Skip to main content

Articular Cartilage Resurfacing Using Synthetic Resorbable Scaffolds

  • Chapter

Abstract

Cartilage repair is a challenging clinical problem because once adult cartilage sustains damage, whether traumatic or pathological, an irreversible, degenerative process can occur (1). The resulting defects may lead to osteoarthritis (2–4). Attempts to repair articular cartilage have included implantation of artificial matrices, growth factors, perichondrium, periosteum, and transplanted cells (5), but to date no reliable, reproducible approach has been identified. Furthermore, repair tissue frequently lacks the physical structure and mechanical properties necessary to ensure long-term efficacy (6). It is reasonable to hypothesize that the inferior mechanical properties of the repair tissue are partially caused by inadequate support during healing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg 1982; 64A:460–466.

    Google Scholar 

  2. Alford J, Cole B. Cartilage restoration, part 1 basic science, historical perspective, patient evaluation, and treatment options. Am J Sports Med 2005;33:295–306.

    Article  PubMed  Google Scholar 

  3. Alford J, Cole B. Cartilage restoration, part 2 techniques, outcomes, and future directions. Am J Sports Med 2005;33:443–460.

    Article  PubMed  Google Scholar 

  4. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. In: Cannon WD Jr, ed., American Academy of Orthopaedic Surgery Instructional Course Lectures. 47th ed. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1998:487–504.

    Google Scholar 

  5. Sgaglione NA. The future of cartilage restoration. J Knee Surg 2004; 17:1–9.

    Google Scholar 

  6. Suh J-K, Aroen A, Muzzonigro TS, Disilvestro M, Fu FH. Injury and repair of articular cartilage: related scientific issues. Operative Tech Orthop 1997;7:270–278.

    Article  Google Scholar 

  7. Freed LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer scaffolds for tissue engineering. Bio/Technology 1994; 12:689–693.

    Article  PubMed  CAS  Google Scholar 

  8. Freed LE, Grande DA, Lingbin Z, Emmanual J, Marquis JC, Langer R. Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res 1994;28:891–899.

    Article  PubMed  CAS  Google Scholar 

  9. Ma PX, Schloo B, Mooney D, Langer R. Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J Biomed Mater Res 1995;29:1587–1595.

    Article  PubMed  CAS  Google Scholar 

  10. Cima LG, Vacanti JP, Vacanti CA, Ingber DE, Mooney D, Langer R. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng 1991; 113: 143–151.

    PubMed  CAS  Google Scholar 

  11. Grande DA, Halberstadt C, Naughton G, Schwartz RE, Manji R. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res 1997;34: 211–220.

    Article  PubMed  CAS  Google Scholar 

  12. Sittinger M, Reitzel D, Dauner M, et al. Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J Biomed Mater Res Appl Biomater 1996;33:57–63.

    Article  CAS  Google Scholar 

  13. Bujia J, Sittinger M, Minuth WW, Hammer C, Burmester G, Kastenbauer E. Engineering of cartilage tissue using bioresorbable polymer fleeces and perfusion culture. Acta Otolaryngol 1995; 115:307–310.

    Article  PubMed  CAS  Google Scholar 

  14. Sittinger M, Bujia J, Minuth WW, Hammer C, Burmester G. Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture. Biomaterials 1994; 15:451–456.

    Article  PubMed  CAS  Google Scholar 

  15. Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993;27:11–23.

    Article  PubMed  CAS  Google Scholar 

  16. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 1993; 27:183–189.

    Article  PubMed  CAS  Google Scholar 

  17. Vacanti CA, Upton J. Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices. Clin Plast Surg 1994; 21:445–462.

    PubMed  CAS  Google Scholar 

  18. Dunkelman N, Zimber MP, LeBaron RG, Pavelec R, Kwan M, Purchio AF. Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechnol Bioeng 1995;46:299–305.

    Article  CAS  PubMed  Google Scholar 

  19. Langer R, Vacanti JP, Vacanti CA, Atala A, Freed LE, Vunjak-Novakovic G. Tissue engineering: biomedical applications. Tissue Eng 1995; 1:151–161.

    Article  CAS  PubMed  Google Scholar 

  20. Nehrer S, Breinan H, Ramappa A, et al. Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials 1997;18:769–776.

    Article  PubMed  CAS  Google Scholar 

  21. Nehrer S, Breinan HA, Ramappa A, et al. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 1998;19:2313–2328.

    Article  PubMed  CAS  Google Scholar 

  22. vanSusante JLC, Buma P, Homminga GN, Van den Berg WB, Veth RPH. Chondrocyte-seeded hydroxyapaptite for repair of large articular cartilage defects. A pilot study in the goat. Biomaterials 1998; 19:2367–2374.

    Google Scholar 

  23. Singhal AR, Agrawal CM, Athanasiou K. Salient degradation features of a 50:50 PLA/PGA scaffold for tissue engineering. Tissue Eng 1996;2:197–206.

    Article  CAS  PubMed  Google Scholar 

  24. Athanasiou K, Korvick DL, Schenck RC. Biodegradable implants for the treatment of osteochondral defects in a goat model. Tissue Eng 1997;3:39–49.

    Article  Google Scholar 

  25. Vunjak-Novakovic G, Martin I, Obradovic B, et al. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 1999; 17:130–138.

    Article  PubMed  CAS  Google Scholar 

  26. Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci 1998; 111:573–583.

    PubMed  CAS  Google Scholar 

  27. Jones WR, Ting-Beall HP, Lee GM, Kelley SS, Hochmuth RM, Guilak F. Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J Biomech 1999;32:119–127.

    Article  PubMed  CAS  Google Scholar 

  28. Hulbert S, Bokos JC, Hench LL, Wilson J, Heimke G. Ceramics in clinical applications, past, present, and future. In Vinvenzini P, ed. High Tech Ceramics. Amsterdam: Elsevier Science Publishers; 1987:3–27.

    Google Scholar 

  29. Hench LL. Bioactive implants. Chem Industry 1995; 14:547–550.

    Google Scholar 

  30. Jarcho M. Biomaterial aspects of calcium phosphates: properties and applications. Dent Clin North Am 1986;30:25–47.

    PubMed  CAS  Google Scholar 

  31. de Groot K, Tencer A, Waite P, Nichols J, Kay J. Significance of the porosity and physical chemistry of calcium phosphate ceramics. Ann New York Acad Sci 1988;523:272–277.

    Article  Google Scholar 

  32. Suominen E, Aho AJ, Vedel E, Kangasniemi I, Uusipaikka E, Yli-Urpo A. Subchondral bone and cartilage repair with bioactive glasses, hydroxyapatite, and hydroxyapaptite-glass composite. J Biomed Mater Res 1996;32:543–551.

    Article  PubMed  CAS  Google Scholar 

  33. van Susante JLC, Buma P, Schuman L, Homminga GN, Van den Berg WB, Veth RPH. Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat. Biomaterials 1999;20:1167–1175.

    Article  PubMed  Google Scholar 

  34. Klompmaker J, Jansen HWB, Veth RPH, deGroot JH, Nijenhuis AJ, Pennings AJ. Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs. Biomaterials 1991; 12:810–816.

    Article  PubMed  CAS  Google Scholar 

  35. Harris LD, Kim B-S, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 1998;42:396–402.

    Article  PubMed  CAS  Google Scholar 

  36. Slivka MA, Leatherbury NC, Kieswetter K, Niederauer GG. Porous, resorbable, fiber-reinforced scaffolds tailored for articular cartilage repair. Tissue Eng 2001;7:767–780.

    Article  PubMed  CAS  Google Scholar 

  37. Slivka MA, Leatherbury NC, Kieswetter K, Niederauer GG. Mechanical properties of resorbably scaffolds for articular cartilage repair. Poster presented at the 17th Southern Biomedical Engineering Conference, 1998, San Antonio, TX, p. 20.

    Google Scholar 

  38. Slivka MA, Leatherbury NC, Kieswetter K, Niederauer GG. In Vitro Compression Testing of Fiber-Reinforced, Bioabsorbable, Porous Implants. West Conshohocken, PA: American Society for Testing and Materials; 2000:124–135.

    Google Scholar 

  39. Lohmann CH, Schwartz Z, Niederauer GG, Carnes DL Jr, Dean DD, Boyan BD. Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo. Biomaterials 2000;21:49–61.

    Article  PubMed  CAS  Google Scholar 

  40. Bradica G, Frenkel SR, Brekke J, et al. Osteochondral defect repair in the rabbit using a multiphasic implant and rhBMP-2. Paper presented at: American Academy of Orthopaedic Surgeons 2005 Annual Meeting; February 23, 2005, Washington, DC.

    Google Scholar 

  41. Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. J Bone Joint Surg 1980;62:1232–1251.

    PubMed  CAS  Google Scholar 

  42. Shimizu C, Coutts RD, Healey RM, Kubo T, Hirasawa Y, Amiel D. Method of histomorphometric assessment of glycosaminoglycans in articular cartilage. J Orthop Res 1997;15: 670–674.

    Article  PubMed  CAS  Google Scholar 

  43. O’Driscoll SW, Keeley FW, Salter RB. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. J Bone Joint Surg 1986;68:1017–1035.

    PubMed  CAS  Google Scholar 

  44. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg 1993;75:532–553.

    PubMed  CAS  Google Scholar 

  45. Frenkel SR, Toolan BC, Menche D, Pitman MI, Pachence JM. Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Joint Surg Br 1997;79-B:831–836.

    Article  Google Scholar 

  46. Frenkel SR, Chen GG, McCord G, Macon N, Morris E. The effect of BMP-2 in a collagen bilayer implant for articular cartilage repair in a rabbit model. April, New Orleans, Louisiana: Society for Biomaterials; Trnasactions 1997 p. 24.

    Google Scholar 

  47. Sellers RS, Peluso D, Morris E. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2). on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1997;79-A:1452–1463.

    Google Scholar 

  48. Grande DA, Pitman MI, Peterson L, Menche D, Klein M. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 1989;7:208–218.

    Article  PubMed  CAS  Google Scholar 

  49. Upton J, Sohn SA, Glowacki J. Neocartilage derived from transplanted perichondrium: What is it? J Am Soc Plastic Reconstr Surg 1981;68:166–174.

    Article  CAS  Google Scholar 

  50. Klompmaker J, Jansen HWB, Veth RPH, Nielsen HkL, de Groot JH, Pennings AJ. Porous polymer implants for repair of full-thickness defects of articular cartilage: an experimental study in rabbit and dog. Biomaterials 1992;13:625–634.

    Article  PubMed  CAS  Google Scholar 

  51. Hale JE, Rudert MJ, Brown TD. Indentation assessment of biphasic mechanical property deficits in size-dependent osteochondral defect repair. J Biomech 1993;26:1319–1325.

    Article  PubMed  CAS  Google Scholar 

  52. Breinan H, Martin SD, Hsu HP, Spector M. Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res 2000; 18:781–789.

    Article  PubMed  CAS  Google Scholar 

  53. Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 1996;78-A:721–733.

    Google Scholar 

  54. Homminga GN, Bulstra SK, Kuijer R, Van der Linden AJ. Repair of sheep articular cartilage defects with a rabbit costal perichondrial graft. Acta Orthop Scand 1991;62:415–418.

    PubMed  CAS  Google Scholar 

  55. Schreiber R, Ilten-Kirby B, Dunkelman N, et al. Repair of osteochondral defects with allogeneic tissue engineered cartilage implants. Clin Orthop 1999;367S:382–395.

    Google Scholar 

  56. Hurtig MB, Novak K, McPherson R, et al. Osteochondral dowel transplantation for repair of focal defects in the knee: an outcome study using an ovine model. Vet Surg 1998;27:5–16.

    PubMed  CAS  Google Scholar 

  57. Jackson DW, Halbrecht JL, Proctor C, Van Sickle D, Simon TM. Assessment of donor cell and matrix survival in fresh articular cartilage allograft in a goat model. J Orthop Res 1996; 14:255–264.

    Article  PubMed  CAS  Google Scholar 

  58. Jackson DW, Lalor PA, Aberman H, Simon TM. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. J Bone Joint Surg 2001;83A:53–64.

    Google Scholar 

  59. Butnariu-Ephrat M, Robinson D, Mendes DG, Halperin N, Nevo Z. Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clin Orthop 1996;330:234–243.

    Article  PubMed  Google Scholar 

  60. Shahgaldi BF, Amis AA, Heatley FW, McDowell J, Bentley G. Repair of cartilage lesions using biological implants. J Bone Joint Surg Br 1991;73-B:57–64.

    Google Scholar 

  61. Niederauer GG, Slivka MA, Leatherbury NC, et al. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials 2000;21:2561–2574.

    Article  PubMed  CAS  Google Scholar 

  62. Huibregtse BA, Samuels JA, O’Callaghan MW. Development of a cartilage defect model of the knee in the goat for autologous chondrocyte implantation research. Transactions of the Orthopaedic Research Society meeting; February 1, 1999; Anaheim, CA.

    Google Scholar 

  63. Volenec FJ, Pohl J, Bain S, Jackson D, Simon T, Aberman H. A novel collagen-hyaluronate implant promotes healing of full thickness defects in the articular cartilage of goats. Trans Orthop Res Soc 2002;451, Dallas, TX.

    Google Scholar 

  64. Schwartz H, Plouhar P, Gahunia H, et al. Site related differences in the healing of osteochondral defects in the goat knee. Trans Orthop Res Soc 2002;909, Dallas, TX.

    Google Scholar 

  65. Lu Y, Dhanaraj S, Wang Z, Kong W, Bradley D, Binette F. A novel intra-operative approach to treat full thickness articular cartilage defects with chondrocyte loaded implants. Transactions of the Washington, DC, Feb 21–23: 51st Annual Meeting of the Orthopedic Research Society Post No. 1363; 2005.

    Google Scholar 

  66. Hendrickson DA, Nixon AJ, Grande DA, et al. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res 1994;12:485–497.

    Article  PubMed  CAS  Google Scholar 

  67. Sams AE, Nixon AJ. Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartilage 1995;3:47–59.

    Article  PubMed  CAS  Google Scholar 

  68. Convery FR, Akeson WH, Keown GH. The repair of large osteochondral defects. Clin Orthop 1972;82:253–262.

    PubMed  CAS  Google Scholar 

  69. Frisbie DD, Lu Y, Colhoun H, Kawcak C, Binette F, McIlwrath CW. In vivo evaluation of a one step autologous cartilage resurfacing technique in a long term equine model. Transactions of the Orthopaedic Research Society; 2005; Poster 1355, Washington, DC.

    Google Scholar 

  70. Bertone A, Orban J, Grande D, et al. Articular cartilage and subchondral bone repair using a biodegradable polymer matrix and instrumentation system. Transactions of the Orthopaedic Research Society; 2005; Poster 1803, Washington, DC.

    Google Scholar 

  71. Mensch JS, Amstutz HC. Knee morphology as a guide to knee replacement. Clin Orthop 1975;112:231–241.

    PubMed  Google Scholar 

  72. Potter HG, Linklater JM, Allen A, Hannafin J, Haas S. Magnetic resonance imaging of articular cartilage in the knee: an evaluation with use of fast-spin-echo imaging. J Bone Joint Surg 1998;80(A):1276–1284.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Williams, R.J., Niederauer, G.G. (2007). Articular Cartilage Resurfacing Using Synthetic Resorbable Scaffolds. In: Williams, R.J. (eds) Cartilage Repair Strategies. Humana Press. https://doi.org/10.1007/978-1-59745-343-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-343-1_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-629-0

  • Online ISBN: 978-1-59745-343-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics