Skip to main content

Approaching the Treatment of AML from a Biological Perspective

An Overview

  • Chapter
  • 1234 Accesses

Part of the book series: Contemporary Hematology ((CH))

Abstract

Current acute myeloid leukemia (AML) therapy is inadequate for the great majority of patients. Major challenges are peculiar to the elderly and the infirm. There is no prospect of further advances using current standard agents. At our current state of knowledge, all potential classes of agents merit clinical investigation. However, the empirical approach can certainly be refined by the application of recent data on the pathophysiology of AML, its molecular biology, the aberrations that drive the proliferative and antiapoptotic leukemia advantages, and the study of resistance to standard and novel agents. In this chapter we review some of the more promising novel agents in AML.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCulloch. EA. Stem cells in normal and leukemic hemopoiesis. Blood 1983;62(1):1–13.

    CAS  PubMed  Google Scholar 

  2. Estey EH, Thall PF. New designs for phase 2 clinical trials. Blood 2003;102:442–448.

    Article  CAS  PubMed  Google Scholar 

  3. Parker WB, Shaddix SC, Chang CH, et al. Effects of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl) adenine on K562 cellular metabolism and the inhibition of human ribonucleotide reductase and DNA polymerases by its 5′-triphosphate. Cancer Res 1991;51:2386–2394.

    CAS  PubMed  Google Scholar 

  4. Kantarjian HM, Gandhi V, Kozuch P, et al. Phase I clinical and pharmacology study of clofarabine in patients with solid and hematological cancers. J Clin Oncol 2003;21:1167–1173.

    Article  CAS  PubMed  Google Scholar 

  5. Kantarjian HM, Gandhi V, Cortes J, et al. Phase II clinical and pharmacology study of clofarabine in patients with refractory or relapsed acute leukemia. Blood 2003

    Google Scholar 

  6. Faderl S, Gandhi V, O’Brien S, et al. Results of a phase 1–2 study of clofarabine in combination with cytarabine (ara-C) in relapsed and refractory acute leukemias. Blood 2005;105(3):940–947.

    Article  CAS  PubMed  Google Scholar 

  7. Jeha S, Gandhi V, Chan KW, et al. Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood 2004;103(3):784–789.

    Article  CAS  PubMed  Google Scholar 

  8. Tsimberidou AM, Alvarado Y, Giles FJ. Evolving role of ribonucleoside reductase inhibitors in hematological malignancies. Expert Rev Anticancer Ther 2002;2:437–448.

    Article  CAS  PubMed  Google Scholar 

  9. Balzarini J, Wedgwood O, Kruining J, et al. Anti-HIV and anti-HBV activity and resistance profile of 2′, 3′-dideoxy-3′-thiacytidine (3TC) and its arylphosphoramidate derivative CF 1109. Biochem Biophys Res Commun 1996;225:363–369.

    Article  CAS  PubMed  Google Scholar 

  10. Grove KL, Guo X, Liu SH, et al. Anticancer activity of beta-L-dioxolane-cytidine, a novel nucleoside analogue with the unnatural L configuration. Cancer Res 1995;55:3008–3011.

    CAS  PubMed  Google Scholar 

  11. Giles FJ, Cortes JE, Baker SD, et al. Troxacitabine, a novel dioxolane nucleoside analog, has activity in patients with advanced leukemia. J Clin Oncol 2001;19:762–771.

    CAS  PubMed  Google Scholar 

  12. Giles FJ, Garcia-Manero G, Cortes JE, et al. Phase II study of troxacitabine, a novel dioxolane nucleoside analog, in patients with refractory leukemia. J Clin Oncol 2002;20:656–664.

    Article  CAS  PubMed  Google Scholar 

  13. Giles FJ, Faderl S, Thomas DA, et al. Randomized Phase I/II study of troxacitabine combined with cytarabine, idarubicin, or topotecan in patients with refractory myeloid leukemias. J Clin Oncol 2003;21:1050–1056.

    Article  CAS  PubMed  Google Scholar 

  14. Grove KL, Guo X, Liu SH, Gao Z, Chu CK, Cheng YC. Anticancer activity of beta-L-dioxolane-cytidine, a novel nucleoside analogue with the unnatural L cofiguration. Cancer Res 1995;55:3008–3011.

    CAS  PubMed  Google Scholar 

  15. Grove KL, Cheng YC. Uptake and metabolism of the new anticancer compound beta-L-(−)-dioxolane-cytidine in human prostate carcinoma DU-145 cells. Cancer Res 1996;56:4187–4191.

    CAS  PubMed  Google Scholar 

  16. Giles FJ, Cortes JE, Baker SD, et al. Troxacitabine, a novel dioxolane nucleoside analog, has activity in patients with advanced leukemia. J Clin Oncol 2001;19:762–771.

    CAS  PubMed  Google Scholar 

  17. Giles FJ, Kantarjian HM, Cortes JE, et al. Adaptive randomized study of idarubicin and cytarabine vs troxacitabine and cytarabine vs troxacitabine and idarubicin in untreated patients 50 years or older with adverse karyotype acute myeloid leukemia. J Clin Oncol 2003;21:1722–1727.

    Article  CAS  PubMed  Google Scholar 

  18. Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 2001;134:573–586.

    CAS  PubMed  Google Scholar 

  19. Singal R, Ginder GD. DNA methylation. Blood 1999;93:4059–4070.

    CAS  PubMed  Google Scholar 

  20. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res 1998;72:141–196.

    Article  CAS  PubMed  Google Scholar 

  21. Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP. Methylation profiling in acute myeloid leukemia. Blood 2001;97:2823–2829.

    Article  CAS  PubMed  Google Scholar 

  22. Au WY, Fung A, Man C, et al. Aberrant p15 gene promoter methylation in therapy-related myelodysplastic syndrome and acute myeloid leukaemia: clinicopathological and karyotypic associations. Br J Hematol 2003;120:1062–1065.

    Article  CAS  Google Scholar 

  23. Teofili L, Martini M, Luongo M, et al. Hypermethylation of GpG islands in the promoter region of p15 (INK4b) in acute promyelocytic leukemia represses p15(INK4b) expression and correlates with poor prognosis. Leukemia 2003;17:919–924.

    Article  CAS  PubMed  Google Scholar 

  24. Warrell RP, Jr., He LZ, Richon V, Calleja E, Pandolfi PP. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 1998;90:1621–1625.

    Article  CAS  PubMed  Google Scholar 

  25. He LZ, Tolentino T, Grayson P, et al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Invest 2001;108:1321–1330.

    CAS  PubMed  Google Scholar 

  26. Klisovic MI, Maghraby EA, Parthun MR, et al. Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia 2003;17(2):350–358.

    Article  CAS  PubMed  Google Scholar 

  27. Pinto A, Zagonel V. 5-Aza-2′-deoxycytidine (Decitabine) and 5-azacytidine in the treatment of acute myeloid leukemias and myelodysplastic syndromes: past, present and future trends. Leukemia 1993;7(suppl 1):51–60.

    PubMed  Google Scholar 

  28. Santi DV, Garrett CE, Barr PJ. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 1983;33:9–10.

    Article  CAS  PubMed  Google Scholar 

  29. Issa JP, Baylin SB, Herman JG. DNA methylation changes in hematological malignancies: biological and clinical implications. Leukemia 1997;11 (suppl 1):S7–11.

    Google Scholar 

  30. Momparler RL, Bouchard J, Onetto N, Rivard GE. 5-Aza-2′-deoxycytidine therapy in patients with acute leukemia inhibits DNA methylation. Leuk Res 1984;8:181–185.

    Article  CAS  PubMed  Google Scholar 

  31. Rivard GE, Momparler RL, Demers J, et al. Phase I study on 5-aza-2′-deoxycytidine in children with acute leukemia. Leuk Res 1981;5:453–462.

    Article  CAS  PubMed  Google Scholar 

  32. Momparler RL, Rivard GE, Gyger M. Clinical trial on 5-aza-2′-deoxycytidine in patients with acute leukemia. Pharmacol Ther 1985;30:277–286.

    Article  CAS  PubMed  Google Scholar 

  33. Richel DJ, Colly LP, Kluin-Nelemans JC, Willemze R. The antileukaemic activity of 5-Aza-2 deoxycytidine (Aza-dC) in patients with relapsed and resistant leukaemia. Br J Cancer 1991;64:144–148.

    CAS  PubMed  Google Scholar 

  34. Kantarjian HM, O’Brien SM, Keating M, et al. Results of decitabine therapy in the accelerated and blastic phases of chronic myelogenous leukemia. Leukemia 1997;11:1617–1620.

    Article  CAS  PubMed  Google Scholar 

  35. Kantarjian HM, O’Brien S, Cortes J, et al. Results of decitabine (5-aza-2′ deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer 2003;98:522–528.

    Article  CAS  PubMed  Google Scholar 

  36. Pinto A, Zagonel V. 5-Aza-2′-deoxycytidine (Decitabine) and 5-azacytidine in the treatment of acute myeloid leukemias and myelodysplastic syndromes: past, present and future trends. Leukemia 1993;7 (suppl 1):51–60.

    PubMed  Google Scholar 

  37. Petti MC, Mandelli F, Zagonel V, et al. Pilot study of 5-aza-2′-deoxycytidine (Decitabine) in the treatment of poor prognosis acute myelogenous leukemia patients: preliminary results. Leukemia 1993;7(suppl 1):36–41.

    PubMed  Google Scholar 

  38. Ravandi F, Kantarjian H, Cohen A, et al. Decitabine with allogeneic peripheral blood stem cell transplantation in the therapy of leukemia relapse following a prior transplant: results of a phase I study. Bone Marrow Transplant 2001;27:1221–1225.

    Article  CAS  PubMed  Google Scholar 

  39. Willemze R, Suciu S, Archimbaud E, et al. A randomized phase II study on the effects of 5-Aza-2′-deoxycytidine combined with either amsacrine or idarubicin in patients with relapsed acute leukemia: an EORTC Leukemia Cooperative Group phase II study (06893). Leukemia 1997;11(suppl 1):S24–27.

    Google Scholar 

  40. Schwartsmann G, Fernandes MS, Schaan MD, et al. Decitabine (5-aza-2′-deoxycytidine;DAC) plus daunorubicin as a first line treatment in patients with acute myeloid leukemia: preliminary observations. Leukemia 1997;11(suppl 1):S28–31.

    Google Scholar 

  41. Issa JP, Garcia-Manero G, Mannari R, et al. Minimal effective dose of the hypomethylating agent decitabine in hematopoietic malignancies. Blood 2001;98:594–595.

    Article  Google Scholar 

  42. Issa JP, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004;103(5):1635–1640.

    Article  CAS  PubMed  Google Scholar 

  43. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002;20:2429–2440.

    Article  CAS  PubMed  Google Scholar 

  44. Kornblith AB, Herndon JE, II, Silverman LR, et al. Impact of azacytidine on the quality of life of patients with myelodysplastic syndrome treated in a randomized phase III trial: a Cancer and Leukemia Group B study. J Clin Oncol 2002;20:2441–2452.

    Article  CAS  PubMed  Google Scholar 

  45. Wijermans PW, Krulder JW, Huijgens PC, Neve P. Continuous infusion of low-dose 5-Aza-2′-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia 1997;11 (suppl 1):S19–23.

    Google Scholar 

  46. Wijermans P, Lubbert M, Verhoef G, et al. Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 2000;18:956–962.

    CAS  PubMed  Google Scholar 

  47. Lubbert M, Wijermans P, Kunzmann R, et al. Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Br J Hematol 2001;114:349–357.

    Article  CAS  Google Scholar 

  48. Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2′-deoxycytidine (decitabien) treatment. Blood 2002;100:2957–2964.

    Article  CAS  PubMed  Google Scholar 

  49. Sigalotti L, Altomonte M, Colizzi F, et al. 5-Aza-2′-deoxycytidine (decitabine) treatment of hematopoietic malignancies: a multimechanism therapeutic approach. Blood 2003;101:4644–4646.

    Article  CAS  PubMed  Google Scholar 

  50. Wijermans P, Luebbert M, Verhoef G. Low dose decitabine for elderly high-risk MDS patients: who will respond. Blood 2002;100:97a.

    Google Scholar 

  51. Saba HI, Rosenfeld CS, Issa JP, Bennett JM, Decastro C, Kantarjian H. Clinical benefit and survival edopoits from a phase III trial comparing decitabine (DAC) VS supportive care (SC) in patients with advanced MDS. J Clin Oncol 2005

    Google Scholar 

  52. Hiebert SW, Lutterbach B, Amann J. Role of co-repressors in transcriptional repression mediated by the t (8;21), t (16;21), t (2;21), and inv (16) fusion proteins. Curr Opin Hematol 2001;8:197–200.

    Article  CAS  PubMed  Google Scholar 

  53. Faretta M, Di Croce L, Pelicci PG. Effects of the acute myeloid leukemia-associated fusion proteins on nuclear architecture. Semin Hematol 2001;38:42–53.

    Article  CAS  PubMed  Google Scholar 

  54. Ferrara FF, Fazi F, Bianchini A, et al. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res 2001;61:2–7.

    PubMed  Google Scholar 

  55. Amann JM, Nip J, Strom DK, et al. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol. Cell Biol 2001; 21:6470–6483.

    Article  CAS  PubMed  Google Scholar 

  56. Marcucci G, Bruner RJ, Binkley PE, et al. Phase I trial of the histone deacetylase inhibitor depsipeptide (FR901228) in acute myeloid leukemia (AML). Blood 2002;100:86a.

    Google Scholar 

  57. Byrd JC, Marcucci G, Parthun MR, et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 2005;105(3):959–967.

    Article  CAS  PubMed  Google Scholar 

  58. Hall AG, Tilby MJ. Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of hematological malignancies. Blood Rev 1992;6:63–73.

    Article  Google Scholar 

  59. Shyam K, Cosby LA, Sartorelli AC. Synthesis and evaluation of N,N’-bis(arylsulfonyl)hydrazines as antineoplastic agents. J Med Chem 1985;28:525–527.

    Article  CAS  PubMed  Google Scholar 

  60. Shyam K, Furubayashi R, Hrubiec RT, Cosby LA, Sartorelli AC. 1,2-Bis(arylsulfonyl)hydrazines. 2. The influence of arylsulfonyl and aralkylsulfonyl substituents on antitumor and alkylating activity. J Med Chem 1986;29:1323–1325.

    Article  CAS  PubMed  Google Scholar 

  61. Shyam K, Hrubiec RT, Furubayashi R, Cosby LA, Sartorelli AC. 1,2-Bis(sulfonyl)hydrazines: 3. Effects of structural modification on antineoplastic activity. J Med Chem 1987;30:2157–2161.

    Article  CAS  PubMed  Google Scholar 

  62. Shyam K, Penketh PG, Divo AA, Loomis RH, Rose WC, Sartorelli AC. Synthesis and evaluation of 1-acyl-1, 2-bis(methylsulfonyl)-2-(2-chloroethyl)hydrazines as antineoplastic agents. J Med Chem 1993;36:3496–3502.

    Article  CAS  PubMed  Google Scholar 

  63. Shyam K, Penketh PG, Loomis RH, Rose WC, Sartorelli AC. Antitumor 2-(aminocarbonyl)-1,2-bis (methylsulfonyl)-1-(2-chloroethyl)-hydrazines. J Med Chem 1996;39:796–801.

    Article  CAS  PubMed  Google Scholar 

  64. Pratviel G, Shyam K, Sartorelli AC. Cytotoxic and DNA-damaging effects of 1,2-bis(sulfonyl)hydrazines on human cells of the Mer+ and Mer-phenotype. Cancer Biochem Biophys 1989;10:365–375.

    CAS  PubMed  Google Scholar 

  65. Penketh PG, Shyam K, Sartorelli AC. Comparison of DNA lesions produced by tumor-inhibitory 1,2-bis (sulfonyl)hydrazines and chloroethylnitrosoureas. Biochem Pharmacol 2000;59:283–291.

    Article  CAS  PubMed  Google Scholar 

  66. Finch RA, Shyam K, Penketh PG, Sartorelli AC. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-(methylamino)carbonylhydrazine (101M): a novel sulfonylhydrazine prodrug with broad-spectrum antineoplastic activity. Cancer Res 2001;61:3033–3038.

    CAS  PubMed  Google Scholar 

  67. Briscoe WT, Duarte SP. Preferential alkylation by 1,3-bis 2-chloroethyl)-1-nitrosourea (BCNU) of guanines with guanines as neighboring bases in DNA. Biochem Pharmacol 1988;37:1061–1066.

    Article  CAS  PubMed  Google Scholar 

  68. Lown JW, McLaughlin LW. Nitrosourea-induced DNA single-strand breaks. Biochem Pharmacol 1979;28:1631–1638.

    Article  CAS  PubMed  Google Scholar 

  69. Giles F, Thomas D, Garcia-Manero G, et al. A Phase I and pharmacokinetic study of VNP40101M, a novel sulfonylhydrazine alkylating agent, in patients with refractory leukemia. Clin Cancer Res 2004;10(9):2908–2917.

    Article  CAS  PubMed  Google Scholar 

  70. Tanimoto M, Scheinberg DA, Cordon-Cardo C, Huie D, Clarkson BD, Old LJ. Restricted expression of an early myeloid and monocytic cell surface antigen defined by monoclonal antibody M195. Leukemia 1989;3:339–348.

    CAS  PubMed  Google Scholar 

  71. Scheinberg DA, Tanimoto M, McKenzie S, Strife A, Old LJ, Clarkson BD. Monoclonal antibody M195: a diagnostic marker for acute myelogenous leukemia. Leukemia 1989;3:440–445.

    CAS  PubMed  Google Scholar 

  72. Winter G, Milstein C. Man-made antibodies. Nature 1991;349:293–299.

    Article  CAS  PubMed  Google Scholar 

  73. Caron PC, Scheinberg DA. The biological therapy of acute and chronic leukemia. Cancer Invest 1997;15:342–352.

    Article  CAS  PubMed  Google Scholar 

  74. Caron PC, Co MS, Bull MK, Avdalovic NM, Queen C, Scheinberg DA. Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res 1992;52:6761–6767.

    CAS  PubMed  Google Scholar 

  75. Tanimoto M, Scheinberg DA, Cordon-Cardo C, Huie D, Clarkson BD, Old LJ. Restricted expression of an early myeloid and monocytic cell surface antigen defined by monoclonal antibody M195. Leukemia 1989; 3:339–348.

    CAS  PubMed  Google Scholar 

  76. Scheinberg DA, Tanimoto M, McKenzie S, Strife A, Old LJ, Clarkson BD. Monoclonal antibody M195: a diagnostic marker for acute myelogenous leukemia. Leukemia 1989;3:440–445.

    CAS  PubMed  Google Scholar 

  77. Caron PC, Schwartz MA, Co MS, et al. Murine and humanized constructs of monoclonal antibody M195 (anti-CD33) for the therapy of acute myelogenous leukemia. Cancer 1994;73:1049–1056.

    Article  CAS  PubMed  Google Scholar 

  78. Caron PC, Jurcic JG, Scott AM, et al. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood 1994;83:1760–1768.

    CAS  PubMed  Google Scholar 

  79. Jurcic JG, DeBlasio T, Dumont L, Yao TJ, Scheinberg DA. Molecular remission induction with retinoic acid and anti-CD33 monoclonal antibody HuM195 in acute promyelocytic leukemia. Clin Cancer Res 2000;6:372–380.

    CAS  PubMed  Google Scholar 

  80. Feldman E, Kalaycio M, Weiner G, et al. Treatment of relapsed or refractory acute myeloid leukemia with humanized anti-CD33 monoclonal antibody HuM195. Leukemia 2003;17:314–318.

    Article  CAS  PubMed  Google Scholar 

  81. Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, vs chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol 2005;23(18):4110–4116.

    Article  CAS  PubMed  Google Scholar 

  82. Sievers EL, Appelbaum FR, Spielberger RT, et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 1999;93:3678–3684.

    CAS  PubMed  Google Scholar 

  83. Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 2001;19:3244–3254.

    CAS  PubMed  Google Scholar 

  84. Giles FJ, Kantarjian HM, Kornblau SM, et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 2001;92:406–413.

    Article  CAS  PubMed  Google Scholar 

  85. Rajvanshi P, Shulman HM, Sievers EL, McDonald GB. Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood 2002;99:2310–2314.

    Article  CAS  PubMed  Google Scholar 

  86. Nabhan C, Rundhaugen LM, Riley MB, et al. Phase II pilot trial of gemtuzumab ozogamicin (GO) as first line therapy in acute myeloid leukemia patients age 65 or older. Leuk Res 2005;29(1):53–57.

    Article  CAS  PubMed  Google Scholar 

  87. Piccaluga PP, Martinelli G, Rondoni M, et al. Gemtuzumab ozogamicin for relapsed and refractory acute myeloid leukemia and myeloid sarcomas. Leuk Lymphoma 2004;45 (9):1791–1795.

    Article  CAS  PubMed  Google Scholar 

  88. Estey EH, Thall PF, Giles FJ, et al. Gemtuzumab ozogamicin with or without interleukin 11 in patients 65 years of age or older with untreated acute myeloid leukemia and high-risk myelodysplastic syndrome: comparison with idarubicin plus continuous-infusion, high-dose cytosine arabinoside. Blood 2002;99:4343–4349.

    Article  CAS  PubMed  Google Scholar 

  89. De Angelo DJ, Schiffer C, Stone R, et al. Interim analysis of a phase II study of the safety and efficacy of gemtuzumab ozogamicin (Mylotarg) given in combination with cytarabine and daunorubicin in patients less than 60 years old with untreated acute myeloid leukemia. Blood 2002;100:198a.

    Google Scholar 

  90. Kell JW, Burnett AK, Chopra R, et al. Mylotarg (gemtuzumab ozogamicin) given simultaneously with intensive induction and/or consolidation therapy for AML is feasible and may improve response rate. Blood 2002;100:199a.

    Google Scholar 

  91. Piccaluga PP, Martinelli G, Rondoni M, et al. First experience with gemtuzumab ozogamicin plus cytarabine as continuous infusion for elderly acute myeloid leukaemia patients. Leuk Res 2004;28(9):987–990.

    Article  CAS  PubMed  Google Scholar 

  92. McDevitt MR, Ma D, Lai LT, et al. Tumor therapy with targeted atomic nanogenerators. Science 2001;294:1537–1540.

    Article  CAS  PubMed  Google Scholar 

  93. Jurcic JG, Larson SM, Sgouros G, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood 2002;100:1233–1239.

    CAS  PubMed  Google Scholar 

  94. Pagel JM, Appelbaum FR, Eary JF, et al. 131I-ANTI-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood 2005;107:2184–2191.

    Article  PubMed  CAS  Google Scholar 

  95. Schwartz MA, Lovett DR, Redner A, et al. Dose-escalation trial of M195 labeled with iodine 131 for cytoreduction and marrow ablation in relapsed or refractory myeloid leukemias. J Clin Oncol 1993;11:294–303.

    CAS  PubMed  Google Scholar 

  96. Hall PD, Willingham MC, Kreitman RJ, Frankel AE. DT388-GM-CSF, a novel fusion toxin consisting of a truncated diphtheria toxin fused to human granulocyte-macrophage colony-stimulating factor, prolongs host survival in a SCID mouse model of acute myeloid leukemia. Leukemia 1999;13:629–633.

    Article  CAS  PubMed  Google Scholar 

  97. Hogge DE, Willman CL, Kreitman RJ, et al. Malignant progenitors from patients with acute myelogenous leukemia are sensitive to a diphtheria toxin-granulocyte-macrophage colony-stimulating factor fusion protein. Blood 1998;92:589–595.

    CAS  PubMed  Google Scholar 

  98. Frankel AE, McCubrey JA, Miller MS, et al. Diphtheria toxin fused to human interleukin-3 is toxic to blasts from patients with myeloid leukemias. Leukemia 2000;14:576–585.

    Article  CAS  PubMed  Google Scholar 

  99. Black JH, McCubrey JA, Willingham MC, Ramage J, Hogge DE, Frankel AE. Diphtheria toxin-interleukin-3 fusion protein (DT(388)IL3;prolongs disease-free survival of leukemic immunocompromised mice. Leukemia 2003;17:155–159.

    Article  CAS  PubMed  Google Scholar 

  100. Giles FJ, Kantarjian H, Cortes J. Novel therapies for patients with chronic myeloid leukemia. Exp Rev Anticancer Ther 2004;4(2):271–282.

    Article  CAS  Google Scholar 

  101. Aguayo A, Kantarjian H, Manshouri T, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000;96:2240–2245.

    CAS  PubMed  Google Scholar 

  102. Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000;95:309–313.

    CAS  PubMed  Google Scholar 

  103. Giles FJ. Novel agents for the therapy of acute leukemia. Curr Opin Oncol 2002;14:3–9.

    Article  CAS  PubMed  Google Scholar 

  104. Karp JE, Gojo I, Pili R, et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res 2004;10(11):3577–3585.

    Article  CAS  PubMed  Google Scholar 

  105. Laird AD, Vajkoczy P, Shawver LK, et al. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res 2000;60:4152–4160.

    CAS  PubMed  Google Scholar 

  106. Giles FJ, Stopeck AT, Silverman LR, et al. SU5416, a small molecule tyrosine kinase receptor inhibitor, has biological activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 2003;102(3):795–801.

    Article  CAS  PubMed  Google Scholar 

  107. Fiedler W, Mesters R, Tinnefeld H, et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 2003;102(8):2763–2767.

    Article  CAS  PubMed  Google Scholar 

  108. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cell. In: Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD, eds. New York: Garland Publishing Inc., 1994:721–785.

    Google Scholar 

  109. Ravandi F, Talpaz M, Estrov Z. Modulation of cellular signaling pathways: prospects for targeted therapy in hematological malignancies. Clin Cancer Res 2003;9:535–550.

    CAS  PubMed  Google Scholar 

  110. Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002;21:3314–3333.

    Article  CAS  PubMed  Google Scholar 

  111. Frank DA. STAT signaling in the pathogenesis and treatment of cancer. Mol Med 1999;5:432–456.

    CAS  PubMed  Google Scholar 

  112. Cortes J, Giles F, O’Brien S, et al. Results of imatinib mesylate therapy in patients with refractory or recurrent acute myeloid leukemia, high-risk myelodysplastic syndrome, and myeloproliferative disorders. Cancer 2003;97:2760–2766.

    Article  CAS  PubMed  Google Scholar 

  113. Kindler T, Breitenbuecher F, Marx A. Efficacy and safety of imatinib in adult patients with c-kit-positive acute myeloid leukemia. Blood 2004;103(10):3644–3654.

    Article  CAS  PubMed  Google Scholar 

  114. Tse KF, Mukherjee G, Small D. Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia 2000;14:1766–1776.

    Article  CAS  PubMed  Google Scholar 

  115. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002;100:1532–1542.

    Article  CAS  PubMed  Google Scholar 

  116. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002;99:4326–4335.

    Article  CAS  PubMed  Google Scholar 

  117. Gilliland DG, Griffin JD. Role of FLT3 in leukemia. Curr Opin Hematol 2002;9:274–281.

    Article  PubMed  Google Scholar 

  118. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002;21:2555–2563.

    Article  CAS  PubMed  Google Scholar 

  119. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002;99:310–318.

    Article  CAS  PubMed  Google Scholar 

  120. Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematological malignancies. Blood 2001;97:2434–2439.

    Article  CAS  PubMed  Google Scholar 

  121. Fiedler W, Serve H, Dohner H, et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005;105(3):986–993.

    Article  CAS  PubMed  Google Scholar 

  122. O’Farrell AM, Foran JM, Fiedler W, et al. An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res 2003;9(15): 5465–5476.

    PubMed  Google Scholar 

  123. Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005;105(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  124. Smith BD, Levis M, Beran M, Small D, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biological and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004;103(10): 3669–3676.

    Article  CAS  PubMed  Google Scholar 

  125. O’Farrell AM, Yuen HA, Smolich B, et al. SU5416, a small molecule tyrosine kinase receptor inhibitor, on FLT3 expression and phosphorylation in patients with refractory acute myeloid leukemia. Leuk Res 2004; (7):679–689.

    Article  CAS  Google Scholar 

  126. Beaupre DM, Kurzrock R. RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol 1999;17:1071–1079.

    CAS  PubMed  Google Scholar 

  127. Kohl NE, Mosser SD, deSolms SJ, et al. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science 1993;260:1934–1937.

    Article  CAS  PubMed  Google Scholar 

  128. James GL, Goldstein JL, Brown MS, et al. Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 1993;260:1937–1942.

    Article  CAS  PubMed  Google Scholar 

  129. Gibbs JB. Ras C-terminal processing enzymes-new drug targets? Cell 1991;65:1–4.

    Article  CAS  PubMed  Google Scholar 

  130. Karp JE, Lancet JE, Kaufmann SH, et al. Clinical and biological activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood 2001;97:3361–3369.

    Article  CAS  PubMed  Google Scholar 

  131. Cortes J, Albitar M, Thomas D, et al. Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematological malignancies. Blood 2003;101:1692–1697.

    Article  CAS  PubMed  Google Scholar 

  132. Kurzrock R, Sebti SM, Kantarjian HM, et al. Phase I study of a farnesyl transferase inhibitor, R115777, in patients with myelodysplastic syndrome. Blood 2001;98:623.

    Google Scholar 

  133. Lancet JE, Karp JE, Gotlib J, et al. Zarnestra (R115777) in previously untreated poor-risk AML and MDS: Preliminary results of a phase II trial. Blood 2002;100:560a.

    Article  Google Scholar 

  134. Zimmerman TM, Harlin H, Odenike OM, et al. Dose-ranging pharmacodynamic study of tipifarnib (R115777) in patients with relapsed and refractory hematological malignancies. J Clin Oncol 2004;22(23):4816–4822.

    Article  CAS  PubMed  Google Scholar 

  135. Kurzrock R, Kantarjian HM, Cortes JE, et al. Farnesyltransferase inhibitor R115777 in myelodysplastic syndrome: clinical and biological activities in the phase I setting. Blood 2003;102(13):4527–4534.

    Article  CAS  PubMed  Google Scholar 

  136. Adjei AA, Erlichman C, Davis JN, et al. A Phase I trial of the farnesyl transferase inhibitor SCH66336: evidence for biological and clinical activity. Cancer Res 2000;60:1871–1877.

    CAS  PubMed  Google Scholar 

  137. Lee JT Jr., McCubrey JA. The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 2002;16:486–507.

    Article  CAS  PubMed  Google Scholar 

  138. Cortes J, Albitar M, Thomas D, et al. Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematological malignancies. Blood 2003;101:1692–1697.

    Article  CAS  PubMed  Google Scholar 

  139. Karp JE. Farnesyl protein transferase inhibitors as targeted therapies for hematological malignancies. Semin Hematol 2001;38:16–23.

    Article  CAS  PubMed  Google Scholar 

  140. Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol 1999;17:2941–2953.

    CAS  PubMed  Google Scholar 

  141. Reed JC. Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematological malignancies. Semin Hematol 1997;34:9–19.

    CAS  PubMed  Google Scholar 

  142. Marie JP. Drug resistance in hematological malignancies. Curr Opin Oncol 2001;13:463–469.

    Article  CAS  PubMed  Google Scholar 

  143. Cotter FE. Antisense therapy of hematological malignancies. Semin Hematol 1999;36:9–14.

    CAS  PubMed  Google Scholar 

  144. Gewirtz AM. Antisense oligonucleotide therapeutics for human leukemia. Curr Opin Hematol 1998;5:59–71.

    Article  CAS  PubMed  Google Scholar 

  145. Andreeff M, Milella M, Konopleva M. Induction of apoptosis in AML by HA14-1, a small molecule Bcl-2 antagonist is independent of caspase-8 and-9. Blood 2002;100:543a.

    Google Scholar 

  146. Marcucci G, Byrd JC, Dai G, et al. Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood 2003;101:425–432.

    Article  CAS  PubMed  Google Scholar 

  147. Marcucci G, Stock W, Dai G, et al. G3139, a BCL-2 antisense oligo-nucleotide, in AML. Ann. Hematol 2004;83 (suppl 1):S93–94.

    Google Scholar 

  148. Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994;79:13–21.

    Article  CAS  PubMed  Google Scholar 

  149. Almond JB, Cohen GM. The proteasome: a novel target for cancer chemotherapy. Leukemia 2002;16:433–443.

    Article  CAS  PubMed  Google Scholar 

  150. King RW, Deshaies RJ, Peters JM, Kirschner MW. How proteolysis drives the cell cycle. Science 1996;274:1652–1659.

    Article  CAS  PubMed  Google Scholar 

  151. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-(kappa) B activity. Annu Rev Immunol 2000;18:621–663.

    Article  CAS  PubMed  Google Scholar 

  152. Chang YC, Lee YS, Tejima T, et al. mdm2 and bax, downstream mediators of the p53 response, are degraded by the ubiquitin-proteasome pathway. Cell Growth Differ 1998;9:79–84.

    CAS  PubMed  Google Scholar 

  153. Breitschopf K, Zeiher AM, Dimmeler S. Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction. J Biol Chem 2000;275:21,648–21,652.

    Article  CAS  PubMed  Google Scholar 

  154. Li B, Dou QP. Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci USA 2000;97:3850–3855.

    Article  CAS  PubMed  Google Scholar 

  155. Marshansky V, Wang X, Bertrand R, et al. Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J Immunol 2001;166:3130–3142.

    CAS  PubMed  Google Scholar 

  156. Gardner RC, Assinder SJ, Christie G, et al. Characterization of peptidyl boronic acid inhibitors of mammalian 20 S and 26 S proteasomes and their inhibition of proteasomes in cultured cells. Biochem J 2000;346 (pt 2):447–454.

    Article  CAS  PubMed  Google Scholar 

  157. Almond JB, Snowden RT, Hunter A, Dinsdale D, Cain K, Cohen GM. Proteasome inhibitor-induced apoptosis of B-chronic lymphocytic leukaemia cells involves cytochrome c release and caspase activation, accompanied by formation of an approximately 700 kDa Apaf-1 containing apoptosome complex. Leukemia 2001;15:1388–1397.

    Article  CAS  PubMed  Google Scholar 

  158. Masdehors P, Omura S, Merle-Beral H, et al. Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin. Br J Hematol 1999;105:752–757.

    Article  CAS  Google Scholar 

  159. Masdehors P, Merle-Beral H, Maloum K, Omura S, Magdelenat H, Delic J. Deregulation of the ubiquitin system and p53 proteolysis modify the apoptotic response in B-CLL lymphocytes. Blood 2000;96:269–274.

    CAS  PubMed  Google Scholar 

  160. Chandra J, Niemer I, Gilbreath J, et al. Proteasome inhibitors induce apoptosis in glucocorticoid-resistant chronic lymphocytic leukemic lymphocytes. Blood 1998;92:4220–4229.

    CAS  PubMed  Google Scholar 

  161. Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999;59:2615–2622.

    CAS  PubMed  Google Scholar 

  162. Cortes JE, Estey E, Giles FJ, et al. Phase I study of Bortezomib (PS-341, VELCADE), a proteasome inhibitor, in patients with refractory or relapsed acute leukemias and myelodysplastic syndromes. Blood 2002;100:560.

    Article  Google Scholar 

  163. Cortes J, Thomas D, Koller C, et al. Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin. Cancer Res 2004;10(10):3371–3376, Erratum in: Clin Cancer Res 2004;10(22):7787.

    Article  CAS  PubMed  Google Scholar 

  164. Sonneveld P. Multidrug resistance in hematological malignancies. J Intern Med 2000;247:521–534.

    CAS  PubMed  Google Scholar 

  165. Ueda K, Cardarelli C, Gottesman MM, Pastan I. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci USA 1987;84:3004–3008.

    Article  CAS  PubMed  Google Scholar 

  166. Nooter K, Sonneveld P, Oostrum R, Herweijer H, Hagenbeek T, Valerio D. Overexpression of the mdr1 gene in blast cells from patients with acute myelocytic leukemia is associated with decreased anthracycline accumulation that can be restored by cyclosporin-A. Int J Cancer 1990;45:263–268.

    Article  CAS  PubMed  Google Scholar 

  167. Leith CP, Kopecky KJ, Godwin J, et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biological subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 1997;89:3323–3329.

    CAS  PubMed  Google Scholar 

  168. List AF, Kopecky KJ, Willman C, et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 2001;98:3212–3220.

    Article  CAS  PubMed  Google Scholar 

  169. Boesch D, Gaveriaux C, Jachez B, Pourtier-Manzanedo A, Bollinger P, Loor F. In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res 1991;51:4226–4233.

    CAS  PubMed  Google Scholar 

  170. Tidefelt U, Liliemark J, Gruber A, et al. P-Glycoprotein inhibitor valspodar (PSC 833; increases the intracellular concentrations of daunorubicin in vivo in patients with P-glycoprotein-positive acute myeloid leukemia. J Clin Oncol 2000;18:1837–1844.

    CAS  PubMed  Google Scholar 

  171. Advani R, Visani G, Milligan D, et al. Treatment of poor prognosis AML patients using PSC833 (valspodar) plus mitoxantrone, etoposide, and cytarabine (PSC-MEC). Adv Exp Med Biol 1999;457:47–56.

    CAS  PubMed  Google Scholar 

  172. Baer MR, George SL, Dodge RK, et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 2002;100:1224–1232.

    CAS  PubMed  Google Scholar 

  173. Kolitz JE, George SL, Dodge RK, et al. Cancer and Leukemia Group B. Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: final induction results of Cancer and Leukemia Group B Study 9621. J Clin Oncol 2004;22(21):4290–4301.

    Article  CAS  PubMed  Google Scholar 

  174. Greenberg P, Advani R, Tallman M. Treatment of refractory/relapsed AML with PSC833 plus mitoxantrone, etoposide, cytarabine (PSC-MEC) vs MEC: randomized phase III trial (E2995). Blood 1999;94:383a.

    Google Scholar 

  175. Solary E, Drenou B, Campos L, et al. Quinine as a multidrug resistance inhibitor: a phase 3 multicentric randomized study in adult de novo acute myelogenous leukemia. Blood 2003;102:1202–1210.

    Article  CAS  PubMed  Google Scholar 

  176. Van der Holt B, Lowenberg B, Burnett AK, et al. The value of the MDR1 reversal agent PSC-833 in addition to daunorubicin and cytarabine in the treatment of elderly patients with previously untreated acute myeloid leukemia (AML), in relation to MDR1 status at diagnosis. Blood 2005;106(8):2646–2654.

    Article  PubMed  CAS  Google Scholar 

  177. Baer MR, Suvannasankha A, O’Loughlin KL, Greco WR, Minderman H. The pipecolinate derivatives VX-710 (biricodar; Incel) and VX-853 are effective modulators of drug efflux mediated by the multidrug resistance proteins P-glycoprotein. Blood 2002;100:67.

    Article  Google Scholar 

  178. Blagosklonny MV, Fojo T, Bhalla KN, et al. The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotherapy. Leukemia 2001;15:1537–1543.

    Article  CAS  PubMed  Google Scholar 

  179. Soga S, Neckers LM, Schulte TW, et al. KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res 1999;59:2931–2938.

    CAS  PubMed  Google Scholar 

  180. Shiotsu Y, Neckers LM, Wortman I, et al. Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G (1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood 2000;96:2284–2291.

    CAS  PubMed  Google Scholar 

  181. Seynaeve CM, Kazanietz MG, Blumberg PM, Sausville EA, Worland PJ. Differential inhibition of protein kinase C isozymes by UCN-01, a staurosporine analogue. Mol Pharmacol 1994;45:1207–1214.

    CAS  PubMed  Google Scholar 

  182. Thavasu P, Propper D, McDonald A, et al. The protein kinase C inhibitor CGP41251 suppresses cytokine release and extracellular signal-regulated kinase 2 expression in cancer patients. Cancer Res 1999;59:3980–3984.

    CAS  PubMed  Google Scholar 

  183. Propper DJ, McDonald AC, Man A, et al. Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J Clin Oncol 2001;19:1485–1492.

    CAS  PubMed  Google Scholar 

  184. Okuda K, Matulonis U, Salgia R, Kanakura Y, Druker B, Griffin JD. Factor independence of human myeloid leukemia cell lines is associated with increased phosphorylation of the proto-oncogene Raf-1. Exp Hematol 1994;22:1111–1117.

    CAS  PubMed  Google Scholar 

  185. Kang CD, Yoo SD, Hwang BW, et al. The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemia K562 cells. Leuk Res 2000;24:527–534.

    Article  CAS  PubMed  Google Scholar 

  186. Kim SC, Hahn JS, Min YH, Yoo NC, Ko YW, Lee WJ. Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood 1999;93:3893–3899.

    CAS  PubMed  Google Scholar 

  187. Morgan MA, Dolp O, Reuter CW. Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood 2001;97:1823–1834.

    Article  CAS  PubMed  Google Scholar 

  188. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 1995;270:27,489–27,494.

    Article  CAS  PubMed  Google Scholar 

  189. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 1995;92:7686–7689.

    Article  CAS  PubMed  Google Scholar 

  190. Favata MF, Horiuchi KY, Manos EJ, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998;273:18,623–18,632.

    Article  CAS  PubMed  Google Scholar 

  191. Sebolt-Leopold JS. Development of anticancer drugs targeting the MAP kinase pathway. Oncogene 2000;19:6594–6599.

    Article  CAS  PubMed  Google Scholar 

  192. Powis G, Bonjouklian R, Berggren MM, et al. Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res 1994;54:2419–2423.

    CAS  PubMed  Google Scholar 

  193. Vlahos CJ, Matter WF, Hui KY, Brown RF. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994;269:5241–5248.

    CAS  PubMed  Google Scholar 

  194. Brown EJ, Albers MW, Shin TB, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994;369:756–758.

    Article  CAS  PubMed  Google Scholar 

  195. Huang S, Bjornsti MA, Houghton PJ. Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther 2003;2:222–232.

    CAS  PubMed  Google Scholar 

  196. Huang S, Houghton PJ. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 2003;3:371–377.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ravandi, F., Giles, F. (2007). Approaching the Treatment of AML from a Biological Perspective. In: Karp, J.E. (eds) Acute Myelogenous Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-59745-322-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-322-6_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-621-4

  • Online ISBN: 978-1-59745-322-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics