Skip to main content

Somatic Alterations in Prostate Cancer Progression

  • Chapter
Prostate Cancer

Part of the book series: Contemporary Cancer Research ((CCR))

  • 1055 Accesses

Abstract

The chromosomal aberrations typical for prostate cancer have been quite well characterized by using molecular genetic tools, such as the analysis of loss of heterozygosity (LOH), comparative genomic hybridization (CGH), and the array-based CGH (aCGH). Consequently, the major challenge during recent years has been the identification of the individual genes targeted by these chromosomal alterations. Although some target genes, including the androgen receptor gene (AR) at Xq and the PTEN tumor suppressor gene at the 10q, are already known, most target genes are yet to be discovered. Overall, only a few genes have been found to be mutated in prostate cancer. The most common alterations of individual genes, detected so far, are hypermethylation of the GSTP1 gene, amplification of the AR gene, and mutations in the TP53 and PTEN genes. Because genetic alterations seem to point out the weak spots of cancer and have, thus, been used as markers for druggable targets in many other cancer types, it would be extremely important to carry out systematic mutation screening programs to find more genes that are frequently mutated also in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeMarzo, A. M., Nelson, W. G., Isaacs, W. B., and Epstein, J. I. (2003). Pathological and molecular aspects of prostate cancer. Lancet 361, 955–964.

    Article  PubMed  CAS  Google Scholar 

  2. Arnold, J. T. and Isaacs, J. T. (2002). Mechanisms involved in the progression of androgen-independent prostate cancers: it is not only the cancer cell’s fault. Endocr. Relat. Cancer 9, 61–73.

    Article  PubMed  CAS  Google Scholar 

  3. Sandberg, A. A. (1992). Chromosomal abnormalities and related events in prostate cancer. Hum. Pathol. 23, 368–380.

    Article  PubMed  CAS  Google Scholar 

  4. Kunimi, K., Bergerheim, U. S., Larsson, I. L., Ekman,.P, and Collins, V. P. (1991). Allelotyping of human prostatic adenocarcinoma. Genomics 11, 530–536.

    Article  PubMed  CAS  Google Scholar 

  5. Cunningham, J. M., Shan, A., Wick, M. J., et al. (1996). Allelic imbalance and microsatellite instability in prostatic adenocarcinoma. Cancer Res. 56, 4475–4482.

    PubMed  CAS  Google Scholar 

  6. Dumur, C. I., Dechsukhum, C., Ware, J. L., et al. (2003). Genome-wide detection of LOH in prostate cancer using human SNP microarray technology. Genomics 81, 260–269.

    Article  PubMed  CAS  Google Scholar 

  7. Lieberfarb, M. E., Lin, M., Lechpammer, M., et al. (2003). Genome-wide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP. Cancer Res. 63, 4781–4785.

    PubMed  CAS  Google Scholar 

  8. Karan, D., Lin, M. F., Johansson, S. L., and Batra, S. K. (2003). Current status of the molecular genetics of human prostatic adenocarcinomas. Int. J. Cancer. 103, 285–293.

    Article  PubMed  CAS  Google Scholar 

  9. Bova, G. S., Carter, B. S., Bussemakers, M. J., et al. (1993). Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res. 53, 3869–3873.

    PubMed  CAS  Google Scholar 

  10. Kagan, J., Stein, J., Babaian, R. J., et al. (1995). Homozygous deletions at 8p22 and 8p21 in prostate cancer implicate these regions as the sites for candidate tumor suppressor genes. Oncogene 11, 2121–2126.

    PubMed  CAS  Google Scholar 

  11. Oba, K., Matsuyama, H., Yoshihiro, S., et al. (2001). Two putative tumor suppressor genes on chromosome arm 8p may play different roles in prostate cancer. Cancer Genet. Cytogenet. 124, 20–26.

    Article  PubMed  CAS  Google Scholar 

  12. Emmert-Buck, M. R., Vocke, C. D., Pozzatti, R. O., et al. (1995). Allelic loss on chromosome 8p12-21 in microdissected prostatic intraepithelial neoplasia. Cancer Res. 55, 2959–2962.

    PubMed  CAS  Google Scholar 

  13. He, W. W., Sciavolino, P. J., Wing, J., et al. (1997). A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43, 69–77.

    Article  PubMed  CAS  Google Scholar 

  14. Voeller, H. J., Augustus, M., Madike, V., Bova, G. S., Carter, K. C., and Gelmann, E. P. (1997). Coding region of NKX3.1, a prostate-specific homeobox gene on 8p21, is not mutated in human prostate cancers. Cancer Res. 57, 4455–4459.

    PubMed  CAS  Google Scholar 

  15. Abdulkadir, S. A., Magee, J. A., Peters, T. J., et al. (2002). Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Mol. Cell. Biol. 22, 1495–1503.

    Article  PubMed  CAS  Google Scholar 

  16. Bhatia-Gaur, R., Donjacour, A. A., Sciavolino, P. J., et al. (1999). Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 13, 966–977.

    PubMed  CAS  Google Scholar 

  17. Xu, J., Zheng, S. L., Komiya, A., et al. (2002). Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat. Genet. 32, 321–325.

    Article  PubMed  CAS  Google Scholar 

  18. Xu, J., Zheng, S. L., Komiya, A., et al. (2003). Common sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Am. J. Hum. Genet. 72, 208–212.

    Article  PubMed  CAS  Google Scholar 

  19. Miller, D. C., Zheng, S. L., Dunn, R. L., et al. (2003). Germ-line mutations of the macrophage scavenger receptor 1 gene: association with prostate cancer risk in African-American men. Cancer Res. 63, 3486–3489.

    PubMed  CAS  Google Scholar 

  20. Nupponen, N. N., Wallen, M. J., Ponciano, D., et al. (2004). Mutational analysis of susceptibility genes RNASEL/ HPC1, ELAC2/HPC2, and MSR1 in sporadic prostate cancer. Genes Chromosomes Cancer 39, 119–125.

    Article  PubMed  CAS  Google Scholar 

  21. Li, C., Berx, G., Larsson, C., et al. (1999). Distinct deleted regions on chromosome segment 16q23-24 associated with metastases in prostate cancer. Genes Chromosomes Cancer 24, 175–182.

    Article  PubMed  CAS  Google Scholar 

  22. Elo, J. P., Harkonen, P., Kyllonen, A. P., et al. (1997). Loss of heterozygosity at 16q24.1-q24.2 is significantly associated with metastatic and aggressive behavior of prostate cancer. Cancer Res. 57, 3356–3359.

    PubMed  CAS  Google Scholar 

  23. Elo, J. P., Harkonen, P., Kyllonen, A. P., Lukkarinen, O., and Vihko, P. (1999). Three independently deleted regions at chromosome arm 16q in human prostate cancer: allelic loss at 16q24.1-q24.2 is associated with aggressive behaviour of the disease, recurrent growth, poor differentiation of the tumour and poor prognosis for the patient. Br. J. Cancer 79, 156–160.

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki, H., Komiya, A., Emi, M., et al. (1996). Three distinct commonly deleted regions of chromosome arm 16q in human primary and metastatic prostate cancers. Genes Chromosomes Cancer 17, 225–233.

    Article  PubMed  CAS  Google Scholar 

  25. Latil, A., Cussenot, O., Fournier, G., Driouch, K., and Lidereau, R. (1997). Loss of heterozygosity at chromosome 16q in prostate adenocarcinoma: identification of three independent regions. Cancer Res. 57, 1058–1062.

    PubMed  CAS  Google Scholar 

  26. Frixen, U. H., Behrens, J., Sachs, M., et al. (1991). E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J. Cell. Biol. 113, 173–185.

    Article  PubMed  CAS  Google Scholar 

  27. Umbas, R., Schalken, J. A., Aalders, T. W., et al. (1992). Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 52, 5104–5109.

    PubMed  CAS  Google Scholar 

  28. Umbas, R., Isaacs, W. B., Bringuier, P. P., et al. (1994). Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res. 54, 3929–3933.

    PubMed  CAS  Google Scholar 

  29. Richmond, P. J., Karayiannakis, A. J., Nagafuchi, A., Kaisary, A. V., and Pignatelli, M. (1997). Aberrant E-cadherin and alpha-catenin expression in prostate cancer: correlation with patient survival. Cancer Res. 57, 3189–3193.

    PubMed  CAS  Google Scholar 

  30. Rubin, M. A., Mucci, N. R., Figurski, J., Fecko, A., Pienta, K. J., and Day, M. L. (2001). E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology. Hum. Pathol. 32, 690–697.

    Article  PubMed  CAS  Google Scholar 

  31. Murant, S. J., Rolley, N., Phillips, S. M., Stower, M., and Maitland, N. J. (2000). Allelic imbalance within the Ecadherin gene is an infrequent event in prostate carcinogenesis. Genes Chromosomes Cancer 27, 104–109.

    Article  PubMed  CAS  Google Scholar 

  32. Sun, X., Frierson, H. F., Chen, C., et al. (2005). Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat. Genet. 37, 407–412.

    Article  PubMed  CAS  Google Scholar 

  33. Hyytinen, E. R., Frierson, H. F. Jr., Boyd, J. C., Chung, L. W., and Dong, J. T. (1999). Three distinct regions of allelic loss at 13q14, 13q21-22, and 13q33 in prostate cancer. Genes Chromosomes Cancer 25, 108–114.

    Article  PubMed  CAS  Google Scholar 

  34. Gray, I. C., Phillips, S. M., Lee, S. J., Neoptolemos, J. P., Weissenbach, J., and Spurr, N. K. (1995). Loss of the chromosomal region 10q23-25 in prostate cancer. Cancer Res. 55, 4800–4803.

    PubMed  CAS  Google Scholar 

  35. Lacombe, L., Orlow, I., Reuter, V. E., et al. (1996). Microsatellite instability and deletion analysis of chromosome 10 in human prostate cancer. Int. J. Cancer 69, 110–113.

    Article  PubMed  CAS  Google Scholar 

  36. Li, J., Yen, C., Liaw, D., et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947.

    Article  PubMed  CAS  Google Scholar 

  37. Steck, P. A., Pershouse, M. A., Jasser, S. A., et al. (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15, 356–362.

    Article  PubMed  CAS  Google Scholar 

  38. Li, D. M. and Sun H. (1997). TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res. 57, 2124–2129.

    PubMed  CAS  Google Scholar 

  39. Kawamata, N., Park, D., Wilczynski, S., Yokota, J., and Koeffler, H. P. (1996). Point mutations of the Mxil gene are rare in prostate cancers. Prostate 29, 191–193.

    Article  PubMed  CAS  Google Scholar 

  40. Kuczyk, M. A., Serth, J., Bokemeyer, C., et al. (1998). The MXI1 tumor suppressor gene is not mutated in primary prostate cancer. Oncol. Rep. 5, 213–216.

    PubMed  CAS  Google Scholar 

  41. Zenklusen, J. C., Thompson, J. C., Troncoso, P., Kagan, J., and Conti, C. J. (1994). Loss of heterozygosity in human primary prostate carcinomas: a possible tumor suppressor gene at 7q31.1. Cancer Res. 54, 6370–6373.

    PubMed  CAS  Google Scholar 

  42. Latil, A., Cussenot, O., Fournier, G., Baron, J. C., and Lidereau, R. (1995). Loss of heterozygosity at 7q31 is a frequent and early event in prostate cancer. Clin. Cancer Res. 1, 1385–1389.

    PubMed  CAS  Google Scholar 

  43. Takahashi, S., Shan, A. L., Ritland, S. R., et al. (1995). Frequent loss of heterozygosity at 7q31.1 in primary prostate cancer is associated with tumor aggressiveness and progression. Cancer Res. 55, 4114–4119.

    PubMed  CAS  Google Scholar 

  44. Zenklusen, J. C., Hodges, L. C., LaCava, M., Green, E. D., and Conti, C. J. (2000). Definitive functional evidence for a tumor suppressor gene on human chromosome 7q31.1 neighboring the Fra7G site. Oncogene 19, 1729–1733.

    Article  PubMed  CAS  Google Scholar 

  45. Alcaraz, A., Takahashi, S., Brown, J. A., et al. (1994). Aneuploidy and aneusomy of chromosome 7 detected by fluorescence in situ hybridization are markers of poor prognosis in prostate cancer. Cancer Res. 54, 3998–4002.

    PubMed  CAS  Google Scholar 

  46. Visakorpi, T., Hyytinen, E., Kallioniemi, A., Isola, J., and Kallioniemi, O. P. (1994). Sensitive detection of chromosome copy number aberrations in prostate cancer by fluorescence in situ hybridization. Am. J. Pathol. 145, 624–630.

    PubMed  CAS  Google Scholar 

  47. Bandyk, M. G., Zhao, L., Troncoso, P., et al. (1994). Trisomy 7: a potential cytogenetic marker of human prostate cancer progression. Genes Chromosomes Cancer 9, 19–27.

    Article  PubMed  CAS  Google Scholar 

  48. Visakorpi, T., Kallioniemi, A. H., Syvanen, A. C., et al. (1995). Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res. 55, 342–347.

    PubMed  CAS  Google Scholar 

  49. Wang, R. Y., Troncoso, P., Palmer, J. L., El-Naggar, A. K., and Liang, J. C. (1996). Trisomy 7 by dual-color fluorescence in situ hybridization: a potential biological marker for prostate cancer progression. Clin. Cancer Res. 2, 1553–1558.

    PubMed  CAS  Google Scholar 

  50. Cui, J., Deubler, D. A., Rohr, L. R., et al. (1998). Chromosome 7 abnormalities in prostate cancer detected by dualcolor fluorescence in situ hybridization. Cancer Genet. Cytogenet. 107, 51–60.

    Article  PubMed  CAS  Google Scholar 

  51. Alers, J. C., Krijtenburg, P. J., Vis, A. N., et al. (2001). Molecular cytogenetic analysis of prostatic adenocarcinomas from screening studies: early cancers may contain aggressive genetic features. Am. J. Pathol. 158, 399–406.

    PubMed  CAS  Google Scholar 

  52. Nupponen, N. N., Kakkola, L., Koivisto, P., and Visakorpi, T. (1998). Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am. J. Pathol. 153, 141–148.

    PubMed  CAS  Google Scholar 

  53. Galbiati, F., Volonte, D., Engelman, J. A., et al. (1998). Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J. 17, 6633–6648.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang, W., Razani, B., Altschuler, Y., et al. (2000). Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J. Biol. Chem. 275, 20717–20725.

    Article  PubMed  CAS  Google Scholar 

  55. Bender, F. C., Reymond, M. A., Bron, C., and Quest, A. F. (2000). Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res. 60, 5870–5878.

    PubMed  CAS  Google Scholar 

  56. Wiechen, K., Diatchenko, L., Agoulnik, A., et al. (2001). Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am. J. Pathol. 159, 1635–1643.

    PubMed  CAS  Google Scholar 

  57. Wiechen, K., Sers, C., Agoulnik, A., et al. (2001). Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. Am. J. Pathol. 158, 833–839.

    PubMed  CAS  Google Scholar 

  58. Yang, G., Truong, L. D., Wheeler, T. M., and Thompson, T. C. (1999). Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res. 59, 5719–5723.

    PubMed  CAS  Google Scholar 

  59. Nasu, Y., Timme, T. L., Yang, G., et al. (1998). Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nat. Med. 4, 1062–1064.

    Article  PubMed  CAS  Google Scholar 

  60. Tahir, S. A., Yang, G., Ebara, S., et al. (2001). Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res. 61, 3882–3885.

    PubMed  CAS  Google Scholar 

  61. Li, L., Yang, G., Ebara, S., et al. (2001). Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res. 61, 4386–4392.

    PubMed  CAS  Google Scholar 

  62. Cooney, K. A., Wetzel, J. C., Consolino, C. M., and Wojno, K. J. (1996). Identification and characterization of proximal 6q deletions in prostate cancer. Cancer Res. 56, 4150–4153.

    PubMed  CAS  Google Scholar 

  63. Srikantan, V., Sesterhenn, I. A., Davis, L., et al. (1999). Allelic loss on chromosome 6Q in primary prostate cancer. Int. J. Cancer. 84, 331–335.

    Article  PubMed  CAS  Google Scholar 

  64. Hyytinen, E. R., Saadut, R., Chen, C., et al. (2002). Defining the region(s) of deletion at 6q16-q22 in human prostate cancer. Genes Chromosomes Cancer 34, 306–312.

    Article  PubMed  CAS  Google Scholar 

  65. Konishi, N., Nakamura, M., Kishi, M., et al. (2003). Genetic mapping of allelic loss on chromosome 6q within heterogeneous prostate carcinoma. Cancer Sci. 94, 764–768.

    Article  PubMed  CAS  Google Scholar 

  66. Ueda, T., Komiya, A., Emi, M., et al. (1997). Allelic losses on 18q21 are associated with progression and metastasis in human prostate cancer. Genes Chromosomes Cancer 20, 140–147.

    Article  PubMed  CAS  Google Scholar 

  67. Padalecki, S. S., Troyer, D. A., Hansen, M. F., et al. (2000). Identification of two distinct regions of allelic imbalance on chromosome 18Q in metastatic prostate cancer. Int. J. Cancer 85, 654–658.

    Article  PubMed  CAS  Google Scholar 

  68. Latil, A., Pesche, S., Valeri, A., Fournier, G., Cussenot, O., and Lidereau, R. (1999). Expression and mutational analysis of the MADR2/Smad2 gene in human prostate cancer. Prostate 40, 2225–2231.

    Article  Google Scholar 

  69. Yin, Z., Babaian, R. J., Troncoso, P., et al. (2001). Limiting the location of putative human prostate cancer tumor suppressor genes on chromosome 18q. Oncogene 20, 2273–2280.

    Article  PubMed  CAS  Google Scholar 

  70. Nupponen, N. N. and Visakorpi, T. (2000). Molecular cytogenetics of prostate cancer. Microsc. Res. Tech. 51, 456–463.

    Article  PubMed  CAS  Google Scholar 

  71. Cher, M. L., Bova, G. S., Moore, D. H., et al. (1996). Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res. 56, 3091–3102.

    PubMed  CAS  Google Scholar 

  72. Alers, J. C., Rochat, J., Krijtenburg, P. J., et al. (2000). Identification of genetic markers for prostatic cancer progression. Lab. Invest. 80, 931–942.

    PubMed  CAS  Google Scholar 

  73. van Dekken, H., Alers, J. C., Damen, I. A., et al. (2003). Genetic evaluation of localized prostate cancer in a cohort of forty patients: gain of distal 8q discriminates between progressors and nonprogressors. Lab. Invest. 83, 789–796.

    PubMed  Google Scholar 

  74. Ellwood-Yen, K., Graeber, T. G., Wongvipat, J., et al. (2003). Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238.

    Article  PubMed  CAS  Google Scholar 

  75. Jenkins, R. B., Qian, J., Lieber, M. M., and Bostwick, D. G. (1997). Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res. 57, 524–531.

    PubMed  CAS  Google Scholar 

  76. Nupponen, N. N., Porkka,.K, Kakkola, L., et al. (1999). Amplification and overexpression of p40 subunit of eukaryotic translation initiation factor 3 in breast and prostate cancer. Am. J. Pathol. 154, 1777–1783.

    PubMed  CAS  Google Scholar 

  77. Sato, K., Qian, J., Slezak, J. M., et al. (1999) Clinical significance of alterations of chromosome 8 in high-grade, advanced, nonmetastatic prostate carcinoma. J. Natl. Cancer. Inst. 91, 1574–1580.

    Article  PubMed  CAS  Google Scholar 

  78. Savinainen, K. J., Linja, M. J., Saramaki, O. R., et al. (2004). Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer. Br. J. Cancer 90, 1041–1046.

    Article  PubMed  CAS  Google Scholar 

  79. Porkka, K. P., Tammela, T. L., Vessella, R. L., and Visakorpi, T. (2004). RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer. Genes Chromosomes Cancer 39, 1–10.

    Article  PubMed  CAS  Google Scholar 

  80. Saramaki, O., Willi, N., Bratt, O., et al. (2001). Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer. Am. J. Pathol. 159, 2089–2094.

    PubMed  CAS  Google Scholar 

  81. Asano,.K, Vornlocher, H. P., Richter-Cook, N. J., Merrick, W. C., Hinnebusch, A. G., and Hershey, J. W. (1997). Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits. Possible roles in RNA binding and macromolecular assembly. J. Biol. Chem. 272, 27,042–27,052.

    Article  PubMed  CAS  Google Scholar 

  82. Nasmyth, K., Peters, J. M., and Uhlmann, F. (2000). Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288, 1379–1385.

    Article  PubMed  CAS  Google Scholar 

  83. Hirano, T. (2000). Chromosome cohesion, condensation, and separation. Annu. Rev. Biochem. 69, 115–144.

    Article  PubMed  CAS  Google Scholar 

  84. Chen, F., Kamradt, M., Mulcahy, M., et al. (2002). Caspase proteolysis of the cohesin component RAD21 promotes apoptosis. J. Biol. Chem. 277, 16,775–16,781.

    Article  PubMed  CAS  Google Scholar 

  85. Pati, D., Zhang, N., and Plon, S. E. (2002). Linking sister chromatid cohesion and apoptosis: role of Rad21. Mol. Cell. Biol. 22, 8267–8277.

    Article  PubMed  CAS  Google Scholar 

  86. Reiter, R. E., Gu, Z., Watabe, T., et al. (1998). Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc. Natl. Acad. Sci. USA 95, 1735–1740.

    Article  PubMed  CAS  Google Scholar 

  87. Chang, G. T., Steenbeek, M., Schippers, E., et al. (2000). Characterization of a zinc-finger protein and its association with apoptosis in prostate cancer cells. J. Natl. Cancer. Inst. 92, 1414–1421.

    Article  PubMed  CAS  Google Scholar 

  88. Gu, Z., Thomas, G., Yamashiro, J., et al. (2000). Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 19, 1288–1296.

    Article  PubMed  CAS  Google Scholar 

  89. Ross, S., Spencer, S. D., Holcomb, I., et al. (2002). Prostate stem cell antigen as therapy target: tissue expression and in vivo efficacy of an immunoconjugate. Cancer Res. 62, 2546–2553.

    PubMed  CAS  Google Scholar 

  90. Chang, G. T., Blok, L. J., Steenbeek, M., et al. (1997). Differentially expressed genes in androgen-dependent and-independent prostate carcinomas. Cancer Res. 57, 4075–4081.

    PubMed  CAS  Google Scholar 

  91. Porkka, K., Saramaki, O., Tanner, M., and Visakorpi, T. (2002). Amplification and overexpression of Elongin C gene discovered in prostate cancer by cDNA microarrays. Lab. Invest. 82, 629–637.

    Article  PubMed  CAS  Google Scholar 

  92. Wang, R., Xu, J., Saramaki, O., et al. (2004). PrLZ, a novel prostate-specific and androgen-responsive gene of the TPD52 family, amplified in chromosome 8q21.1 and overexpressed in human prostate cancer. Cancer Res. 64, 1589–1594.

    Article  PubMed  CAS  Google Scholar 

  93. Rubin, M. A., Varambally, S., Beroukhim, R., et al. (2004). Overexpression, amplification, and androgen regulation of TPD52 in prostate cancer. Cancer Res. 64, 3814–3822.

    Article  PubMed  CAS  Google Scholar 

  94. Aso, T., Lane, W. S., Conaway, J. W., and Conaway, R. C. (1995). Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II. Science 269, 1439–1443.

    Article  PubMed  CAS  Google Scholar 

  95. Duan, D. R., Pause, A., Burgess, W. H., et al. (1995). Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269, 1402–1406.

    Article  PubMed  CAS  Google Scholar 

  96. Kibel, A., Iliopoulos, O., DeCaprio, J. A., and Kaelin, W. G., Jr. (1995). Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 269, 1444–1446.

    Article  PubMed  CAS  Google Scholar 

  97. Stebbins, C. E., Kaelin, W. G., Jr, and Pavletich, N. P. (1999). Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284, 455–461.

    Article  PubMed  CAS  Google Scholar 

  98. Kaelin, W. G., Jr. (2002). Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer 2, 673–682.

    Article  PubMed  CAS  Google Scholar 

  99. Zhong, H., Agani, F., Baccala, A. A., et al. (1998) Increased expression of hypoxia inducible factor-1alpha in rat and human prostate cancer. Cancer Res. 58, 5280–5284.

    PubMed  CAS  Google Scholar 

  100. Kamura, T., Sato, S., Haque, D., et al. (1998). The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881.

    PubMed  CAS  Google Scholar 

  101. Pisters, L. L., Troncoso, P., Zhau, H. E., Li, W., von Eschenbach, A. C., and Chung, L. W. (1995). c-met protooncogene expression in benign and malignant human prostate tissues. J. Urol. 154, 293–298.

    Article  PubMed  CAS  Google Scholar 

  102. Humphrey, P. A., Zhu, X., Zarnegar, R., et al. (1995). Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol. 147, 386–396.

    PubMed  CAS  Google Scholar 

  103. Watanabe, M., Fukutome, K., Kato, H., et al. (1999). Progression-linked overexpression of c-Met in prostatic intraepithelial neoplasia and latent as well as clinical prostate cancers. Cancer Lett. 141, 173–178.

    Article  PubMed  CAS  Google Scholar 

  104. Knudsen, B. S., Gmyrek, G. A., Inra, J., et al. (2002). High expression of the Met receptor in prostate cancer metastasis to bone. Urology 60, 1113–1117.

    Article  PubMed  Google Scholar 

  105. Varambally, S., Dhanasekaran, S. M., Zhou, M., et al. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629.

    Article  PubMed  CAS  Google Scholar 

  106. Rhodes, D. R., Sanda, M. G., Otte, A. P., Chinnaiyan, A. M., and Rubin, M. A. (2003). Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer. J. Natl. Cancer Inst. 95, 661–668.

    Article  PubMed  CAS  Google Scholar 

  107. Foster, C. S., Falconer, A., Dodson, A. R., et al. (2004). Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene 23, 5871–5879.

    Article  PubMed  CAS  Google Scholar 

  108. Bracken, A. P., Pasini, D., Capra, M., Prosperini, E., Colli, E., and Helin, K. (2003). EZH2 is downstream of the pRBE2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335.

    Article  PubMed  CAS  Google Scholar 

  109. Nupponen, N. N., Isola, J., and Visakorpi, T. (2000). Mapping the amplification of EIF3S3 in breast and prostate cancer. Genes Chromosomes Cancer 28, 203–210.

    Article  PubMed  CAS  Google Scholar 

  110. Clark, J., Edwards, S., Feber, A., et al. (2003). Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays. Oncogene 22, 1247–1452.

    Article  PubMed  CAS  Google Scholar 

  111. Wolf, M., Mousses, S., Hautaniemi, S., et al. (2004). High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression. Neoplasia 6, 240–247.

    Article  PubMed  CAS  Google Scholar 

  112. van Dekken, H. Paris, P.L., Albertson, D. G., et al. (2004). Evaluation of genetic patterns in different tumor areas of intermediate-grade prostatic adenocarcinomas by high-resolution genomic array analysis. Genes Chromosomes Cancer 39, 249–256.

    Article  PubMed  Google Scholar 

  113. Paris, P. L., Albertson, D. G., Alers, J. C., et al. (2003). High-resolution analysis of paraffin-embedded and formalinfixed prostate tumors using comparative genomic hybridization to genomic microarrays. Am. J. Pathol. 162, 763–770.

    PubMed  CAS  Google Scholar 

  114. Paris, P. L., Andaya, A., Fridlyand, J., et al. (2004). Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumors. Hum. Mol. Genet. 13, 1303–1313.

    Article  PubMed  CAS  Google Scholar 

  115. Zhao, H., Kim, Y., Wang, P., et al. (2005). Genome-wide characterization of gene expression variations and DNA copy number changes in prostate cancer cell lines. Prostate 63, 187–197.

    Article  PubMed  CAS  Google Scholar 

  116. Bookstein, R., MacGrogan, D., Hilsenbeck, S. G., Sharkey, F., and Allred, D. C. (1993). p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res. 53, 3369–3373.

    PubMed  CAS  Google Scholar 

  117. Visakorpi, T., Kallioniemi, O. P., Heikkinen, A., Koivula, T., and Isola, J. (1992). Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J. Natl. Cancer Inst. 84, 883–887.

    Article  PubMed  CAS  Google Scholar 

  118. Navone, N. M., Troncoso, P., Pisters, L. L., et al. (1993). p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J. Natl. Cancer Inst. 85, 1657–1669.

    Article  PubMed  CAS  Google Scholar 

  119. Feilotter, H. E., Nagai, M. A., Boag, A. H., Eng, C., and Mulligan, L. M. (1998). Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene 16, 1743–1748.

    Article  PubMed  CAS  Google Scholar 

  120. Pesche, S., Latil, A., Muzeau, F., et al. (1998). PTEN/MMAC1/TEP1 involvement in primary prostate cancers. Oncogene 16, 2879–2883.

    Article  PubMed  CAS  Google Scholar 

  121. Dong, J. T., Sipe, T. W., Hyytinen, E. R., et al. (1998). PTEN/MMAC1 is infrequently mutated in pT2 and pT3 carcinomas of the prostate. Oncogene 17, 1979–1982.

    Article  PubMed  CAS  Google Scholar 

  122. Vlietstra, R. J., van Alewijk, D. C., Hermans, K. G., van Steenbrugge, G. J., and Trapman, J. (1998). Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res. 58, 2720–2723.

    PubMed  CAS  Google Scholar 

  123. Suzuki, H., Freije, D., Nusskern, D. R., et al. (1998). Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 58, 204–209.

    PubMed  CAS  Google Scholar 

  124. Fernandez, M. and Eng, C. (2002). The expanding role of PTEN in neoplasia: a molecule for all seasons? Clin. Cancer Res. 8, 1695–1698.

    PubMed  CAS  Google Scholar 

  125. Kwabi-Addo, B., Giri, D., Schmidt, K., et al. (2001). Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc. Natl. Acad. Sci. USA 98, 11,563–11,568.

    Article  PubMed  CAS  Google Scholar 

  126. Kim, M. J., Cardiff, R. D., Desai, N., et al. (2002). Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc. Natl. Acad. Sci. USA 99, 2884–2889.

    Article  PubMed  CAS  Google Scholar 

  127. Ayala, G., Thompson, T., Yang, G., et al. (2004). High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clin. Cancer Res. 10, 6572–6578.

    Article  PubMed  CAS  Google Scholar 

  128. Neshat, M. S., Mellinghoff, I. K., Tran, C., et al. (2001). Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. USA 98, 10,314–10,319.

    Article  PubMed  CAS  Google Scholar 

  129. Culig, Z., Klocker, H., Bartsch, G., and Hobisch, A. (2001). Androgen receptor mutations in carcinoma of the prostate: significance for endocrine therapy. Am. J. Pharmacogenomics 1, 241–249.

    Article  PubMed  CAS  Google Scholar 

  130. Wallen, M. J., Linja, M., Kaartinen, K., Schleutker, J., and Visakorpi, T. (1999). Androgen receptor gene mutations in hormone-refractory prostate cancer. J. Pathol. 189, 559–563.

    Article  PubMed  CAS  Google Scholar 

  131. Taplin, M. E., Bubley, G. J., Shuster, T. D., et al. (1995). Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med. 332, 1393–1398.

    Article  PubMed  CAS  Google Scholar 

  132. Haapala, K., Hyytinen, E. R., Roiha, M., et al. (2001). Androgen receptor alterations in prostate cancer relapsed during a combined androgen blockade by orchiectomy and bicalutamide. Lab. Invest. 81, 1647–1651.

    PubMed  CAS  Google Scholar 

  133. Hara, T., Miyazaki, J., Araki, H., et al. (2003). Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 63, 149–153.

    PubMed  CAS  Google Scholar 

  134. Visakorpi, T., Hyytinen, E., Koivisto, P., et al. (1995). In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. 9, 401–406.

    Article  PubMed  CAS  Google Scholar 

  135. Elo, J. P. and Visakorpi, T. (2001). Molecular genetics of prostate cancer. Ann. Med. 33, 130–141.

    PubMed  CAS  Google Scholar 

  136. Palmberg, C., Koivisto, P., Kakkola, L., Tammela, T. L. J., Kallioniemi, O. P., and Visakorpi, T. (2000). Androgen receptor gene amplification at the time of primary progression predicts response to combined androgen blockade as a second-line therapy in advanced prostate cancer. J. Urology 164, 1992–1995.

    Article  CAS  Google Scholar 

  137. Linja, M. J., Savinainen, K. J., Saramäki, O. R., Tammela, T. L. J., Vessella, R. L., and Visakorpi, T. (2001). Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 61, 3550–3555.

    PubMed  CAS  Google Scholar 

  138. Latil, A., Bieche, I., Vidaud, D., et al. (2001). Evaluation of androgen, estrogen (ER alpha and ER beta), and progesterone receptor expression in human prostate cancer by real-time quantitative reverse transcription-polymerase chain reaction assays. Cancer Res. 61, 1919–1926.

    PubMed  CAS  Google Scholar 

  139. Chen, C. D., Welsbie, D. S., Tran, C., et al. (2004). Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39.

    Article  PubMed  CAS  Google Scholar 

  140. Nakayama, M., Bennett, C. J., Hicks, J. L., et al. (2003). Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am. J. Pathol. 163, 923–933.

    PubMed  CAS  Google Scholar 

  141. Lee, W. H., Morton, R. A., Epstein, J. I., et al. (1994). Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl. Acad. Sci. USA 91, 11,733–11,737.

    Article  PubMed  CAS  Google Scholar 

  142. Goessl, C., Krause, H., Muller, M., et al. (2000). Fluorescent methylation-specific polymerase chain reaction for DNAbased detection of prostate cancer in bodily fluids. Cancer Res. 60, 5941–5945.

    PubMed  CAS  Google Scholar 

  143. Narla, G., Heath, K. E., Reeves, H. L., et al. (2001). KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294, 2563–2566.

    Article  PubMed  CAS  Google Scholar 

  144. Chen, C., Hyytinen, E. R., Sun, X., et al. (2003). Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am. J. Pathol. 162, 1349–1354.

    PubMed  CAS  Google Scholar 

  145. Muhlbauer, K. R., Grone, H. J., Ernst, T., et al. (2003). Analysis of human prostate cancers and cell lines for mutations in the TP53 and KLF6 tumour suppressor genes. Br. J. Cancer 89, 687–990.

    Article  PubMed  CAS  Google Scholar 

  146. Huusko, P., Ponciano-Jackson, D., Wolf, M., et al. (2004). Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat. Genet. 36, 979–983.

    Article  PubMed  CAS  Google Scholar 

  147. Kullander, K. and Klein, R. (2002). Mechanisms and functions of Eph and ephrin signalling. Nat. Rev. Mol. Cell. Biol. 3, 475–486.

    Article  PubMed  CAS  Google Scholar 

  148. Druker, B. J., Talpaz, M., Resta, D. J., et al. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  149. Slamon, D. J., Leyland-Jones, B., Shak, S., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792.

    Article  PubMed  CAS  Google Scholar 

  150. Lynch, T. J., Bell, D. W., Sordella, R., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139.

    Article  PubMed  CAS  Google Scholar 

  151. Paez, J. G., Janne, P. A., Lee, J. C., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500.

    Article  PubMed  CAS  Google Scholar 

  152. Bykov, V. J., Issaeva, N., Shilov, A., et al. (2002). Restoration of the tumor suppressor function to mutant p53 by a lowmolecular-weight compound. Nat. Med. 8, 282–288.

    Article  PubMed  CAS  Google Scholar 

  153. Neshat, M. S., Mellinghoff, I. K., Tran, C.,et al. (2001). Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. USA 98, 10,314–10,319.

    Article  PubMed  CAS  Google Scholar 

  154. Podsypanina, K., Lee, R. T., Politis, C., et al. (2001). An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/-mice. Proc. Natl. Acad. Sci. USA 98, 10,320–10,325.

    Article  PubMed  CAS  Google Scholar 

  155. Futreal, P. A., Coin, L., Marshall, M., et al. (2004). A census of human cancer genes. Nat. Rev. Cancer 4, 177–183.

    Article  PubMed  CAS  Google Scholar 

  156. Asatiani, E., Huang, W. X., Wang, A., et al. (2005). Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer. Cancer Res. 65, 1164–1173.

    Article  PubMed  CAS  Google Scholar 

  157. Saramäki, O. R., Tammela, T. L., Martikainen, P. M., et al. (2006). The gene for polycomb group protein enhancer of zesle homolog 2 (EZH2) is amplified in late stage prostate cancer. Genes Chromosomes Cancer 45, 639–645.

    Article  PubMed  CAS  Google Scholar 

  158. Saramäki, O. R., Porkka, K. P., Vessella, R. L., et al. (2006). Genetic aberrations in prostate cancer by microarray analysis. Int. J. Cancer 119, 1322–1329.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Porkka, K.P., Visakorpi, T. (2007). Somatic Alterations in Prostate Cancer Progression. In: Chung, L.W.K., Isaacs, W.B., Simons, J.W. (eds) Prostate Cancer. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59745-224-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-224-3_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-696-2

  • Online ISBN: 978-1-59745-224-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics