Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1600 Accesses

Abstract

Transforming growth factor-β (TGF-β) regulates a wide variety of biological activities. Smad proteins play a major role in transducing the TGF-β family signal at the cell surface into gene regulation in the nucleus. In response to TGF-β, Smad2 and Smad3 are activated through phosphorylation by the TGF-β receptor at the C-tail SSXS motif. The activated Smad2 and Smad3 then form heteromeric complexes with Smad4, and together accumulate in the nucleus to regulate transcription of target genes. Similarly, Smad1 is activated through phosphorylation by the BMP receptor at the C-tail SSXS motif. Smad phosphatases that dephosphorylate the SSXS motifs have been identified as key regulators in the termination of the TGF-β family signals. Smad proteins are also phosphorylated by other kinases including the MAP kinase family members, cyclin-dependent kinases, protein kinase C, and Ca2+-calmodulin-dependent kinase II. Phosphorylation by these kinases regulates Smad activity in several modes, such as nuclear accumulation, DNA binding, and transcriptional activity, thus affecting proliferation, apoptosis, and other activities. Identification of the various kinases and phosphatases that phosphorylate/dephosphorylate Smads and elucidation of the mechanisms by which they regulate Smads activities help develop more effective therapies against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts AB, Sporn MB. The transforming growth factor-betas. In: Peptide Growth Factors and Their Receptors, Eds sporn MB, Roberts AB. (Springer-Verlag, Heidelberg) 1990;pp. 419–472.

    Google Scholar 

  2. Massagué J. The transforming growth factor-beta family. Annu Rev Cell Biol 1990;6:597–641.

    Article  PubMed  Google Scholar 

  3. Heldin C-H, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997;390:465–471.

    Article  CAS  PubMed  Google Scholar 

  4. Massagué J, Chen YG. Controlling TGF-beta signaling. Genes Dev 2000;14:627–644.

    PubMed  Google Scholar 

  5. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003;113:685–700.

    Article  CAS  PubMed  Google Scholar 

  6. Liu F. Receptor-regulated Smads in TGF-beta signaling. Front Biosci 2003;8:S1280–S1303.

    Article  CAS  PubMed  Google Scholar 

  7. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003;425:577–584.

    Article  CAS  PubMed  Google Scholar 

  8. ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci 2004;29: 265–273.

    Article  PubMed  CAS  Google Scholar 

  9. Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 1996;87:1215–1224.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Feng X, We R, Derynck R. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature 1996;383:168–172.

    Article  CAS  PubMed  Google Scholar 

  11. Abdollah S, Macias-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL. TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 1997;272:27,678–27,685.

    Article  CAS  PubMed  Google Scholar 

  12. Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, ten Dijke P, Heldin C-H. Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem 1997;272:28,107–28,115.

    Article  CAS  PubMed  Google Scholar 

  13. Hoodless PA, Haerry T, Abdollah S, et al. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 1996;85:489–500.

    Article  CAS  PubMed  Google Scholar 

  14. Kretzschmar M, Liu F, Hata A, Doody J, Massagué J. The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev 1997;11:984–995.

    Article  CAS  PubMed  Google Scholar 

  15. Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 1996;383:832–836.

    Article  CAS  PubMed  Google Scholar 

  16. Liu F, Pouponnot C, Massagué J. Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional complexes. Genes Dev 1997;11:3157–3167.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou S, Buckhaults P, Zawel L, et al. Targeted deletion of Smad4 shows it is required for transforming growth factor beta and activin signaling in colorectal cancer cells. Proc Natl Acad Sci USA 1998;95:2412–2416.

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi H, Abdollah S, Qiu Y, et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 1997;89:1165–1173.

    Article  CAS  PubMed  Google Scholar 

  19. Nakao A, Afrakhte M, Moren A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 1997;389:631–635.

    Article  CAS  PubMed  Google Scholar 

  20. Imamura T, Takase M, Nishihara A, et al. Smad6 inhibits signalling by the TGF-beta superfamily. Nature 1997;389:622–626.

    Article  CAS  PubMed  Google Scholar 

  21. Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 1998;12:186–197.

    Article  CAS  PubMed  Google Scholar 

  22. Brodin G, Ahgren A, ten Dijke P, Heldin C-H, Heuchel R. Efficient TGF-beta induction of the Smad7 gene requires cooperation between AP-1, Sp1, and Smad proteins on the mouse Smad7 promoter. J Biol Chem 2000;275:29,023–29,030.

    Article  CAS  PubMed  Google Scholar 

  23. Denissova NG, Pouponnot C, Long J, He D, Liu F. Transforming growth factor beta-inducible independent binding of SMAD to the Smad7 promoter. Proc Natl Acad Sci USA 2000;97:6397–6402.

    Article  CAS  PubMed  Google Scholar 

  24. Ishida W, Hamamoto T, Kusanagi K, et al. Smad6 is a Smad1/5-induced smad inhibitor. Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter. J Biol Chem 2000;275:6075–6079.

    Article  CAS  PubMed  Google Scholar 

  25. Nagarajan RP, Zhang J, Li W, Chen Y. Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J Biol Chem 1999;274:33,412–33,418.

    Article  CAS  PubMed  Google Scholar 

  26. von Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Bottinger EP. Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J Biol Chem 2000;275:11,320–11,326.

    Article  Google Scholar 

  27. Yingling JM, Datto MB, Wong C, Frederick JP, Liberati NT, Wang XF. Tumor suppressor Smad4 is a transforming growth factor beta-inducible DNA binding protein. Mol Cell Biol 1997;17:7019–7028.

    CAS  PubMed  Google Scholar 

  28. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998;17:3091–3100.

    Article  CAS  PubMed  Google Scholar 

  29. Zawel L, Dai JL, Buckhaults P, et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1998;1:611–617.

    Article  CAS  PubMed  Google Scholar 

  30. Shi Y, Wang YF, Jayaraman L, Yang H, Massagué J, Pavletich NP. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell 1998;94:585–594.

    Article  CAS  PubMed  Google Scholar 

  31. Liu F, Hata A, Baker JC, et al. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 1996;381:620–623.

    Article  CAS  PubMed  Google Scholar 

  32. Feng XH, Zhang Y, Wu RY, Derynck R. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev 1998;12:2153–2163.

    Article  CAS  PubMed  Google Scholar 

  33. Janknecht R, Wells NJ, Hunter T. TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev 1998;12:2114–2119.

    Article  CAS  PubMed  Google Scholar 

  34. Nishihara A, Hanai JI, Okamoto N, et al. Role of p300, a transcriptional coactivator, in signalling of TGF-beta. Genes Cells 1998;3:613–623.

    Article  CAS  PubMed  Google Scholar 

  35. Pouponnot C, Jayaraman L, Massagué J. Physical and functional interaction of SMADs and p300/CBP. J Biol Chem 1998;273:22,865–22,868.

    Article  CAS  PubMed  Google Scholar 

  36. Shen X, Hu PP, Liberati NT, Datto MB, Frederick JP, Wang X-F. TGF-β-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein. Mol Biol Cell 1998;9: 3309–3319.

    CAS  PubMed  Google Scholar 

  37. Topper JN, DiChiara MR, Brown JD, et al. CREB binding protein is a required coactivator for Smad-dependent, transforming growth factor beta transcriptional responses in endothelial cells. Proc Natl Acad Sci USA 1998;95:9506–9511.

    Article  CAS  PubMed  Google Scholar 

  38. Itoh S, Ericsson J, Nishikawa J, Heldin C-H, ten Dijke P. The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acids Res 2000;28:4291–4298.

    Article  CAS  PubMed  Google Scholar 

  39. Kahata K, Hayashi M, Asaka M, et al. Regulation of transforming growth factor-beta and bone morphogenetic protein signalling by transcriptional coactivator GCN5. Genes Cells 2004;9:143–151.

    Article  CAS  PubMed  Google Scholar 

  40. de Caestecker MP, Yahata T, Wang D, et al. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J Biol Chem 2000;275:2115–2122.

    Article  PubMed  Google Scholar 

  41. Qin B, Lam SS, Lin K. Crystal structure of a transcriptionally active Smad4 fragment. Structure 1999;7:1493–1503.

    Article  CAS  PubMed  Google Scholar 

  42. Wang G, Long J, matsuura I, He D, Liu F. The Smad3 linker region contains a transcriptional activation domain. Biochem J 2005;386:29–34.

    Article  CAS  PubMed  Google Scholar 

  43. Prokova V, Mavridou S, Papakosta P, Kardassis D. Characterization of a novel transcriptionally active domain in the transforming growth factor β-regulated Smad3 protein. Nucleic Acids Res 2005;33:3708–3721.

    Article  CAS  PubMed  Google Scholar 

  44. Kato Y, Habas R, Katsuyama Y, Naar AM, He X. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling. Nature 2002;418:641–646.

    Article  CAS  PubMed  Google Scholar 

  45. Lin X, Duan X, Liang YY, et al. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 2006;125:915–928.

    Article  CAS  PubMed  Google Scholar 

  46. Schilling SH, Datto MB, Wang XF. A phosphatase controls the fate of receptor-regulated Smads. Cell 2006;125:838–840.

    Article  CAS  PubMed  Google Scholar 

  47. Chen HB, Shen J, Ip YT, Xu L. Identification of phosphatases for Smad in the BMP/DPP pathway. Genes Dev 2006;20:648–653.

    Article  CAS  PubMed  Google Scholar 

  48. Hill CS. Turning off Smads: identification of a Smad phosphatase. Dev Cell 2006;10:412–413.

    Article  CAS  PubMed  Google Scholar 

  49. Liu F. Smad3 phosphorylation by cyclin-dependent kinases. Cytokine Growth Factor Rev 2006;17:9–17.

    Article  PubMed  CAS  Google Scholar 

  50. Feng XH, Derynck R. A kinase subdomain of transforming growth factor-beta (TGF-beta) type I receptor determines the TGF-beta intracellular signaling specificity. EMBO J 1997;16:3912–3923.

    Article  CAS  PubMed  Google Scholar 

  51. Lo RS, Chen YG, Shi Y, Pavletich NP, Massagué J. The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-beta receptors. EMBO J 1998;17:996–1005.

    Article  CAS  PubMed  Google Scholar 

  52. Chen YG, Hata A, Lo RS, et al. Determinants of specificity in TGF-β signal transduction. Genes Dev 1998;12:2144–2152.

    Article  CAS  PubMed  Google Scholar 

  53. Huse M, Muir TW, Xu L, Chen YG, Kuriyan J, Massagué J. The TGF beta receptor activation process: an inhibitor-to substrate-binding switch. Mol Cell 2001;8:671–682.

    Article  CAS  PubMed  Google Scholar 

  54. Liu X, Yue J, Frey RS, Zhu Q, Mulder KM. Transforming growth factor beta signaling through Smad1 in human breast cancer cells. Cancer Res 1998;58:4752–4757.

    CAS  PubMed  Google Scholar 

  55. Shi Y, Hata A, Lo RS, Massagué J, Pavletich NP. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 1997;388:87–93.

    Article  CAS  PubMed  Google Scholar 

  56. Wu G, Chen YG, Ozdamar B, et al. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science 2000;287:92–97.

    Article  CAS  PubMed  Google Scholar 

  57. Wu JW, Hu M, Chai J, et al. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell 2001;8: 1277–1289.

    Article  CAS  PubMed  Google Scholar 

  58. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 1998;95:779–791.

    Article  CAS  PubMed  Google Scholar 

  59. Wu G, Chen YG, Ozdamar B, et al. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science 2000;287:92–97.

    Article  CAS  PubMed  Google Scholar 

  60. Qin BY, Lam SS, Correia JJ, Lin K. Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. Genes Dev 2002;16:1950–1963.

    Article  CAS  PubMed  Google Scholar 

  61. Moustakas A, Heldin C-H. From mono-to oligo-Smads: the heart of the matter in TGF-beta signal transduction. Genes Dev 2002;16:1867–1871.

    Article  CAS  PubMed  Google Scholar 

  62. Lin HK, Bergmann S, Pandolfi PP. Cytoplasmic PML function in TGF-beta signalling. Nature 2004;431:205–211.

    Article  CAS  PubMed  Google Scholar 

  63. Inman GJ, Nicolas FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 2002;10:283–294.

    Article  CAS  PubMed  Google Scholar 

  64. Xu L, Kang Y, Col S, Massagué J. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus. Mol Cell 2002;10:271–282.

    Article  CAS  PubMed  Google Scholar 

  65. Takekawa M, Maeda T, Saito H. Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J 1998;17:4744–4752.

    Article  CAS  PubMed  Google Scholar 

  66. Cheng A, Ross KE, Kaldis P, Solomon MJ. Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases. Genes Dev 1999;13:2946–2957.

    Article  CAS  PubMed  Google Scholar 

  67. Yoshizaki T, Maegawa H, Egawa K, et al. Protein phosphatase-2C alpha as a positive regulator of insulin sensitivity through direct activation of phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. J Biol Chem 2004;279:22,715–22,726.

    Article  CAS  PubMed  Google Scholar 

  68. Strovel ET, Wu D, Sussman DJ. Protein phosphatase 2C alpha dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem 2000;275:2399–2403.

    Article  CAS  PubMed  Google Scholar 

  69. Ofek P, Ben-Meir D, Kariv-Inbal Z, Oren M, Lavi S. Cell cycle regulation and p53 activation by protein phosphatase 2C alpha. J Biol Chem 2003;278:14,299–14,305.

    Article  CAS  PubMed  Google Scholar 

  70. Kretzschmar M, Doody J, Massagué J. Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature 1997;389:618–622.

    Article  CAS  PubMed  Google Scholar 

  71. Pera EM, Ikeda A, Eivers E, De Robertis EM. Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 2003;17:3023–3028.

    Article  CAS  PubMed  Google Scholar 

  72. De Robertis EM, Kuroda H. Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 2004;20:285–308.

    Article  PubMed  CAS  Google Scholar 

  73. Sater AK, El-Hodiri HM, Goswami M, et al. Evidence for antagonism of BMP-4 signals by MAP kinase during Xenopus axis determination and neural specification. Differentiation 2003;71:434–444.

    Article  CAS  PubMed  Google Scholar 

  74. Aubin J, Davy A, Soriano P. In vivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis. Genes Dev 2004;18: 1482–1494.

    Article  CAS  PubMed  Google Scholar 

  75. Massagué J. Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev 2003;17:2993–2997.

    Article  PubMed  CAS  Google Scholar 

  76. Grimm OH, Gurdon JB. Nuclear exclusion of Smad2 is a mechanism leading to loss of competence. Nat Cell Biol 2002;4:519–522.

    Article  CAS  PubMed  Google Scholar 

  77. Kretzschmar M, Doody J, Timokhina I, Massagué J. A mechanism of repression of TGF-β/Smad signaling by oncogenic Ras. Genes Dev 1999;13:804–816.

    Article  CAS  PubMed  Google Scholar 

  78. de Caestecker MP, Parks WT, Frank CJ, et al. Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases. Genes Dev 1998;12:1587–1592.

    Article  PubMed  Google Scholar 

  79. Blanchette F, Rivard N, Rudd P, Grondin F, Attisano L, Dubois CM. Cross-talk between the p42/p44 MAP kinase and Smad pathways in transforming growth factor β1-induced furin gene transactivation. J Biol Chem 2001;276:33,986–33,994.

    Article  CAS  PubMed  Google Scholar 

  80. Hayashida T, Decaestecker M, Schnaper HW. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-β-dependent responses in human mesangial cells. FASEB J 2003;17:1576–1578.

    CAS  PubMed  Google Scholar 

  81. Funaba M, Zimmerman CM, Mathews LS. Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase. J Biol Chem 2002;277:41,361–41,368.

    Article  CAS  PubMed  Google Scholar 

  82. Hu PP, Shen X, Huang D, Liu Y, Counter C, Wang XF. The MEK pathway is required for stimulation of p21(WAF1/CIP1) by transforming growth factor-β. J Biol Chem 1999;274: 35,381–35,387.

    Article  CAS  PubMed  Google Scholar 

  83. Lehmann K, Janda E, Pierreux CE, et al. Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 2000;14:2610–2622.

    Article  CAS  PubMed  Google Scholar 

  84. Yue J, Mulder KM. Requirement of Ras/MAPK pathway activation by transforming growth factor β for transforming growth factor β1 production in a Smad-dependent pathway. J Biol Chem 2000;275:30,765–30,773.

    Article  CAS  PubMed  Google Scholar 

  85. Mulder KM. Role of Ras and Mapks in TGFbeta signaling. Cytokine Growth Factor Rev 2000;11: 23–35.

    Article  CAS  PubMed  Google Scholar 

  86. Matsuura I, Wang G, He D, Liu F. Identification and characterization of ERK MAP kinase phosphorylation sites in Smad3. Biochemistry 2005;44:12,546–12,553.

    Article  CAS  PubMed  Google Scholar 

  87. Kfir S, Ehrlich M, Goldshmid A, Liu X, Kloog Y, Henis YI. Pathway-and expression level-dependent effects of oncogenic N-Ras: p27(Kip1) mislocalization by the Ral-GEF pathway and Erk-mediated interference with Smad signaling. Mol Cell Biol 2005;25:8239–8250.

    Article  CAS  PubMed  Google Scholar 

  88. McCormick F. Signalling networks that cause cancer. Trends Cell Biol 1999;9:M53–M56.

    Article  CAS  PubMed  Google Scholar 

  89. Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J. Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 2002;4:556–564.

    CAS  PubMed  Google Scholar 

  90. Murphy LO, Blenis J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci 2006;31:268–275.

    Article  CAS  PubMed  Google Scholar 

  91. Dunfield LD, Nachtigal MW. Inhibition of the antiproliferative effect of TGFβ by EGF in primary human ovarian cancer cells. Oncogene 2003;22:4745–4751.

    Article  CAS  PubMed  Google Scholar 

  92. Brown JD, DiChiara MR, Anderson KR, Gimbrone MA Jr, Topper JN. MEKK-1, a component of the stress (stress-activated protein kinase/c-Jun N-terminal kinase) pathway, can selectively activate Smad2-mediated transcriptional activation in endothelial cells. J Biol Chem 1999;274:8797–8805.

    Article  CAS  PubMed  Google Scholar 

  93. Engel ME, McDonnell MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor β-mediated transcription. J Biol Chem 1999;274:37,413–37,420.

    Article  CAS  PubMed  Google Scholar 

  94. Mori S, Matsuzaki K, Yoshida K, et al. TGF-β and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions. Oncogene 2004;23:7416–7429.

    Article  CAS  PubMed  Google Scholar 

  95. Bain J, McLauchlan H, Elliott M, Cohen P. The specificities of protein kinase inhibitors: an update. Biochem J 2003;371:199–204.

    Article  CAS  PubMed  Google Scholar 

  96. Yamagata H, Matsuzaki K, Mori S, et al. Acceleration of Smad2 and Smad3 phosphorylation via c-Jun NH(2)-terminal kinase during human colorectal carcinogenesis. Cancer Res 2005;65:157–165.

    CAS  PubMed  Google Scholar 

  97. Yoshida K, Matsuzaki K, Mori S, et al. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am J Pathol 2005;166:1029–1039.

    CAS  PubMed  Google Scholar 

  98. Matsuzaki K, Okazaki K. Transforming growth factor-beta during carcinogenesis: the shift from epithelial to mesenchymal signaling. J Gastroenterol 2006;41:295–303.

    Article  CAS  PubMed  Google Scholar 

  99. Matsuzaki K. Smad3 phosphoisoform-mediated signaling during sporadic human colorectal carcinogenesis. Histol Histopathol 2006;21:645–662.

    CAS  PubMed  Google Scholar 

  100. Ventura JJ, Kennedy NJ, Flavell RA, Davis RJ. JNK regulates autocrine expression of TGF-beta1. Mol Cell 2004;15:269–278.

    Article  CAS  PubMed  Google Scholar 

  101. Pardoux C, Derynck R. JNK regulates expression and autocrine signaling of TGF-beta1. Mol Cell 2004;15:170–171.

    Article  CAS  PubMed  Google Scholar 

  102. Yamaguchi K, Shirakabe K, Shibuya H, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995;270:2008–2011.

    Article  CAS  PubMed  Google Scholar 

  103. Yu L, Hebert MC, Zhang YE. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J 2002;21:3749–3759.

    Article  CAS  PubMed  Google Scholar 

  104. Takekawa M, Tatebayashi K, Itoh F, Adachi M, Imai K, Saito H. Smad-dependent GADD45beta expression mediates delayed activation of p38 MAP kinase by TGF-beta. EMBO J 2002;21:6473–6482.

    Article  CAS  PubMed  Google Scholar 

  105. Kamaraju AK, Roberts AB. Role of Rho/ROCK and p38 MAP kinase pathways in TGF-β-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J Biol Chem 2004;280: 1024–1036.

    Article  PubMed  CAS  Google Scholar 

  106. Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005;15:11–18.

    Article  CAS  PubMed  Google Scholar 

  107. Zohn IE, Li Y, Skolnik EY, Anderson KV, Han J, Niswander L. p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation. Cell 2006;125:957–969.

    Article  CAS  PubMed  Google Scholar 

  108. Yang YA, Zhang GM, Feigenbaum L, Zhang YE. Smad3 reduces susceptibility to hepatocarcinoma by sensitizing hepatocytes to apoptosis through downregulation of Bcl-2. Cancer Cell 2006;9: 445–457.

    Article  CAS  PubMed  Google Scholar 

  109. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003;112:1486–1494.

    CAS  PubMed  Google Scholar 

  110. Saika S, Kono-Saika S, Ohnishi Y, et al. Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am J Pathol 2004;164:651–663.

    CAS  PubMed  Google Scholar 

  111. Roberts AB, Tian F, Byfield SD, et al. Smad3 is key to TGF-β-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev 2006;17:19–27.

    Article  CAS  PubMed  Google Scholar 

  112. Ju W, Ogawa A, Heyer J, et al. Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol Cell Biol 2006;26:654–667.

    Article  CAS  PubMed  Google Scholar 

  113. Furukawa F, Matsuzaki K, Mori S, et al. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology 2003;38:879–889.

    CAS  PubMed  Google Scholar 

  114. Massagué J, Blain SW, Lo RS. TGF-β signaling in growth control, cancer, and heritable disorders. Cell 2000;103:295–309.

    Article  PubMed  Google Scholar 

  115. Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003;3:807–821.

    Article  CAS  PubMed  Google Scholar 

  116. Massagué J. G1 cell-cycle control and cancer. Nature 2004;432:298–306.

    Article  PubMed  CAS  Google Scholar 

  117. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13:1501–1512.

    Article  CAS  PubMed  Google Scholar 

  118. Pietenpol JA, Stein RW, Moran E, et al. TGF-β1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 1990;61: 777–785.

    Article  CAS  PubMed  Google Scholar 

  119. Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 1994;371:257–261.

    Article  CAS  PubMed  Google Scholar 

  120. Li JM, Nichols MA, Chandrasekharan S, Xiong Y, Wang X-F. Transforming growth factor β activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J Biol Chem 1995;270:26,750–26,753.

    Article  CAS  PubMed  Google Scholar 

  121. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang X-F. Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA 1995;92:5545–5549.

    Article  CAS  PubMed  Google Scholar 

  122. Kang Y, Chen CR, Massagué J. A self-enabling TGF-β response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 2003;11: 915–926.

    Article  CAS  PubMed  Google Scholar 

  123. Iavarone A, Massagué J. E2F and histone deacetylase mediate transforming growth factor β repression of cdc25A during keratinocyte cell cycle arrest. Mol Cell Biol 1999;19:916–922.

    CAS  PubMed  Google Scholar 

  124. Bhowmick NA, Ghiassi M, Aakre M, Brown K, Singh V, Moses HL. TGF-β-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc Natl Acad Sci USA 2003;100:15,548–15,553.

    Article  CAS  PubMed  Google Scholar 

  125. Ray D, Terao Y, Nimbalkar D, et al. Transforming growth factor β facilitates β-TrCP-mediated degradation of Cdc25A in a Smad3-dependent manner. Mol Cell Biol 2005;25:3338–3347.

    Article  CAS  PubMed  Google Scholar 

  126. Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y, Wang XF. Targeted disruption of Smad3 reveals an essential role in transforming growth factor β-mediated signal transduction. Mol Cell Biol 1999;19:2495–2504.

    CAS  PubMed  Google Scholar 

  127. Yang X, Letterio JJ, Lechleider RJ, et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J 1999;18:1280–1291.

    Article  CAS  PubMed  Google Scholar 

  128. Ashcroft GS, Yang X, Glick AB, et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biol 1999;1:260–266.

    Article  CAS  PubMed  Google Scholar 

  129. Rich JN, Zhang M, Datto MB, Bigner DD, Wang X-F. Transforming growth factor-β-mediated p15INK4B induction and growth inhibition in astrocytes is Smad3-dependent and a pathway prominently altered in human glioma cell lines. J Biol Chem 1999;274:35,053–35,058.

    Article  CAS  PubMed  Google Scholar 

  130. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nat 2004;430:226–231.

    Article  CAS  Google Scholar 

  131. Liu F, Matsuura I. Inhibition of Smad antiproliferative function by CDK phosphorylation. Cell Cycle 2005;4:63–66.

    CAS  PubMed  Google Scholar 

  132. Chen CR, Kang Y, Massagué J. Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor growth β arrest program. Proc Natl Acad Sci USA 2001:98: 992–999.

    Article  CAS  PubMed  Google Scholar 

  133. Yagi K, Furuhashi M, Aoki H, et al. c-myc is a downstream target of the Smad pathway. J Biol Chem 2002;277:854–861.

    Article  CAS  PubMed  Google Scholar 

  134. Chen C-R, Kang Y, Siegel PM, Massagué J. E2F4/5 and p107 as Smad cofactors linking the TGF-β receptor to c-myc repression. Cell 2002;110:19–32.

    Article  CAS  PubMed  Google Scholar 

  135. Frederick JP, Liberati NT, Waddell DS, Shi Y, Wang XF. Transforming growth factor β-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol 2004;24:2546–2559.

    Article  CAS  PubMed  Google Scholar 

  136. Staller P, Peukert K, Kiermaier A, et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 2001;3:392–399.

    Article  CAS  PubMed  Google Scholar 

  137. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J. TGF-β influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 2001;3:400–408.

    Article  CAS  PubMed  Google Scholar 

  138. Claassen GF, Hann SR. A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor β-induced cell-cycle arrest. Proc Natl Acad Sci USA 2000;97:9498–9503.

    Article  CAS  PubMed  Google Scholar 

  139. Seoane J, Le HV, Massagué J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 2002;419:729–734.

    Article  CAS  PubMed  Google Scholar 

  140. Feng XH, Liang YY, Liang M, Zhai W, Lin X. Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-β-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell 2002;9:133–143.

    Article  CAS  PubMed  Google Scholar 

  141. Feng X-H, Lin X, Derynck R. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15Ink4B transcription in response to TGF-β. EMBO J 2000;19:5178–5193.

    Article  CAS  PubMed  Google Scholar 

  142. Moustakas A, Kardassis D. Regulation of the human p21/WAF1/Cip1 promoter in hepatic cells by functional interaction between Sp1 and Smad family members. Proc Natl Acad Sci USA 1998;95:6733–6738.

    Article  CAS  PubMed  Google Scholar 

  143. Pardali K, Kurisaki A, Moren A, ten Dijke P, Kardassis D, Moustakas A. Role of Smad proteins and transcription factor Sp1 in p21Waf1/Cip1 regulation by transforming growth factor-β. J Biol Chem 2000;275:29,244–29,256.

    Article  CAS  PubMed  Google Scholar 

  144. Seoane J, Le HV, Shen L, Anderson SA, Massagué J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004;117:211–223.

    Article  CAS  PubMed  Google Scholar 

  145. Chi XZ, Yang JO, Lee KY, et al. RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor β-activated SMAD. Mol Cell Biol 2005;25:8097–8107.

    Article  CAS  PubMed  Google Scholar 

  146. Sherr CJ. Cancer cell cycles. Science 1996;274:1672–1677.

    Article  CAS  PubMed  Google Scholar 

  147. Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res 1996;68:67–108.

    Article  CAS  PubMed  Google Scholar 

  148. Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2002;2:103–112.

    Article  CAS  PubMed  Google Scholar 

  149. Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 2002;1602:73–87.

    CAS  PubMed  Google Scholar 

  150. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995;81:323–330.

    Article  CAS  PubMed  Google Scholar 

  151. Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet 2001;29:117–129.

    Article  CAS  PubMed  Google Scholar 

  152. Roberts AB, Wakefield LM. The two faces of transforming growth factor β in carcinogenesis. Proc Natl Acad Sci USA 2003;100:8621–8623.

    Article  CAS  PubMed  Google Scholar 

  153. Miyazono K, Suzuki H, Imamura T. Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Sci 2003;94:230–234.

    Article  CAS  PubMed  Google Scholar 

  154. Tian F, DaCosta Byfield S, Parks WT, et al. Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2003;63:8284–8292.

    CAS  PubMed  Google Scholar 

  155. Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A. Inactivation of Smad-transforming growth factor β signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol Cell Biol 2000;20: 8103–8111.

    Article  CAS  PubMed  Google Scholar 

  156. Yakymovych I, ten Dijke P, Heldin C-H, Souchelnytskyi S. Regulation of Smad signaling by protein kinase C. FASEB J 2001;15:553–555.

    CAS  PubMed  Google Scholar 

  157. Roelen BA, Cohen OS, Raychowdhury MK, et al. Phosphorylation of threonine 276 in Smad4 is involved in transforming growth factor-beta-induced nuclear accumulation. Am J Physiol Cell Physiol 2003;285:C823–C830.

    CAS  PubMed  Google Scholar 

  158. Pulaski L, Landstrom M, Heldin C-H, Souchelnytskyi S. Phosphorylation of Smad7 at Ser-249 does not interfere with its inhibitory role in transforming growth factor-beta-dependent signaling but affects Smad7-dependent transcriptional activation. J Biol Chem 2001;276:14,344–14,349.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Liu, F. (2008). Regulation of Smad Activity by Phosphorylation. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics