Skip to main content

Cooperation Between TGF-β and Wnt Pathway Components in Regulating Mesenchymal Stem Cell Function

  • Chapter
Book cover Transforming Growth Factor-β in Cancer Therapy, Volume I

Abstract

Stem cells have become a subject of intensive research based on their potential for varied clinical applications. One such stem cell, the mesenchymal stem cell, has attracted attention owing to its ability to differentiate into several mesenchymal lineages such as bone, cartilage, and fat. The molecular pathways which regulate the functions of mesenchymal stem cells are not well-characterized, but the TGF-β and Wnt signaling pathways are thought to play critical roles. Here, we describe the importance of TGF-β and Wnt signaling pathway crosstalk in governing mesenchymal stem cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143–147.

    Article  CAS  PubMed  Google Scholar 

  2. Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 2003;5(1):32–45.

    Article  CAS  PubMed  Google Scholar 

  3. Lee OK, Coathup MJ, Goodship AE, Blunn GW. Use of mesenchymal stem cells to facilitate bone regeneration in normal and chemotherapy-treated rats. Tissue Eng 2005;11(11–12):1727–1735.

    Article  CAS  PubMed  Google Scholar 

  4. Koc ON, Gerson SL, Cooper BW, et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000;18(2):307–316.

    CAS  PubMed  Google Scholar 

  5. Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005;65(8):3307–3318.

    CAS  PubMed  Google Scholar 

  6. Studeny M, Marini FC, Dembinski JL, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004;96(21):1593–1603.

    CAS  PubMed  Google Scholar 

  7. Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003;3(11):807–821.

    Article  CAS  PubMed  Google Scholar 

  8. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005;434(7035):843–850.

    Article  CAS  PubMed  Google Scholar 

  9. Bonewald LF, Mundy GR. Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res 1990;(250):261–276.

    PubMed  Google Scholar 

  10. Cassiede P, Dennis JE, Ma F, Caplan AI. Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF-betal or PDGF-BB as assayed in vivo and in vitro. J Bone Miner Res 1996;11(9):1264–1273.

    Article  CAS  PubMed  Google Scholar 

  11. Borton AJ, Frederick JP, Datto MB, Wang X-F, Weinstein RS. The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. J Bone Miner Res 2001;16(10):1754–1764.

    Article  CAS  PubMed  Google Scholar 

  12. Alliston T, Choy L, Ducy P, Karsenty G, Derynck R. TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 2001;20(9):2254–2272.

    Article  CAS  PubMed  Google Scholar 

  13. Choy L, Skillington J, Derynck R. Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. J Cell Biol 2000;149(3):667–682.

    Article  CAS  PubMed  Google Scholar 

  14. Liu D, Black BL, Derynck R. TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 2001;15(22):2950–2966.

    Article  CAS  PubMed  Google Scholar 

  15. Mishra L, Shetty K, Tang Y, Stuart A, Byers SW. The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 2005;24(37):5775–5789.

    Article  CAS  PubMed  Google Scholar 

  16. de Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 2004;34(5):818–826.

    Article  PubMed  CAS  Google Scholar 

  17. de Boer J, Wang HJ, Van Blitterswijk C. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 2004;10(3–4):393–401.

    Article  PubMed  CAS  Google Scholar 

  18. Boland GM, Perkins G, Hall DJ, Tuan RS. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 2004;93(6):1210–1230.

    Article  CAS  PubMed  Google Scholar 

  19. Barth AI, Stewart DB, Nelson WJ. I cell factor-activated transcription is not sufficient to induce anchorage-independent growth of epithelial cells expressing mutant beta-catenin. Proc Natl Acad Sci USA 1999;96(9):4947–4952.

    Article  CAS  PubMed  Google Scholar 

  20. Jian H, Shen X, Liu I, Semenov M, He X, Wang X-F. Smad3-dependent nuclear translocation of beta-catenin is required for TGF-β1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev 2006;20(6):666–674.

    Article  CAS  PubMed  Google Scholar 

  21. Lei S, Dubeykovskiy A, Chakladar A, Wojtukiewicz L, Wang TC. The murine gastrin promoter is synergistically activated by transforming growth factor-beta/Smad and Wnt signaling pathways. J Biol Chem 2004;279(41):42,492–42,502.

    Article  CAS  PubMed  Google Scholar 

  22. Nishita M, Hashimoto MK, Ogata S, et al. Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann’s organizer. Nature 2000;403(6771):781–785.

    Article  CAS  PubMed  Google Scholar 

  23. Labbe E, Letamendia A, Attisano L. Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and Wnt pathways. Proc Natl Acad Sci USA 2000;97(15):8358–8363.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res 2004;19(3):463–470.

    Article  CAS  PubMed  Google Scholar 

  25. Tuli R, Tuli S, Nandi S, et al. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 2003;278(42):41,227–41,236.

    Article  CAS  PubMed  Google Scholar 

  26. Furuhashi M, Yagi K, Yamamoto H, et al. Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway. Mol Cell Biol 2001;21(15):5132–5141.

    Article  CAS  PubMed  Google Scholar 

  27. Hsieh JC, Rattner A, Smallwood PM, Nathans J. Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc Natl Acad Sci USA 1999;96(7):3546–3551.

    Article  CAS  PubMed  Google Scholar 

  28. Hino S, Michiue T, Asashima M, Kikuchi A. Casein kinase I epsilon enhances the binding of Dv1-1 to Frat-1 and is essential for Wnt-3a-induced accumulation of beta-catenin. J Biol Chem 2003;278(16): 14,066–14,073.

    Article  CAS  PubMed  Google Scholar 

  29. Uhl M, Aulwurm S, Wischhusen J, et al. SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 2004;64(21):7954–7961.

    Article  CAS  PubMed  Google Scholar 

  30. Waddell DS, Liberati NT, Guo X, Frederick JP, Wang X-F. Casein kinase Iepsilon plays a functional role in the transforming growth factor-beta signaling pathway. J Biol Chem 2004;279(28): 29,236–29,246.

    Article  CAS  PubMed  Google Scholar 

  31. Hu MC, Rosenblum ND. Smad1, beta-catenin and Tcf4 associate in a molecular complex with the Myc promoter in dysplastic renal tissue and cooperate to control Myc transcription. Development 2005;132(1):215–225.

    Article  CAS  PubMed  Google Scholar 

  32. Edlund S, Lee SY, Grimsby S, et al. Interaction between Smad7 and beta-catenin: importance for transforming growth factor β-induced apoptosis. Mol Cell Biol 2005;25(4):1475–1488.

    Article  CAS  PubMed  Google Scholar 

  33. Kang Y, Chen CR, Massagué J. A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 2003;11(4):915–926.

    Article  CAS  PubMed  Google Scholar 

  34. Chen CR, Kang Y, Siegel PM, Massagué J. E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 2002;110(1):19–32.

    Article  CAS  PubMed  Google Scholar 

  35. Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M. A new nuclear component of the Wnt signalling pathway. Nat Cell Biol 2002;4(5):367–373.

    Article  CAS  PubMed  Google Scholar 

  36. van de Wetering M, Oving I, Muncan V, et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 2003;4(6):609–615.

    Article  PubMed  CAS  Google Scholar 

  37. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004;20:781–810.

    Article  CAS  PubMed  Google Scholar 

  38. Hsu SC, Galceran J, Grosschedl R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with beta-catenin. Mol Cell Biol 1998;18(8):4807–4818.

    CAS  PubMed  Google Scholar 

  39. Prieve MG, Guttridge KL, Munguia JE, Waterman ML. The nuclear localization signal of lymphoid enhancer factor-1 is recognized by two differentially expressed Srp1-nuclear localization sequence receptor proteins. J Biol Chem 1996;271(13):7654–7658.

    Article  CAS  PubMed  Google Scholar 

  40. Cheon SS, Wei Q, Gurung A, et al. beta-catenin regulates wound size and mediates the effect of TGF-β in cutaneous healing. FASEB J 2006;20(6):692–701.

    Article  CAS  PubMed  Google Scholar 

  41. Li TF, Chen D, Wu Q, et al. TGF-beta stimulates cyclin D1 expression through activation of betacatenin signaling in chondrocytes. J Biol Chem 2006;281(30):21,296–21,304.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Liu, I.M., Schilling, S.H., Wang, XF. (2008). Cooperation Between TGF-β and Wnt Pathway Components in Regulating Mesenchymal Stem Cell Function. In: Transforming Growth Factor-β in Cancer Therapy, Volume I. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-292-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-292-2_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-714-3

  • Online ISBN: 978-1-59745-292-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics