PubMed  CAS  Google Scholar 

  67. Clagett-Dame, M. and DeLuca, H. F. (2002). The role of vitamin A in mammalian reproduction and embryonic development. Annu. Rev. Nutr. 22, 347–381.

    Article  PubMed  CAS  Google Scholar 

  68. McCaffrery, P., Posch, K. C., Napoli, J. L., Gudas, L. and Drager, U. C. (1993). Changing patterns of the retinoic acid system in the developing retina. Dev. Biol. 158,390–399.

    Article  PubMed  CAS  Google Scholar 

  69. Niederreither, K., Subbarayan, V., Dolle, P. and Chambon, P. (1999). Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat. Genet. 21, 444–448.

    Article  PubMed  CAS  Google Scholar 

  70. McCaffery, P., Mey, J. and Drager, U. C. (1996). Light-mediated retinoic acid production. Proc. Natl. Acad. Sci. U.S.A. 93, 12570–12574.

    Article  PubMed  CAS  Google Scholar 

  71. Fujii, H., Sato, T., Kaneko, S., Gotoh, O., Fujii-Kuriyama, Y., Osawa, K., Kato, S. and Hamada, H. (1997). Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryos. Embo. J. 16, 4163–4173.

    Article  PubMed  CAS  Google Scholar 

  72. Tahayato, A., Dolle, P. and Petkovich, M. (2003). Cyp26C1 encodes a novel retinoic acid-metabolizing enzyme expressed in the hindbrain, inner ear, first branchial arch and tooth buds during murine development. Gene Expr. Patterns 3, 449–454.

    Article  PubMed  CAS  Google Scholar 

  73. White, J. A., Ramshaw, H., Taimi, M., Stangle, W., Zhang, A., Everingham, S., Creighton, S., Tam, S. P., Jones, G. and Petkovich, M. (2000). Identification of the human cytochrome P450, P450RAI-2, which is predominantly expressed in the adult cerebellum and is responsible for all-trans-retinoic acid metabolism. Proc. Natl. Acad. Sci. U.S.A. 97, 6403–6408.

    Article  PubMed  CAS  Google Scholar 

  74. White, J. A., Beckett-Jones, B., Guo, Y. D., Dilworth, F. J., Bonasoro, J., Jones, G. and Petkovich, M. (1997). cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450. J. Biol. Chem. 272,18538–18541.

    Article  PubMed  CAS  Google Scholar 

  75. Taimi, M., Helvig, C., Wisniewski, J., Ramshaw, H., White, J., Amad, M., Korczak, B. and Petkovich, M. (2004). A novel human cytochrome P450, CYP26C1, involved in metabolism of 9-cis and all-trans isomers of retinoic acid. J. Biol. Chem. 279, 77–85.

    Article  PubMed  CAS  Google Scholar 

  76. Sakai, Y., Luo, T., McCaffery, P., Hamada, H. and Drager, U. C. (2004). CYP26A1 and CYP26C1 cooperate in degrading retinoic acid within the equatorial retina during later eye development. Dev. Biol. 276, 143–157.

    Article  PubMed  CAS  Google Scholar 

  77. Luo, T., Sakai, Y., Wagner, E. and Drager, U. C. (2006). Retinoids, eye development, and maturation of visual function. J. Neurobiol. 66, 677–686.

    Article  PubMed  CAS  Google Scholar 

  78. Martini, R. and Murray, M. (1993). Participation of P450 3A enzymes in rat hepatic microsomal retinoic acid 4-hydroxylation. Arch. Biochem. Biophys. 303, 57–66.

    Article  PubMed  CAS  Google Scholar 

  79. Roberts, E. S., Vaz, A. D. and Coon, M. J. (1992). Role of isozymes of rabbit microsomal cytochrome P-450 in the metabolism of retinoic acid, retinol, and retinal. Mol. Pharmacol. 41, 427–433.

    PubMed  CAS  Google Scholar 

  80. Andreola, F., Hayhurst, G. P., Luo, G., Ferguson, S. S., Gonzalez, F. J., Goldstein, J. A. and De Luca, L. M. (2004). Mouse liver CYP2C39 is a novel retinoic acid 4-hydroxylase. Its down-regulation offers a molecular basis for liver retinoid accumulation and fibrosis in aryl hydrocarbon receptor-null mice. J. Biol. Chem. 279, 3434–3438.

    Article  PubMed  CAS  Google Scholar 

  81. Hollander, D. A., Sarfarazi, M., Stoilov, I., Wood, I. S., Fredrick, D. R. and Alvarado, J. A. (2006). Genotype and phenotype correlations in congenital glaucoma: CYP1B1 mutations, goniodysgenesis, and clinical characteristics. Am. J. Ophthalmol. 142, 993–1004.

    Article  PubMed  CAS  Google Scholar 

  82. Sarfarazi, M., Child, A., Stoilova, D., Brice, G., Desai, T., Trifan, O. C., Poinoosawmy, D. and Crick, R. P. (1998). Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am. J. Hum. Genet. 62, 641–652.

    Article  PubMed  CAS  Google Scholar 

  83. Rezaie, T., Child, A., Brice, G., Desai, T., Walls, G., Crick, R. P. and Sarfarazi, M. (2000). Evaluation of linkage to the GLC1E locus in 46 glaucoma families and mutation screening of GATA3, IL2RA, IL15RA and NAPOR in a linked family. Am. J. Hum. Genet. 67, 314.

    Google Scholar 

  84. Rezaie, T., Child, A., Brice, G., Desai, T., Crick, R. P. and Sarfarazi, M. (2001). Linkage relationship of 60 primary open angle glaucoma families (POAG) to the GLC1E locus on 10p15-p14. Fine mapping and mutation screening of candidate genes. Invest. Ophthalmol. Vis. Sci. 42, S21, Abstract # 119.

    Google Scholar 

  85. Leung, Y. F., Fan, B. J., Lam, D. S., Lee, W. S., Tam, P. O., Chua, J. K., Tham, C. C., Lai, J. S., Fan, D. S. and Pang, C. P. (2003). Different optineurin mutation pattern in primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 44, 3880–3884.

    Article  PubMed  Google Scholar 

  86. Funayama, T., Ishikawa, K., Ohtake, Y., Tanino, T., Kurosaka, D., Kimura, I., Suzuki, K., Ideta, H., Nakamoto, K., Yasuda, N., Fujimaki, T., Murakami, A., Asaoka, R., Hotta, Y., Tanihara, H., Kanamoto, T., Mishima, H., Fukuchi, T., Abe, H., Iwata, T., Shimada, N., Kudoh, J., Shimizu, N. and Mashima, Y. (2004). Variants in optineurin gene and their association with tumor necrosis factor-alpha polymorphisms in Japanese patients with glaucoma. Invest. Ophthalmol. Vis. Sci. 45, 4359–4367.

    Article  PubMed  Google Scholar 

  87. Fuse, N., Takahashi, K., Akiyama, H., Nakazawa, T., Seimiya, M., Kuwahara, S. and Tamai, M. (2004). Molecular genetic analysis of optineurin gene for primary open-angle and normal tension glaucoma in the Japanese population. J. Glaucoma 13, 299–303.

    Article  PubMed  Google Scholar 

  88. Weisschuh, N., Neumann, D., Wolf, C., Wissinger, B. and Gramer, E. (2005). Prevalence of myocilin and optineurin sequence variants in German normal tension glaucoma patients. Mol. Vis. 11, 284–287.

    PubMed  CAS  Google Scholar 

  89. Yao, H. Y., Cheng, C. Y., Fan, B. J., Tam, O. S., Tham, C. Y., Wang, D. Y., Lam, S. C. and Pang, C. P. (2006). Polymorphisms of myocilin and optineurin in primary open angle glaucoma patients. Zhonghua Yi Xue Za Zhi 86, 554–559.

    PubMed  CAS  Google Scholar 

  90. Forsman, E., Lemmela, S., Varilo, T., Kristo, P., Forsius, H., Sankila, E. M. and Jarvela, I. (2003). The role of TIGR and OPTN in Finnish glaucoma families: a clinical and molecular genetic study. Mol. Vis. 9, 217–222.

    PubMed  CAS  Google Scholar 

  91. Tang, S., Toda, Y., Kashiwagi, K., Mabuchi, F., Iijima, H., Tsukahara, S. and Yamagata, Z. (2003). The association between Japanese primary open-angle glaucoma and normal tension glaucoma patients and the optineurin gene. Hum. Genet. 113, 276–279.

    Article  PubMed  CAS  Google Scholar 

  92. Wiggs, J. L., Auguste, J., Allingham, R. R., Flor, J. D., Pericak-Vance, M. A., Rogers, K., LaRocque, K. R., Graham, F. L., Broomer, B., Del Bono, E., Haines, J. L. and Hauser, M. (2003). Lack of association of mutations in optineurin with disease in patients with adult-onset primary open-angle glaucoma. Arch. Ophthalmol. 121, 1181–1183.

    Article  PubMed  Google Scholar 

  93. Alward, W. L., Kwon, Y. H., Kawase, K., Craig, J. E., Hayreh, S. S., Johnson, A. T., Khanna, C. L., Yamamoto, T., Mackey, D. A., Roos, B. R., Affatigato, L. M., Sheffield, V. C. and Stone, E. M. (2003). Evaluation of optineurin sequence variations in 1,048 patients with open-angle glaucoma. Am. J. Ophthalmol. 136, 904–910.

    Article  PubMed  CAS  Google Scholar 

  94. Melki, R., Belmouden, A., Akhayat, O., Brezin, A. and Garchon, H. J. (2003). The M98K variant of the OPTINEURIN (OPTN) gene modifies initial intraocular pressure in patients with primary open angle glaucoma. J. Med. Genet. 40, 842–844.

    Article  PubMed  CAS  Google Scholar 

  95. Willoughby, C. E., Chan, L. L., Herd, S., Billingsley, G., Noordeh, N., Levin, A. V., Buys, Y., Trope, G., Sarfarazi, M. and Heon, E. (2004). Defining the pathogenicity of optineurin in juvenile open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 45, 3122–3130.

    Article  PubMed  Google Scholar 

  96. Umeda, T., Matsuo, T., Tanabe, Y., Nagayama, N., Tamura, N. and Ohtsuki, H. (2003). Optineurin Gene Polymorphisms in Japanese Glaucoma Patients and Normal Individuals. Invest. Ophthalmol. Vis. Sci. 44, E-Abstract 1111.

    Article  Google Scholar 

  97. Baird, P. N., Richardson, A. J., Craig, J. E., Mackey, D. A., Rochtchina, E. and Mitchell, P. (2004). Analysis of optineurin (OPTN) gene mutations in subjects with and without glaucoma: the Blue Mountains Eye Study. Clin. Exp. Ophthalmol. 32, 518–522.

    Article  Google Scholar 

  98. Jansson, M., Wadelius, C., Rezaie, T. and Sarfarazi, M. (2005). Analysis of rare variants and common haplotypes in the optineurin gene in Swedish glaucoma cases. Ophthalmic Genet. 26, 85–89.

    Article  PubMed  CAS  Google Scholar 

  99. Mukhopadhyay, A., Komatireddy, S., Acharya, M., Bhattacharjee, A., Mandal, A. K., Thakur, S. K., Chandrasekhar, G., Banerjee, A., Thomas, R., Chakrabarti, S. and Ray, K. (2005). Evaluation of Optineurin as a candidate gene in Indian patients with primary open angle glaucoma. Mol. Vis. 11, 792–797.

    PubMed  CAS  Google Scholar 

  100. Rakhmanov, V., Nikitina, N., Zakharova, F., Astakhov, Y., Kvasova, M., Vasilyev, V., Golubkov, V. and Mandelshtam, M. (2005). Mutations and polymorphisms in the genes for myocilin and optineur in as the risk factors of primary open-angle glaucoma. Genetika 41, 1567–1574.

    PubMed  CAS  Google Scholar 

  101. Ariani, F., Longo, I., Frezzotti, P., Pescucci, C., Mari, F., Caporossi, A., Frezzotti, R. and Renieri, A. (2006). Optineurin gene is not involved in the common high-tension form of primary open-angle glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 244, 1077–1082.

    Article  PubMed  CAS  Google Scholar 

  102. Rezaie, T., Child, A. and Sarfarazi, M. (2003). Ocular Localization of Optineurin Protein in Human, Monkey, and Mouse Eyes. Invest. Ophthalmol. Vis. Sci. 44, E-Abstract 3226.

    Article  Google Scholar 

  103. Rezaie, T., Waitzman, D. M., Seeman, J. L., Kaufman, P. L. and Sarfarazi, M. (2005). Molecular cloning and expression profiling of optineurin in the rhesus monkey. Invest. Ophthalmol. Vis. Sci. 46, 2404–2410.

    Article  PubMed  Google Scholar 

  104. Rezaie, T., Stoilov, I. and Sarfarazi, M. (2004). Confined Ocular Expression of Optineurin (Optn) During Mouse Eye Development by Whole-Mount In Situ Hybridization. Invest. Ophthalmol. Vis. Sci. 45, E-Abstract 4446.

    Google Scholar 

  105. Rezaie, T. and Sarfarazi, M. (2005). Molecular cloning, genomic structure, and protein characterization of mouse optineurin. Genomics 85, 131–138.

    Article  PubMed  CAS  Google Scholar 

  106. Sarfarazi, M. and Rezaie, T. (2003). Optineurin in primary open angle glaucoma. Ophthalmol. Clin. North Am. 16, 529–541.

    Article  PubMed  Google Scholar 

  107. Li, Y., Kang, J. and Horwitz, M. S. (1998). Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains. Mol. Cell Biol. 18, 1601–1610.

    PubMed  CAS  Google Scholar 

  108. Faber, P. W., Barnes, G. T., Srinidhi, J., Chen, J., Gusella, J. F. and MacDonald, M. E. (1998). Huntingtin interacts with a family of WW domain proteins. Hum. Mol. Genet. 7, 1463–1474.

    Article  PubMed  CAS  Google Scholar 

  109. Hattula, K. and Peranen, J. (2000). FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis. Curr. Biol. 10, 1603–1606.

    Article  PubMed  CAS  Google Scholar 

  110. Moreland, R. J., Dresser, M. E., Rodgers, J. S., Roe, B. A., Conaway, J. W., Conaway, R. C. and Hanas, J. S. (2000). Identification of a transcription factor IIIA-interacting protein. Nucleic Acids Res. 28, 1986–1993.

    Article  PubMed  CAS  Google Scholar 

  111. Sahlender, D. A., Roberts, R. C., Arden, S. D., Spudich, G., Taylor, M. J., Luzio, J. P., Kendrick-Jones, J. and Buss, F. (2005). Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J. Cell. Biol. 169, 285–295.

    Article  PubMed  CAS  Google Scholar 

  112. Miyamoto-Sato, E., Ishizaka, M., Horisawa, K., Tateyama, S., Takashima, H., Fuse, S., Sue, K., Hirai, N., Masuoka, K. and Yanagawa, H. (2005). Cell-free cotranslation and selection using in vitro virus for high-throughput analysis of protein-protein interactions and complexes. Genome Res. 15, 710–717.

    Article  PubMed  CAS  Google Scholar 

  113. Colland, F., Jacq, X., Trouplin, V., Mougin, C., Groizeleau, C., Hamburger, A., Meil, A., Wojcik, J., Legrain, P. and Gauthier, J. M. (2004). Functional proteomics mapping of a human signaling pathway. Genome Res. 14, 1324–1332.

    Article  PubMed  CAS  Google Scholar 

  114. Anborgh, P. H., Godin, C., Pampillo, M., Dhami, G. K., Dale, L. B., Cregan, S. P., Truant, R. and Ferguson, S. S. (2005). Inhibition of metabotropic glutamate receptor signalling by the huntingtin binding protein optineurin. J. Biol. Chem. 280, 34840–34848.

    Article  PubMed  CAS  Google Scholar 

  115. Lassar, A. B., Martin, P. L. and Roeder, R. G. (1983). Transcription of class III genes: formation of preinitiation complexes. Science 222, 740–748.

    Article  PubMed  CAS  Google Scholar 

  116. DiFiglia, M., Sapp, E., Chase, K., Schwarz, C., Meloni, A., Young, C., Martin, E., Vonsattel, J. P., Carraway, R., Reeves, S. A, et al. (1995). Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  117. Vorwerk, C. K., Naskar, R., Schuettauf, F., Quinto, K., Zurakowski, D., Gochenauer, G., Robinson, M. B., Mackler, S. A. and Dreyer, E. B. (2000). Depression of retinal glutamate transporter function leads to elevated intravitreal glutamate levels and ganglion cell death. Invest. Ophthalmol. Vis. Sci. 41, 3615–3621.

    PubMed  CAS  Google Scholar 

  118. Dyka, F. M., May, C. A. and Enz, R. (2004). Metabotropic glutamate receptors are differentially regulated under elevated intraocular pressure. J. Neurochem. 90, 190–202.

    Article  PubMed  CAS  Google Scholar 

  119. Avraham, K. B., Hasson, T., Steel, K. P., Kingsley, D. M., Russell, L. B., Mooseker, M. S., Copeland, N. G. and Jenkins, N. A. (1995). The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat. Genet. 11, 369–375.

    Article  PubMed  CAS  Google Scholar 

  120. Wells, A. L., Lin, A. W., Chen, L. Q., Safer, D., Cain, S. M., Hasson, T., Carragher, B. O., Milligan, R. A. and Sweeney, H. L. (1999). Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508.

    Article  PubMed  CAS  Google Scholar 

  121. Huber, L. A., Pimplikar, S., Parton, R. G., Virta, H., Zerial, M. and Simons, K. (1993). Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J. Cell Biol. 123, 35–45.

    Article  PubMed  CAS  Google Scholar 

  122. Deretic, D., Huber, L. A., Ransom, N., Mancini, M., Simons, K. and Papermaster, D. S. (1995). rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis. J. Cell Sci. 108, 215–224.

    PubMed  CAS  Google Scholar 

  123. Moritz, O. L., Tam, B. M., Hurd, L. L., Peranen, J., Deretic, D. and Papermaster, D. S. (2001). Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Mol. Biol. Cell 12,2341–2351.

    Google Scholar 

  124. Smeyne, R. J., Vendrell, M., Hayward, M., Baker, S. J., Miao, G. G., Schilling, K., Robertson, L. M., Curran, T. and Morgan, J. I. (1993). Continuous c-fos expression precedes programmed cell death in vivo. Nature 363, 166–169.

    Article  PubMed  CAS  Google Scholar 

  125. Hafezi, F., Steinbach, J. P., Marti, A., Munz, K., Wang, Z. Q., Wagner, E. F., Aguzzi, A. and Reme, C. E. (1997). The absence of c-fos prevents light-induced apoptotic cell death of photoreceptors in retinal degeneration in vivo. Nat. Med. 3, 346–349.

    Article  PubMed  CAS  Google Scholar 

  126. Yoshida, K., Muraki, Y., Ohki, K., Harada, T., Ohashi, T., Matsuda, H. and Imaki, J. (1995). C-fos gene expression in rat retinal cells after focal retinal injury. Invest. Ophthalmol. Vis. Sci. 36, 251–254.

    PubMed  CAS  Google Scholar 

  127. Otori, Y., Shimada, S., Morimura, H., Ishimoto, I., Tohyama, M. and Tano, Y. (1997). Expression of c-fos and c-jun mRNA following transient retinal ischemia: an approach using ligation of the retinal central artery in the rat. Surv. Ophthalmol. 42(Suppl 1), S96–S104.

    PubMed  Google Scholar 

  128. Oshitari, T., Dezawa, M., Okada, S., Takano, M., Negishi, H., Horie, H., Sawada, H., Tokuhisa, T. and Adachi-Usami, E. (2002). The role of c-fos in cell death and regeneration of retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 43, 2442–2449.

    PubMed  Google Scholar 

  129. Yang, P., Agapova, O., Parker, A., Shannon, W., Pecen, P., Duncan, J., Salvador-Silva, M. and Hernandez, M. R. (2004). DNA microarray analysis of gene expression in human optic nerve head astrocytes in response to hydrostatic pressure. Physiol. Genomics 17, 157–169.

    Article  PubMed  CAS  Google Scholar 

  130. Hashimoto, K., Parker, A., Malone, P., Gabelt, B. T., Rasmussen, C., Kaufman, P. S. and Hernandez, M. R. (2005). Long-term activation of c-Fos and c-Jun in optic nerve head astrocytes in experimental ocular hypertension in monkeys and after exposure to elevated pressure in vitro. Brain Res. 1054, 103–115.

    Article  PubMed  CAS  Google Scholar 

  131. Shen, L. X., Basilion, J. P. and Stanton, V. P., Jr. (1999). Single-nucleotide polymorphisms can cause different structural folds of mRNA. Proc. Natl. Acad. Sci. U.S.A. 96, 7871–7876.

    Article  PubMed  CAS  Google Scholar 

  132. Aung, T., Ebenezer, N. D., Brice, G., Child, A. H., Prescott, Q., Lehmann, O. J., Hitchings, R. A. and Bhattacharya, S. S. (2003). Prevalence of optineurin sequence variants in adult primary open angle glaucoma: implications for diagnostic testing. J. Med. Genet. 40, e101.

    Article  PubMed  CAS  Google Scholar 

  133. Hauser, M. A., Sena, D. F., Flor, J., Walter, J., Auguste, J., Larocque-Abramson, K., Graham, F., Delbono, E., Haines, J. L., Pericak-Vance, M. A., Rand Allingham, R. and Wiggs, J. L. (2006). Distribution of optineurin sequence variations in an ethnically diverse population of low-tension glaucoma patients from the United States. J. Glaucoma 15, 358–363.

    Google Scholar 

  134. Aung, T., Rezaie, T., Okada, K., Viswanathan, A. C., Child, A. H., Brice, G., Bhattacharya, S. S., Lehmann, O. J., Sarfarazi, M. and Hitchings, R. A. (2005). Clinical features and course of patients with glaucoma with the E50K mutation in the optineurin gene. Invest. Ophthalmol. Vis. Sci. 46, 2816–2822.

    Article  PubMed  Google Scholar 

  135. Akahori, M., Obazawa, M., Noda, S., Noda, T., Tanaka, Y. and Iwata, T. (2005). Development and characterization of normal tension glaucoma mouse over expressing mutant of OPTN (E50K). Invest. Ophthalmol. Vis. Sci. 46, E-Abstract 1300.

    Google Scholar 

  136. Iwata, T., Sanuki, N., Mashima, Y. and Tanaka, Y. (2003). Analysis of Optineurin-RAB8 Protein Interaction Using Quartz-Crystal Microbalance (QCM). ARVO Meeting, Presentation # 1114, Fort Lauderdale.

    Google Scholar 

  137. Sripriya, S., Nirmaladevi, J., George, R., Hemamalini, A., Baskaran, M., Prema, R., Ve Ramesh, S., Karthiyayini, T., Amali, J., Job, S., Vijaya, L. and Kumaramanickavel, G. (2006). OPTN gene: profile of patients with glaucoma from India. Mol. Vis. 12, 816–820.

    PubMed  CAS  Google Scholar 

  138. Vittitow, J. and Borras, T. (2002). Expression of optineurin, a glaucoma-linked gene, is influenced by elevated intraocular pressure. Biochem. Biophys. Res. Commun. 298, 67–74.

    Article  PubMed  CAS  Google Scholar 

  139. Kamphuis, W. and Schneemann, A. (2003). Optineurin gene expression level in human trabecular meshwork does not change in response to pressure elevation. Ophthalmic Res. 35, 93–96.

    Article  PubMed  CAS  Google Scholar 

  140. Monemi, S., Child, A., Dasilva, A., Lehmann, O., Spaeth, G. L., Crick, R. P. and Sarfarazi, M. (2003). Provisional Mapping of an Adult-Onset Primary Open Angle Glaucoma (POAG) Locus to 5q33-q35. Am. J. Hum. Genet. 73, 534, Abstract # 2139.

    Google Scholar 

  141. Monemi, S., Child, A., Lehmann, O., Spaeth, G., Crick, R. and Sarfarazi, M. (2003). Genome Scan of Two Large Families with Adult-Onset Primary Open Angle Glaucoma (POAG) Suggests a Probable Locus on 5q33-q35. Invest. Ophthalmol. Vis. Sci. 44,E-Abstract 1128.

    Google Scholar 

  142. Samples, J. R., Sykes, R., Man, J., Rust, K., Kramer, P. L. and Wirtz, M. K. (2004). GLC1G: Mapping a New POAG Locus on Chormosome 5. Invest. Ophthalmol. Vis. Sci. 45, E-Abstract 4622.

    Google Scholar 

  143. Kramer, P. L., Samples, J. R., Schilling, K., Sykes, R. L., Man, J., Rust, K. and Wirtz, M. K. (2004). Mapping the GLC1G locus for primary open-angle glaucoma (POAG) in an Oregon family of Dutch origin. Am. J. Hum. Genet. 75, Abs# 1914.

    Google Scholar 

  144. Raymond, V., Dubois, S., Marquis, A., Arseneault, R., Anctil, J. L., Duchesne, A. and Rodrigue, M. A. (2005). Large scale mutation analysis of the third glaucoma-causing gene, WDR36, at GLC1G, in the French-Canadian population of Québec. Am. J. Hum. Genet. 77, Abstract # 1950.

    Google Scholar 

  145. Pasutto, F., Mardin, C. Y., Sticht, H., Michels-Rautenstrauss, K., Rautenstrauss, B., Kruse, F. and Reis, A. (2005). High frequency of WDR36 missense mutations in a group 301 glaucoma patients from Germany. Am. J. Hum. Genet. 77, Abstract # 1344.

    Google Scholar 

  146. Hauser, M. A., Allingham, R. R., Linkroum, K., Wang, J., LaRocque-Abramson, K., Figueiredo, D., Santiago-Turla, C., del Bono, E. A., Haines, J. L., Pericak-Vance, M. A. and Wiggs, J. L. (2006). Distribution of WDR36 DNA sequence variants in patients with primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 47, 2542–2546.

    Article  PubMed  Google Scholar 

  147. Kramer, P. L., Samples, J. R., Monemi, S., Sykes, R., Sarfarazi, M. and Wirtz, M. K. (2006). The role of the WDR36 gene on chromosome 5q22.1 in a large family with primary open-angle glaucoma mapped to this region. Arch. Ophthalmol. 124, 1328–1331.

    Article  PubMed  CAS  Google Scholar 

  148. Mao, M., Biery, M. C., Kobayashi, S. V., Ward, T., Schimmack, G., Burchard, J., Schelter, J. M., Dai, H., He, Y. D. and Linsley, P. S. (2004). T lymphocyte activation gene identification by coregulated expression on DNA microarrays. Genomics 83, 989–999.

    Article  PubMed  CAS  Google Scholar 

  149. Schwartz, M. (2004). Vaccination for glaucoma: dream or reality? Brain Res. Bull. 62, 481–484.

    Article  PubMed  CAS  Google Scholar 

  150. Bakalash, S., Shlomo, G. B., Aloni, E., Shaked, I., Wheeler, L., Ofri, R. and Schwartz, M. (2005). T-cell-based vaccination for morphological and functional neuroprotection in a rat model of chronically elevated intraocular pressure. J. Mol. Med. 83, 904–916.

    Article  PubMed  Google Scholar 

  151. Yang, J., Patil, R. V., Yu, H., Gordon, M. and Wax, M. B. (2001). T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. Am. J. Ophthalmol. 131, 421–426.

    Article  PubMed  CAS  Google Scholar 

  152. Pang, C. P., Fan, B. J., Canlas, O., Wang, D. Y., Dubois, S., Tam, P. O., Lam, D. S., Raymond, V. and Ritch, R. (2006). A genome-wide scan maps a novel juvenile-onset primary open angle glaucoma locus to chromosome 5q. Mol. Vis. 12, 85–92.

    PubMed  CAS  Google Scholar 

  153. Rotimi, C. N., Chen, G., Adeyemo, A. A., Jones, L. S., Agyenim-Boateng, K., Eghan, B. A., Jr., Zhou, J., Doumatey, A., Lashley, K., Huang, H., Fasanmade, O., Akinsola, F. B., Ezepue, F., Amoah, A., Akafo, S., Chen, Y., Oli, J. and Johnson, T. (2006). Genomewide scan and fine mapping of quantitative trait loci for intraocular pressure on 5q and 14q in West Africans. Invest. Ophthalmol. Vis. Sci. 47, 3262–3267.

    Article  PubMed  Google Scholar 

  154. Sheffield, V. C., Stone, E. M., Alward, W. L., Drack, A. V., Johnson, A. T., Streb, L. M. and Nichols, B. E. (1993). Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat. Genet. 4, 47–50.

    Article  PubMed  CAS  Google Scholar 

  155. Stoilova, D., Child, A., Trifan, O. C., Crick, R. P., Coakes, R. L. and Sarfarazi, M. (1996). Localization of a locus (GLC1B) for adult-onset primary open angle glaucoma to the 2cen-q13 region. Genomics 36, 142–150.

    Article  PubMed  CAS  Google Scholar 

  156. Wirtz, M. K., Samples, J. R., Kramer, P. L., Rust, K., Topinka, J. R., Yount, J., Koler, R. D. and Acott, T. S. (1997). Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q. Am. J. Hum. Genet. 60, 296–304.

    PubMed  CAS  Google Scholar 

  157. Trifan, O. C., Traboulsi, E. I., Stoilova, D., Alozie, I., Nguyen, R., Raja, S. and Sarfarazi, M. (1998). A third locus (GLC1D) for adult-onset primary open-angle glaucoma maps to the 8q23 region. Am. J. Ophthalmol. 126, 17–28.

    Article  PubMed  CAS  Google Scholar 

  158. Wirtz, M. K., Samples, J. R., Rust, K., Lie, J., Nordling, L., Schilling, K., Acott, T. S. and Kramer, P. L. (1999). GLC1F, a new primary open-angle glaucoma locus, maps to 7q35-q36. Arch. Ophthalmol. 117, 237–241.

    PubMed  CAS  Google Scholar 

  159. Suriyapperuma, S. P., Child, A., Desai, T., Brice, G., Kerr, A., Crick, R. P. and Sarfarazi, M. (2007). A new locus (GLC1H) for adult-onset primary open-angle glaucoma maps to the 2p15-p16 Region. Arch. Ophthalmol. 125, 86–92.

    Article  PubMed  CAS  Google Scholar 

  160. Allingham, R. R., Wiggs, J. L., Hauser, E. R., Larocque-Abramson, K. R., Santiago-Turla, C., Broomer, B., Del Bono, E. A., Graham, F. L., Haines, J. L., Pericak-Vance, M. A. and Hauser, M. A. (2005). Early adult-onset POAG linked to 15q11–13 using ordered subset analysis. Invest. Ophthalmol. Vis. Sci. 46, 2002–2005.

    Google Scholar 

  161. Wiggs, J. L., Lynch, S., Ynagi, G., Maselli, M., Auguste, J., Del Bono, E. A., Olson, L. M. and Haines, J. L. (2004). A genomewide scan identifies novel early-onset primary open-angle glaucoma loci on 9q22 and 20p12. Am. J. Hum. Genet. 74, 1314–1320.

    Article  PubMed  CAS  Google Scholar 

  162. Baird, P. N., Foote, S. J., Mackey, D. A., Craig, J., Speed, T. P. and Bureau, A. (2005). Evidence for a novel glaucoma locus at chromosome 3p21–22. Hum. Genet. 117, 249–257.

    Article  PubMed  CAS  Google Scholar 

  163. Wang, D. Y., Fan, B. J., Chua, J. K., Tam, P. O., Leung, C. K., Lam, D. S. and Pang, C. P. (2006). A genome-wide scan maps a novel juvenile-onset primary open-angle glaucoma locus to 15q. Invest. Ophthalmol. Vis. Sci. 47, 5315–5321.

    Article  PubMed  Google Scholar 

  164. Wiggs, J. L., Allingham, R. R., Hossain, A., Kern, J., Auguste, J., DelBono, E. A., Broomer, B., Graham, F. L., Hauser, M., Pericak-Vance, M. and Haines, J. L. (2000). Genome-wide scan for adult onset primary open angle glaucoma. Hum. Mol. Genet. 9, 1109–1117.

    Article  PubMed  CAS  Google Scholar 

  165. Nemesure, B., Jiao, X., He, Q., Leske, M. C., Wu, S. Y., Hennis, A., Mendell, N., Redman, J., Garchon, H. J., Agarwala, R., Schaffer, A. A., Hejtmancik, F. and Group, B. F. (2003). A genome-wide scan for primary open-angle glaucoma (POAG): the Barbados family study of open-angle glaucoma. Hum. Genet. 112, 600–609.

    PubMed  CAS  Google Scholar 

  166. Mashima, Y., Suzuki, Y., Sergeev, Y., Ohtake, Y., Tanino, T., Kimura, I., Miyata, H., Aihara, M., Tanihara, H., Inatani, M., Azuma, N., Iwata, T. and Araie, M. (2001). Novel cytochrome P4501B1 (CYP1B1) gene mutations in Japanese patients with primary congenital glaucoma. Invest. Ophthalmol. Vis. Sci. 42, 2211–2216.

    PubMed  CAS  Google Scholar 

  167. Panicker, S. G., Reddy, A. B., Mandal, A. K., Ahmed, N., Nagarajaram, H. A., Hasnain, S. E. and Balasubramanian, D. (2002). Identification of novel mutations causing familial primary congenital glaucoma in Indian pedigrees. Invest. Ophthalmol. Vis. Sci. 43,1358–1366.

    PubMed  Google Scholar 

  168. Stoilov, I. R., Costa, V. P., Vasconcellos, J. P., Melo, M. B., Betinjane, A. J., Carani, J. C., Oltrogge, E. V. and Sarfarazi, M. (2002). Molecular genetics of primary congenital glaucoma in Brazil. Invest. Ophthalmol. Vis. Sci. 43, 1820–1827.

    PubMed  Google Scholar 

  169. Colomb, E., Kaplan, J. and Garchon, H. J. (2003). Novel cytochrome P450 1B1 (CYP1B1) mutations in patients with primary congenital glaucoma in France. Hum. Mutat. 22, 496.

    Article  PubMed  CAS  Google Scholar 

  170. Belmouden, A., Melki, R., Hamdani, M., Zaghloul, K., Amraoui, A., Nadifi, S., Akhayat, O. and Garchon, H. J. (2002). A novel frameshift founder mutation in the cytochrome P450 1B1 (CYP1B1) gene is associated with primary congenital glaucoma in Morocco. Clin. Genet. 62, 334–339.

    Article  PubMed  CAS  Google Scholar 

  171. Curry, S. M., Daou, A. G., Hermanns, P., Molinari, A., Lewis, R. A. and Bejjani, B. A. (2004). Cytochrome P4501B1 mutations cause only part of primary congenital glaucoma in Ecuador. Ophthalmic Genet. 25, 3–9.

    Article  PubMed  CAS  Google Scholar 

  172. Reddy, A. B., Kaur, K., Mandal, A. K., Panicker, S. G., Thomas, R., Hasnain, S. E., Balasubramanian, D. and Chakrabarti, S. (2004). Mutation spectrum of the CYP1B1 gene in Indian primary congenital glaucoma patients. Mol. Vis. 10, 696–702.

    PubMed  CAS  Google Scholar 

  173. Alfadhli, S., Behbehani, A., Elshafey, A., Abdelmoaty, S. and Al-Awadi, S. (2006). Molecular and clinical evaluation of primary congenital glaucoma in Kuwait. Am. J. Ophthalmol. 141, 512–516.

    Article  PubMed  CAS  Google Scholar 

  174. Raymond, V., Dubois, S., Marquis, A., Arseneault, R., Anctil, J. L., Duchesne, A., Rodrigue, M. A. and The Québec Glaucoma Network. (2006). Large scale mutation/polymorphism analysis of WDR36, the third glaucoma-causing gene at GLC1G, in the French-Canadian population of Québec. Invest. Ophthalmol. Vis. Sci. 47, E-Abstract 5449.

    Google Scholar 

  175. Soley, G. C., Bosse, K. A., Flikier, D., Flikier, P., Azofeifa, J., Mardin, C. Y., Reis, A., Michels-Rautenstrauss, K. G. and Rautenstrauss, B. W. (2003). Primary congenital glaucoma: a novel single-nucleotide deletion and varying phenotypic expression for the 1,546–1,555dup mutation in the GLC3A (CYP1B1) gene in 2 families of different ethnic origin. J. Glaucoma 12, 27–30.

    Article  PubMed  Google Scholar 

  176. El-Ashry, M. F., Abd El-Aziz, M. M. and Bhattacharya, S. S. (2007). A Clinical and Molecular Genetic Study of Egyptian and Saudi Arabian patients with primary congenital glaucoma (PCG). J. Glaucoma 16, 104–111.

    Article  PubMed  Google Scholar 

  177. Sitorus, R., Ardjo, S. M., Lorenz, B. and Preising, M. (2003). CYP1B1 gene analysis in primary congenital glaucoma in Indonesian and European patients. J. Med. Genet. 40, e9.

    Article  PubMed  CAS  Google Scholar 

  178. Michels-Rautenstrauss, K. G., Mardin, C. Y., Zenker, M., Jordan, N., Gusek-Schneider, G. C. and Rautenstrauss, B. W. (2001). Primary congenital glaucoma: three case reports on novel mutations and combinations of mutations in the GLC3A (CYP1B1) gene. J. Glaucoma 10, 354–357.

    Article  PubMed  CAS  Google Scholar 

  179. Martin, S. N., Sutherland, J., Levin, A. V., Klose, R., Priston, M. and Heon, E. (2000). Molecular characterisation of congenital glaucoma in a consanguineous Canadian community: a step towards preventing glaucoma related blindness. J. Med. Genet. 37, 422–427.

    Article  PubMed  CAS  Google Scholar 

  180. Kakiuchi-Matsumoto, T., Isashiki, Y., Ohba, N., Kimura, K., Sonoda, S. and Unoki, K. (2001). Cytochrome P450 1B1 gene mutations in Japanese patients with primary congenital glaucoma(1). Am. J. Ophthalmol. 131, 345–350.

    Article  PubMed  CAS  Google Scholar 

  181. Chen, H., Howald, W. N. and Juchau, M. R. (2000). Biosynthesis of all-trans-retinoic acid from all-trans-retinol: catalysis of all-trans-retinol oxidation by human P-450 cytochromes. Drug Metab. Dispos. 28, 315–322.

    PubMed  CAS  Google Scholar 

  182. Zhang, Q. Y., Dunbar, D. and Kaminsky, L. (2000). Human cytochrome P-450 metabolism of retinals to retinoic acids. Drug Metab. Dispos. 28, 292–297.

    PubMed  CAS  Google Scholar 

  183. McSorley, L. C. and Daly, A. K. (2000). Identification of human cytochrome P450 isoforms that contribute to all-trans-retinoic acid 4-hydroxylation. Biochem. Pharmacol. 60, 517–526.

    Article  PubMed  CAS  Google Scholar 

  184. Marill, J., Cresteil, T., Lanotte, M. and Chabot, G. G. (2000). Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol. Pharmacol. 58, 1341–1348.

    PubMed  CAS  Google Scholar 

  185. Nadin, L. and Murray, M. (1999). Participation of CYP2C8 in retinoic acid 4-hydroxylation in human hepatic microsomes. Biochem. Pharmacol. 58, 1201–1208.

    Article  PubMed  CAS  Google Scholar 

  186. Leo, M. A., Lasker, J. M., Raucy, J. L., Kim, C. I., Black, M. and Lieber, C. S. (1989). Metabolism of retinol and retinoic acid by human liver cytochrome P450IIC8. Arch. Biochem. Biophys. 269, 305–312.

    Article  PubMed  CAS  Google Scholar 

  187. Smith, G., Wolf, C. R., Deeni, Y. Y., Dawe, R. S., Evans, A. T., Comrie, M. M., Ferguson, J. and Ibbotson, S. H. (2003). Cutaneous expression of cytochrome P450 CYP2S1: individuality in regulation by therapeutic agents for psoriasis and other skin diseases. Lancet 361, 1336–1343.

    Article  PubMed  CAS  Google Scholar 

  188. Chen, H., Fantel, A. G. and Juchau, M. R. (2000). Catalysis of the 4-hydroxylation of retinoic acids by cyp3a7 in human fetal hepatic tissues. Drug Metab. Dispos. 28, 1051–1057.

    PubMed  CAS  Google Scholar 

  189. Rezaie, T., Child, A., Popinchalk, S., Krupin, T., Ritch, R., Liebmann, J., Ilitchev, E., Crick, R. and Sarfarazi, M. (2005). Large scale sequencing of the optineurin gene in familial and sporadic cases with primary open angle glaucoma. Invest. Ophthalmol. Vis. Sci. 46, E-Abstract 1306.

    Article  Google Scholar 

  190. Raymond, V., Dubois, S., Anctil, J. L., Duchesne, A., Faucher, M. and Rodrigue, M. A. (2003). Large Scale Screening of Optineurin (OPTN) Glaucoma-causing Mutations in the French-Canadian Population of Québec. Invest. Ophthalmol. Vis. Sci. 44, E-Abstract 1130.

    Google Scholar 

  191. Toda, Y., Tang, S., Kashiwagi, K., Mabuchi, F., Iijima, H., Tsukahara, S. and Yamagata, Z. (2004). Mutations in the optineurin gene in Japanese patients with primary open-angle glaucoma and normal tension glaucoma. Am. J. Med. Genet. A 125, 1–4.

    Article  Google Scholar 

  192. Wang, D. Y., Fan, B. J., Canlas, O., Tam, P. O., Ritch, R., Lam, D. S., Fan, D. S. and Pang, C. P. (2004). Absence of myocilin and optineurin mutations in a large Philippine family with juvenile onset primary open angle glaucoma. Mol. Vis. 10, 851–856.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Sarfarazi, M., Monemi, S., Choudhary, D., Rezaie, T., Schenkman, J.B. (2008). Roles of CYP1B1, Optineurin, and WDR36 Gene Mutations in Glaucoma. In: Tombran-Tink, J., Barnstable, C.J., Shields, M.B. (eds) Mechanisms of the Glaucomas. Ophthalmology Research™. Humana Press. https://doi.org/10.1007/978-1-59745-373-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-373-8_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-956-7

  • Online ISBN: 978-1-59745-373-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics