Skip to main content

Preclinical Effects of Opioid Antagonists on Feeding and Appetite

  • Chapter
Book cover Opiate Receptors and Antagonists

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 1017 Accesses

Abstract

A large component of the evidence linking the endogenous opioid system to the control of food intake and body weight has been derived from the ability of general and selective opioid antagonists to block food intake under a number of homeostatically mediated and reward-mediated conditions. This chapter will examine the role of general and specific opioid receptor subtype antagonist involvement in the mediation of (1) the palatable and hedonic aspects of food intake and food choice, including ingestion of simple sugars and fats; (2) the ingestive response to homeostatic regulatory challenges including food deprivation, glucoprivation, and lipoprivation; (3) body weight regulation in normophagic, genetically-obese, diet-obese and stressed animals; and (4) pharmacologically-induced feeding. Detailed description of the central sites of antagonist will be provided, as well as comparing opioid antagonist effects with those derived from molecular gene expression and knockout and knockdown (antisense) approaches. The pervasive effects of opioid antagonists on the different aspects of feeding behavior make the development of more selective antagonist peptide analogues and drugs attractive target systems for the treatment of obesity and diabetes and intake of macronutrients associated with these important dysfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pert, C.B., Snyder, S.H. Opiate receptor: demonstration in nervous tissue. Science 1973;179:1011–1014.

    Article  CAS  PubMed  Google Scholar 

  2. Simon, E.J., Hiller, J.M., Edelman, I. Stereospecific binding of the potent narcotic analgesic (3H)etorphine to rat brain homogenate. Proc. Natl. Acad. Sci. (USA) 1973;70:1947–1949.

    Article  CAS  Google Scholar 

  3. Terenius, L. Stereospecific interaction between narcotic analgesia and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol. Toxicol. 1973;32:317–320

    Article  CAS  Google Scholar 

  4. Holtzman, S.G. Behavioral effects of separate and combined administration of naloxone and d-amphetamine. J. Pharmacol. Exp. Ther. 1974;189:51–60.

    CAS  PubMed  Google Scholar 

  5. Grandison, L., Guidotti, A. Stimulation of food intake by muscimol and beta-endorphin. Neuropharmacology 1977;16:533–536.

    Article  CAS  PubMed  Google Scholar 

  6. Tepperman, F.S., Hirst, M. Effects of intrahypothalamic injection of d-Ala-2, d-Leu-5-enkephalin on feeding and temperature in the rat. Eur. J. Pharmacol. 1983;96:243–249.

    Article  CAS  PubMed  Google Scholar 

  7. McLean, S., Hoebel, B.G. Feeding induced by opiates injected into the paraventricular hypo-thalamus. Peptides 1983;4:287–292.

    Article  CAS  PubMed  Google Scholar 

  8. Morley, J.E., Levine, A.S. Dynorphin (1–13) induces spontaneous feeding in rats. Life Sci. 1981;29:1901–1903.

    Article  CAS  PubMed  Google Scholar 

  9. Walker, J.M., Katz, R.J., Akil, H. Behavioral effects of dynorphin (1–13) in the mouse and rat: initial observations. Peptides 1980;1:341–345.

    Article  CAS  PubMed  Google Scholar 

  10. Morley, J.E., Levine, A.S., Yim, G.K.W., Lowy, M.T. Opioid modulation of appetite. Neurosci. Biobehav. Rev. 1983;7:281–305.

    Article  CAS  PubMed  Google Scholar 

  11. Glass, M.J., Billington, C.J., Levine, A.S. Opioids and food intake: distributed functional neural pathways? Neuropeptides 1999;33:360–368.

    Article  CAS  PubMed  Google Scholar 

  12. Levine, A.S., Morley, J.E., Gosnell, B.A., Billington, C.J., Bartness, T.J. Opioids and consum-matory behavior. Brain Res. Bull. 1985;14:663–672.

    Article  CAS  PubMed  Google Scholar 

  13. Cooper, S.J., Jackson, A., Kirkham, T.C., Turkish, S. Endorphins, opiates and food intake. Rodgers, R.J., Cooper, S.J., eds. Endorphins, opiates and behavioral processes. New York: John Wiley and Sons 1988:143–186.

    Google Scholar 

  14. Kelley, A.E. Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation. Psychobiology 1999;27:198–213.

    Google Scholar 

  15. Kelley, A.E., Bakshi, V.P., Haber, S.N., Steininger, T.L., Will, M.J., Zhang, M. Opioid modulation of taste hedonics within the ventral striatum. Physiol. Behav. 2002;76:365–377.

    Article  CAS  PubMed  Google Scholar 

  16. Apfelbaum, M., Mandenoff, A. Naltrexone suppresses hyperphagia induced in the rat by a highly palatable diet. Pharmacol. Biochem. Behav. 1981;15:89–91.

    Article  CAS  PubMed  Google Scholar 

  17. Lynch, W.C., Libby, L. Naloxone suppresses intake of highly preferred saccharin solutions in food deprived and sated rats. Life Sci. 1983;33:1909–1914.

    Article  CAS  PubMed  Google Scholar 

  18. Cooper, S.J. Effects of opiate agonists and antagonists on fluid intake and saccharin choice in the rat. Neuropharmacology 1983;22:323–328.

    Article  CAS  PubMed  Google Scholar 

  19. Levine, A.S., Murray, S.S., Kneip, J., Grace, M., Morley, J.E. Flavor enhances the antidip-sogenic effect of naloxone. Physiol. Behav. 1982;28:23–25.

    Article  CAS  PubMed  Google Scholar 

  20. Shide, D.J., Blass, E.M. Opioid mediation of odor preferences induced by sugar and fat in 6-day-old rats. Physiol. Behav. 1991;50:961–966.

    Article  CAS  PubMed  Google Scholar 

  21. Shabir, S., Kirkham, T.C. Diet-induced enhancement of naloxone sensitivity is independent of changes in body weight. Pharmacol. Biochem. Behav. 1999;62:601–605.

    Article  CAS  PubMed  Google Scholar 

  22. Glass, M.J., Grace, M.K., Cleary, J.P., Billington, C.J., Levine, A.S. Naloxone's effect on meal microstructure of sucrose and cornstarch diets. Am. J. Physiol. 2001;281:R1605–R16012.

    CAS  Google Scholar 

  23. Kirkham, T.C., Blundell, J.E. Dual action of naloxone on feeding revealed by behavioral analysis: separate effects on initiation and termination of eating. Appetite 1984;5:45–52.

    CAS  PubMed  Google Scholar 

  24. Clarkson, D.B., King, B.M., Hemmer, R.C., Olson, G.A., Kastin, A.J., Olson, R.D. Naloxone decreases consumption of liquid and solid sucrose in vagotomized rats. Physiol. Behav. 1982; 29:927–930.

    Article  CAS  PubMed  Google Scholar 

  25. Kirkham, T.C., Cooper, S.J. Naloxone attenuation of sham feeding is modified by manipulation of sucrose concentration. Physiol. Behav. 1988;44:491–494.

    Article  CAS  PubMed  Google Scholar 

  26. Rockwood, G.A., Reid, L.D. Naloxone modifies sugar-water intake in rats drinking with open gastric fistulas. Physiol. Behav. 1982;29:1175–1178.

    Article  CAS  PubMed  Google Scholar 

  27. Levine, A.S., Weldon, D.T., Grace, M., Cleary, J.P., Billington, C.J. Naloxone blocks that portion of feeding driven by sweet taste in food-restricted rats. Am. J. Physiol. 1995;268: R248–R252.

    CAS  PubMed  Google Scholar 

  28. Parker, L.A., Maier, S., Rennie, M., Crebolder, J. Morphine- and naltrexone-induced modification of palatability: analysis by the taste reactivity test. Behav. Neurosci. 1992;106:999–1010.

    Article  CAS  PubMed  Google Scholar 

  29. Glass, M.J., Grace, M., Cleary, J.P., Billington, C.J., Levine, A.S. Potency of naloxone's anorec-tic effect in rats is dependent on diet preference. Am. J. Physiol. 1996;271:R217–R221.

    CAS  PubMed  Google Scholar 

  30. Weldon, D.T., O'Hare, E., Cleary, J., Billington, C.J., Levine, A.S. Effect of naloxone on intake of cornstarch, sucrose and polycose diets in restricted and nonrestricted rats. Am. J. Physiol. 1996;270:R1183–R1188.

    CAS  PubMed  Google Scholar 

  31. Dym, C.T., Pinhas, A., Ginzberg, M., Kest, B., Bodnar, R.J. Genetic variance contributes to naltrexone-induced inhibition of sucrose intake in inbred and outbred mouse strains. Brain Res. 2007;1135:136–145.

    Article  CAS  PubMed  Google Scholar 

  32. Yu, W.-Z., Sclafani, A., Delamater, A.R., Bodnar, R.J. Pharmacology of flavor preference conditioning in sham-feeding rats: effects of naltrexone. Pharmacol. Biochem. Behav. 1999;64:573–584.

    Article  CAS  PubMed  Google Scholar 

  33. Baker R.M., Li Y., Lee M., Sclafani A., Bodnar R.J. Naltrexone does not prevent acquisition or expression of flavor preferences conditioned by fructose in rats. Pharmacol. Biochem. Behav. 2004;78:239–246.

    Article  CAS  PubMed  Google Scholar 

  34. Azzara, A.V., Bodnar, R.J., Delamater, A.R., Sclafani, A. Naltrexone fails to block the acquisition or expression of a flavor preference conditioned by intragastric carbohydrate infusions. Pharmacol. Biochem. Behav. 2000;67:545–557.

    Article  CAS  PubMed  Google Scholar 

  35. Delamater, A.R., Sclafani, A., Bodnar, R.J. Pharmacology of sucrose-reinforced place preference conditioning: effects of naltrexone. Pharmacol. Biochem. Behav. 2000;65:697–704.

    Article  CAS  PubMed  Google Scholar 

  36. Levine, A.S., Grace, M.K., Cleary, J.P., Billington, C.J. Naltrexone infusion inhibits the development of preference for a high-sucrose diet. Am. J. Physiol. 2002;283(5):R1149–R1154.

    Google Scholar 

  37. Marks-Kaufman, R., Kanarek, R. Modifications of nutrient selection by naloxone in rats. Psycho-pharmacology 1981;74:321–324.

    CAS  Google Scholar 

  38. Marks-Kaufman, R., Plager, A., Kanarek, R. Central and peripheral contributions of endogenous opioid systems to nutrient selection in rats. Psychopharmacology 1985;85:414–418.

    Article  CAS  PubMed  Google Scholar 

  39. Higgs, S., Cooper, S.J. Evidence for early opioid modulation of licking responses to sucrose and intralipid: a microstructural analysis in the rat. Psychopharmacology 1998;139:342–355.

    Article  CAS  PubMed  Google Scholar 

  40. Arjune, D., Bodnar, R.J. Suppression of nocturnal, palatable and glucoprivic intake in rats by the kappa opioid antagonist, nor-binaltorphamine. Brain Res. 1990;534:313–316.

    Article  CAS  PubMed  Google Scholar 

  41. Beczkowska, I.W., Bowen, W.D., Bodnar, R.J. Central opioid receptor subtype antagonists differentially alter sucrose and deprivation-induced water intake in rats. Brain Res. 1992;589:291–301.

    Article  CAS  PubMed  Google Scholar 

  42. Calcagnetti, D.J., Calcagnetti, R.L., Fanselow, M.S. Centrally administered opioid antagonists, nor-binaltorphamine, 16-methyl cyrenorphine and MR2266 suppress intake of a sweet solution. Pharmacol. Biochem. Behav. 1990;35:69–73.

    Article  CAS  PubMed  Google Scholar 

  43. Islam, A.K., Bodnar, R.J. Selective opioid receptor antagonist effects upon intake of a high-fat diet in rats. Brain Res. 1990;508:293–296.

    Article  CAS  PubMed  Google Scholar 

  44. Leventhal, L., Kirkham, T.C., Cole, J.L., Bodnar, R.J. Selective actions of central mu and kappa opioid antagonists upon sucrose intake in sham-feeding rats. Brain Res. 1995;685:205–210.

    Article  CAS  PubMed  Google Scholar 

  45. Beczkowska, I.W., Koch, J.E., Bostock, M.E., Leibowitz, S.F., Bodnar, R.J. Central opioid receptor subtype antagonists differentially reduce intake of saccharin and maltose dextrin solutions in rats. Brain Res. 1993;618:261–270.

    Article  CAS  PubMed  Google Scholar 

  46. Leventhal, L., Bodnar, R.J. Different central opioid receptor subtype antagonists modify maltose dextrin and deprivation-induced water intake in sham feeding and sham drinking rats. Brain Res. 1996;741:300–308.

    Article  CAS  PubMed  Google Scholar 

  47. Glass, M.J., Billington, C.J., Levine, A.S. Naltrexone administered to central nucleus of amygdala or PVN: neural dissociation of diet and energy. Am. J. Physiol. 2000;279:86–92.

    Google Scholar 

  48. Bodnar, R.J., Glass, M.J., Ragnauth, A., Cooper, M.L. General, mu and kappa opioid antagonists in the nucleus accumbens alter food intake under deprivation, glucoprivic and palatable conditions. Brain Res. 1995;700:205–212.

    Article  CAS  PubMed  Google Scholar 

  49. Kelley, A.E., Bless, E.P., Swanson, C.J. Investigation of the effects of opiate antagonists infused into the nucleus accumbens on feeding and sucrose drinking in rats. J. Pharmacol. Exp. Ther. 1996;278:1499–1507.

    CAS  PubMed  Google Scholar 

  50. Ragnauth, A., Ruegg, H., Bodnar, R.J. Evaluation of opioid receptor subtype antagonist effects in the ventral tegmental area upon food intake under deprivation, glucoprivic and palatable conditions. Brain Res. 1997;767:8–16.

    Article  CAS  PubMed  Google Scholar 

  51. Woolley, J.D., Lee, B.S., Fields, H.L. Nucleus accumbens opioids regulate flavor-based preferences in food consumption. Neuroscience 2006;143:309–317.

    Article  CAS  PubMed  Google Scholar 

  52. Welch, C.C., Kim, E.-M., Grace, M.K., Billington, C.J., Levine, A.S. Palatability-induced hyperphagia increases hypothalamic dynorphin peptide and mRNA levels. Brain Res. 1996; 721:126–131.

    Article  CAS  PubMed  Google Scholar 

  53. Pomonis, J.D., Jewett, D.C., Kotz, C.M., Briggs, J.E., Billington, C.J., Levine, A.S. Sucrose consumption increases naloxone-induced c-fos immunoreactivity in limbic forebrain. Am. J. Physiol. 2000;278:R712–R719.

    CAS  Google Scholar 

  54. Ragnauth, A., Schuller, A., Morgan, M., Chan, J., Ogawa, S., Pintar, J., Bodnar, R.J., Pfaff, D.W. Female preproenkephalin-knockout mice display altered emotional responses. Proc. Natl. Acad. Sci. (USA) 2001;98:1958–1963.

    Article  CAS  Google Scholar 

  55. Tanda, G., DiChiara, G. A dopamine-mu1 opioid link in the rat ventral tegmentum shared by palatable food (Fonzies) and the non-psychostimulant drugs of abuse. Eur. J. Neurosci. 1998; 10:1179–1187.

    Article  CAS  PubMed  Google Scholar 

  56. Barnes, M.J., Lapanowski, K., Conley, A., Rafols, J.A., Jen, K.L., Dunbar, J.C. High fat feeding is associated with increased blood pressure, sympathetic nerve activity and hypothalamic mu opioid receptors. Brain Res. Bull. 2003;61:511–519.

    Article  CAS  PubMed  Google Scholar 

  57. Kelley, A.E., Will, M.J., Steininger, T.L., Zhang, M., Haber, S.N. Restricted daily consumption of a highly palatable food (chocolate Ensure(R)) alters striatal enkepahlin gene expression. Eur. J. Neurosci. 2003;18:2592–2598.

    Article  CAS  PubMed  Google Scholar 

  58. Brown, D.R., Holtzman, S.J. Suppression of deprivation induced food and water intake in rats and mice by naloxone. Pharmacol. Biochem. Behav. 1979;11:567–583.

    Article  CAS  PubMed  Google Scholar 

  59. Cooper, S.J. Naloxone: effects on food and water consumption in the non-deprived and deprived rat. Psychopharmacology 1980;71:1–6.

    Article  CAS  PubMed  Google Scholar 

  60. Frenk, H., Rogers, G.H. The suppressant effects of naloxone on food and water intake in the rat. Behav. Neural. Biol. 1979;26:23–40.

    Article  CAS  PubMed  Google Scholar 

  61. Holtzman, S.G. Effects of narcotic antagonists on fluid intake in the rat. Life Sci. 1975;16:1465–1470.

    Article  CAS  PubMed  Google Scholar 

  62. Maickel, R.P., Braude, M.C., Zabik, J.E. The effects of various narcotic agonists and antagonists on deprivation-induced fluid consumption. Neuropharmacology 1977;16:863–866.

    Article  CAS  Google Scholar 

  63. Glass, M.J., O'Hare, E., Cleary, J.P., Billington, C.J., Levine, A.S. The effect of naloxone on food-motivated behavior in the obese Zucker rat. Psychopharmacology 1999;141:378–384.

    Article  CAS  PubMed  Google Scholar 

  64. Rudski, J.M., Billington, C.J., Levine, A.S. Naloxone's effects on operant responding depend upon level of deprivation. Pharmacol. Biochem. Behav. 1994;49:377–383.

    Article  CAS  PubMed  Google Scholar 

  65. Billington, C.J., Morley, J.E., Levine, A.S., Wright, F., Seal, U.S. Naloxone induced suppression of feeding in tigers. Physiol. Behav. 1985;34:641–643.

    Article  CAS  PubMed  Google Scholar 

  66. Morley, J.E., Levine, A.S., Plotka, E.D., Seal, U.S. The effect of naloxone on feeding and spontaneous locomotion in the wolf. Physiol. Behav. 1983;30:331–334.

    Article  CAS  PubMed  Google Scholar 

  67. Nizielski, S.E., Morley, J.E., Gosnell, B.A., Seal, U.S., Levine, A.S. Opioid modulation of ingestive behaviors in woodchucks and raccoons. Physiol. Behav. 1985;34:171–176.

    Article  CAS  PubMed  Google Scholar 

  68. Levine, A.S., Morley, J.E., Brown, D.M., Handwerger, B.S. Extreme sensitivity of diabetic mice to naloxone-induced suppression of food intake. Physiol. Behav. 1982;28:987–989.

    Article  CAS  PubMed  Google Scholar 

  69. Morley, J.E., Levine, A.S., Grace, M., Kneip, J., Gosnell, B.A. The effect of ovariectomy, estra-diol and progesterone on opioid modulation of feeding. Physiol. Behav. 1984;33:237–241.

    Article  CAS  PubMed  Google Scholar 

  70. Brown, D.R., Blank, M.S., Holtzman, S.G. Suppression by naloxone of water intake induced by deprivation and hypertonic saline in intact and hypophysectomized rats. Life Sci. 1980;26:1535–1542.

    Article  CAS  PubMed  Google Scholar 

  71. Brown, D.R., Holtzman, S.G. Evidence that opiate receptors mediate suppression of hyper-tonic saline-induced drinking in the mouse by narcotic antagonists. Life Sci. 1980;26:1543–1550.

    Article  CAS  PubMed  Google Scholar 

  72. Cooper, S.J., Gilbert, D.B. Naloxone suppresses fluid consumption in tests of choice between sodium chloride solutions and water in male and female water-deprived rats. Psychopharma-cology 1984;84:362–367.

    Article  CAS  Google Scholar 

  73. Czech, D.A., Stein, E.A. Naloxone suppresses osmoregulatory drinking in rats. Pharmacol. Biochem. Behav. 1980;12:987–989.

    Article  CAS  PubMed  Google Scholar 

  74. Siviy, S.M., Bermudez-Rattoni, F., Rockwood, G.A., Dargie, C.M., Reid, L.D. Intracerebral administration of naloxone and drinking in water-deprived rats. Pharmacol. Biochem. Behav. 1981;15:257–262.

    Article  CAS  PubMed  Google Scholar 

  75. Rowland, N. Comparison of the suppression by naloxone of water intake induced in rats by hyperosmolarity, hypovolemia and angiotensin. Pharmacol. Biochem. Behav. 1982;16:87–91.

    Article  CAS  PubMed  Google Scholar 

  76. Lowy, M.T., Maickel, R.P., Yim, G.K.W. Naloxone reduction of stress-related feeding. Life Sci. 1980;26:2113–2118.

    Article  CAS  PubMed  Google Scholar 

  77. Levine, A.S., Morley, J.E. Peptidergic control of insulin-induced feeding. Peptides 1981;2:261–264.

    Article  CAS  PubMed  Google Scholar 

  78. Ostrowski, N.L., Rowland, N., Foley, T.L., Nelson, J.L., Reid, L.D. Morphine antagonists and consummatory behaviors. Pharmacol. Biochem. Behav. 1981;14:549–559.

    Article  CAS  PubMed  Google Scholar 

  79. Rowland, N., Bartness, T.J. Naloxone suppresses insulin-induced food intake in novel and familiar environments, but does not affect hypoglycemia. Pharmacol. Biochem. Behav. 1982; 16:1001–1003.

    Article  CAS  PubMed  Google Scholar 

  80. Arjune, D., Bowen, W.D., Bodnar, R.J. Ingestive behavior following central (d-Ala2,Leu5, Cys6)-enkephalin (DALCE), a short-acting agonist and long-acting antagonist at the delta opioid receptor. Pharmacol. Biochem. Behav. 1991;39:429–436.

    Article  CAS  PubMed  Google Scholar 

  81. Arjune, D., Standifer, K.M., Pasternak, G.W., Bodnar, R.J. Reduction by central beta-funaltrexamine of food intake in rats under freely-feeding, deprivation and glucoprivic conditions. Brain Res. 1990;535:101–109.

    Article  CAS  PubMed  Google Scholar 

  82. Koch, J.E., Bodnar, R.J. Selective alterations in macronutrient intake of food-deprived or glucoprivic rats by centrally-administered opioid receptor subtype antagonists in rats. Brain Res. 1994;657:191–201.

    Article  CAS  PubMed  Google Scholar 

  83. Levine, A.S., Grace, M., Billington, C.J. B-funaltrexamine (B-FNA) decreases deprivation and opioid-induced feeding. Brain Res. 1991;562:281–284.

    Article  CAS  PubMed  Google Scholar 

  84. Levine, A.S., Grace, M., Billington, C.J., Portoghese, P.S. Nor-binaltorphamine decreases deprivation and opioid-induced feeding. Brain Res. 1990;534:60–64.

    Article  CAS  PubMed  Google Scholar 

  85. Simone, D.A., Bodnar, R.J., Goldman, E.J., Pasternak, G.W. Involvement of opioid receptor subtypes in rat feeding behavior. Life Sci. 1985;36:829–833.

    Article  CAS  PubMed  Google Scholar 

  86. Jackson, H.C., Sewell, R.D.E. Hyperphagia induced by 2-deoxy-D-glucose in the presence of the delta-opioid antagonist, ICI174864. Neuropharmacology 1985;24:815–817.

    Article  CAS  PubMed  Google Scholar 

  87. Beczkowska, I.W., Bodnar, R.J. Mediation of insulin hyperphagia by specific central opiate receptor antagonists. Brain Res. 1991;547:315–318.

    Article  CAS  PubMed  Google Scholar 

  88. Stein, J.A., Znamensky, V., Baumer, F., Rossi, G.C., Pasternak, G.W., Bodnar, R.J. Mercaptoacetate induces feeding through central opioid-mediated mechanisms in rats. Brain Res. 2000;864:240–251.

    Article  CAS  PubMed  Google Scholar 

  89. Segall, M.A., Margules, D.L. Central mediation of naloxone-induced anorexia in the ventral tegmental area. Behav. Neurosci. 1989;103:857–864.

    Article  CAS  PubMed  Google Scholar 

  90. Thornhill, J.A., Saunders, W. Ventromedial and lateral hypothalamic injections of naloxone or naltrexone suppress the acute food intake of food-deprived rats. Appetite 1984;5:25–30.

    CAS  PubMed  Google Scholar 

  91. Gosnell, B.A., Romsos, D.R., Morley, J.E., Levine, A.S. Opiates and medial hypotha-lamic knife cuts cause hyperphagia through different mechanisms. Behav. Neurosci. 1985;99:1181–1191.

    Article  CAS  PubMed  Google Scholar 

  92. Gosnell, B.A., Morley, J.E., Levine, A.S. Lesions of the globus pallidus and striatum attenuate ketocyclazocine-induced feeding. Physiol. Behav. 1984;33:349–355.

    Article  CAS  PubMed  Google Scholar 

  93. Gosnell, B.A., Morley, J.E., Levine, A.S., Kneip, J., Frick, M., Elde, R.P. Opiate induced feeding is not dependent on the hippocampus. Physiol. Behav. 1984;33:27–30.

    Article  CAS  PubMed  Google Scholar 

  94. Gosnell, B.A., Waggoner, D.W., Morley, J.E., Levine, A.S. The pineal gland and opiate-induced feeding. Physiol. Behav. 1985;34:1–6.

    Article  CAS  PubMed  Google Scholar 

  95. Levine, A.S., Morley, J.E. Adrenal modulation of opiate induced feeding. Pharmacol. Biochem. Behav. 1983;19:403–406.

    Article  CAS  PubMed  Google Scholar 

  96. Ukai, M., Holtzman, S.G. Suppression of deprivation-induced water intake by opioid antagonists: central sites of action. Psychopharmacology 1987;91:279–284.

    Article  CAS  PubMed  Google Scholar 

  97. Koch, J.E., Glass, M.J., Cooper, M.L., Bodnar, R.J. Alterations in deprivation, glucoprivic and sucrose intake following general, mu and kappa opioid antagonists in the hypothalamic paraventricular nucleus of rats. Neuroscience 1995;66:951–957.

    Article  CAS  PubMed  Google Scholar 

  98. Majeed, N.H., Lason, W., Przewlocka, B., Przewlocki, R. Brain and peripheral opioid pep-tides after changes in ingestive behavior. Neuroendocrinology 1986;42:267–272.

    Article  CAS  PubMed  Google Scholar 

  99. Takahashi, H., Motomatsu, T., Nawata, H., Kato, K., Ibayashi, H., Nobunaga, M. Influences of feeding and drinking on circadian rhythms of opioid peptides in plasma, hypothalamus and pituitary gland in rats. Physiol. Behav. 1986;37:609–614.

    Article  CAS  PubMed  Google Scholar 

  100. Tsujii, S., Nakai, Y., Fukata, J., Koh, T., Takahashi, H., Usui, T., Imura, H. Effects of food deprivation and high fat diet on opioid receptor binding in rat brain. Neurosci. Lett. 1986;72:169–173.

    Article  CAS  PubMed  Google Scholar 

  101. Vaswani, K.K., Tejwani, G.A. Food-deprivation-induced changes in the level of opioid pep-tides in the pituitary and brain. Life Sci. 1986;38:197–201.

    Article  CAS  PubMed  Google Scholar 

  102. Rodi, D., Polidori, C., Bregola, G., Zucchini, S., Simonato, M., Massi, M. Pro-nociceptin/ orphanin FQ and NOP receptor mRNA levels in the forebrain of food deprived rats. Brain Res. 2002;957(2):354–361.

    Article  CAS  PubMed  Google Scholar 

  103. Wolinsky, T.D., Carr, K.D., Hiller, J.M., Simon, E.J. Effects of chronic food restriction on mu and kappa opioid binding in rat forebrain: a quantitative autoradiographic study. Brain Res. 1994;656:274–280.

    Article  CAS  PubMed  Google Scholar 

  104. Wolinsky, T.D., Carr, K.D., Hiller, J.M., Simon, E.J. Chronic food restriction alters mu and kappa opioid receptor binding in the parabrachial nucleus of the rat: a quantitative autora-diographic study. Brain Res. 1996;706:333–336.

    Article  CAS  PubMed  Google Scholar 

  105. Berman, Y., Devi, L., Carr, K.D. Effects of chronic food restriction on prodynorphin-derived peptides in rat brain regions. Brain Res. 1994;664:49–53.

    Article  CAS  PubMed  Google Scholar 

  106. Berman, Y., Devi, L., Carr, K.D. Effects of streptozotocin-induced diabetes on prodynorphin-derived peptides in rat brain regions. Brain Res. 1995;685:129–134.

    Article  CAS  PubMed  Google Scholar 

  107. Berman, Y., Devi, L., Spangler, R., Kreek, M.J., Carr, K.D. Chronic food restriction and streptozotocin-induced diabetes differentially alter prodynorphin mRNA levels in rat brain regions. Mol. Brain Res. 1997;46:25–30.

    Article  CAS  PubMed  Google Scholar 

  108. Carr, K.D., Kutchukhidze, N., Park, T.H. Differential effects of mu and kappa opioid antagonists on Fos-like immunoreactivity in extended amygdala. Brain Res. 1999;822:34–42.

    Article  CAS  PubMed  Google Scholar 

  109. Carr, K.D., Park, T.H., Stone, E.A. Neuroanatomical patterns of Fos-like immunoreactiv-ity induced by naltrexone in food-restricted and ad libitum fed rats. Brain Res. 1998;779:26–32.

    Article  CAS  PubMed  Google Scholar 

  110. Kim, E.-M., Grace, M.K., Welch, C.C., Billington, C.J., Levine, A.S. STZ-induced diabetes decreases and insulin normalizes POMC mRNA in arcuate nucleus and pituitary in rats. Am. J. Physiol. 1999;276:R1320–R1326.

    CAS  PubMed  Google Scholar 

  111. Kim, E.-M., Welch, C.C., Grace, M.K., Billington, C.J., Levine, A.S. Chronic food restriction and acute food deprivation decrease mRNA levels of opioid peptides in the arcuate nucleus. Am. J. Physiol. 1996;270:R1019–R1024.

    CAS  PubMed  Google Scholar 

  112. Locatelli, V., Petraglia, F., Tirloni, N., Muller, E.E. Beta-endorphin concentrations in the hypothalamus, pituitary and plasma of streptozotocin-diabetic rats with and without insulin substitution therapy. Life Sci. 1986;38:379–386.

    Article  CAS  PubMed  Google Scholar 

  113. Aravich, P.F., Rieg, T.S., Lauterio, T.J., Doerries, L.E. Beta-endorphin and dynorphin abnormalities in rats subjected to exercise and restricted feeding: relationship to anorexia nervosa? Brain Res. 1993;622:1–8.

    Article  CAS  PubMed  Google Scholar 

  114. Carr, K.D., Papadouka, V. The role of multiple opioid receptors in the potentiation of reward by food restriction. Brain Res. 1994;639:253–260.

    Article  CAS  PubMed  Google Scholar 

  115. Carr, K.D., Simon, E.J. Potentiation of reward by hunger is opioid mediated. Brain Res. 1984;297:369–373.

    Article  CAS  PubMed  Google Scholar 

  116. Wolinsky, T.D., Abrahamsen, G.C., Carr, K.D. Diabetes alters mu and kappa opioid binding in rat brain: comparison with effects of food restriction. Brain Res. 1996;738:167–171.

    Article  CAS  PubMed  Google Scholar 

  117. Burdick, K., Yu, W.-Z., Ragnauth, A., Moroz, M., Pan, Y.X., Rossi, G.C., Pasternak, G.W., Bodnar, R.J. Antisense mapping of opioid receptor clones: effects upon 2-deoxy-D-glucose-induced hyperphagia. Brain Res. 1998;794:359–363.

    Article  CAS  PubMed  Google Scholar 

  118. Hadjimarkou, M.M., Khaimova, E., Pan, Y.-X., Rossi, G.C., Pasternak, G.W., Bodnar, R.J. Feeding induced by food deprivation is differentially reduced by opioid receptor antisense oligodeoxynucleotide probes in rats. Brain Res. 2003;987:223–232.

    Article  CAS  PubMed  Google Scholar 

  119. Hadjimarkou, M.M., Singh, A., Kandov, Y., Israel, Y., Pan, Y.-X., Rossi, G.C., Pasternak, G.W., Bodnar, R.J. Opioid receptor involvement in food deprivation-induced feeding: evaluation of selective antagonist and antisense oligodeoxynucleotides probe effects in mice and rats. J. Pharmacol. Exp. Ther. 2004;311:1188–1202.

    Article  CAS  PubMed  Google Scholar 

  120. Gosnell, B.A., Grace, M., Levine, A.S. Effects of beta-chlornaltrexamine on food intake, body weight and opioid-induced feeding. Life Sci. 1987;40:1459–1467.

    Article  CAS  PubMed  Google Scholar 

  121. Levine, A.S., Grace, M., Billington, C.J., Zimmerman, D.M. Central administration of the opioid antagonist LY255582 decreases short- and long-term food intake in rats. Brain Res. 1991;566:193–197.

    Article  CAS  PubMed  Google Scholar 

  122. Brands, B.J., Thornhill, J.A., Hirst, M., Gowdey, C.W. Suppression of food intake and body weight by naloxone in rats. Life Sci. 1979;24:1773–1778.

    Article  CAS  PubMed  Google Scholar 

  123. Marks-Kaufman, R., Balmagiya, T., Gross, E. Modifications in food intake and energy metabolism in rats as a function of chronic naltrexone infusions. Pharmacol. Biochem. Behav. 1984;20:911–916.

    Article  CAS  PubMed  Google Scholar 

  124. Shimomura, Y., Oku, J., Glick, Z., Bray, G.A. Opiate receptors, food intake and obesity. Physiol. Behav. 1982;28:441–445.

    Article  CAS  PubMed  Google Scholar 

  125. Mann, P.E., Pasternak, G.W., Hahn, E.F., Curreri, G., Lubin, E., Bodnar, R.J. Comparison of chronic naloxone and naloxonazine effects upon food intake and body weight maintainance in rats. Neuropharmacology 1988;27:349–355.

    Article  CAS  PubMed  Google Scholar 

  126. Olson, G.A., DeLatte, S.W., Kastin, A.J., McLean, J.H., Phillpott, D.F., Olson, R.D. Naloxone and fluid consumption in rats: dose-response relationship for 15 days. Pharmacol. Biochem. Behav. 1985;23:1065–1068.

    Article  CAS  PubMed  Google Scholar 

  127. McLaughlin, C.L., Baile, C.A. Nalmefene decreases meal size, food and water intake and weight gain in Zucker rats. Pharmacol. Biochem. Behav. 1983;19:235–240.

    Article  CAS  PubMed  Google Scholar 

  128. McLaughlin, C.L., Baile, C.A. Feeding behavior responses of Zucker rats to naloxone. Physiol. Behav. 1984;32:755–761.

    Article  CAS  PubMed  Google Scholar 

  129. Shaw, W.N., Mitch, C.H., Leander, J.D., Zimmerman, D.M. Effect of phenylpiperidine opioid antagonists on food consumption and weight gain of the obese Zucker rat. J. Pharmacol. Exp. Ther. 1990;253:85–89.

    CAS  PubMed  Google Scholar 

  130. Recant, L., Voyles, N.R., Luciano, M., Pert, C.B. Naltrexone reduced weight gain, alters beta-endorphin and reduces insulin output from pancreatic islets of genetically obese mice. Peptides 1980;1:309–313.

    Article  CAS  PubMed  Google Scholar 

  131. Gunion, M.W., Peters, R.H. Pituitary beta-endorphin, naloxone and feeding in several experimental obesities. Am. J. Physiol. 1981;241:R173–R184.

    CAS  PubMed  Google Scholar 

  132. King, B.M., Castellanos, F.X., Kastin, A.J., Berzas, M., Mauk, D., Olson, G.A., Olson, R.D. Naloxone-induced suppression of food intake in normal and hypothalamic obese rats. Pharmacol. Biochem. Behav. 1979;11:729–732.

    Article  CAS  PubMed  Google Scholar 

  133. Carr, K.D., Simon, E.J. Effects of naloxone and its quatenary analogue on stimulation-induced feeding. Neuropharmacology 1983;22:127–130.

    Article  CAS  PubMed  Google Scholar 

  134. Jenck, F., Gratton, A., Wise, R.A. Opioid receptor subtypes associated with ventral tegmen-tal facilitation and periaqueductal gray inhibition of feeding. Brain Res. 1986;423:39–44.

    Article  Google Scholar 

  135. Carr, K.D., Wolinsky, T.D. Regulation of feeding by multiple opioid receptors in cingulate cortex; follow-up to an in vivo autoradiographic study. Neuropeptides 1994;26:207–213.

    Article  CAS  PubMed  Google Scholar 

  136. Carr, K.D. Streptozotocin-induced diabetes produces a naltrexone-reversible lowering of threshold for lateral hypothalamic self-stimulation. Brain Res. 1994;664:211–214.

    Article  CAS  PubMed  Google Scholar 

  137. Bertiere, M.C., Mame Sy, T., Baigts, F., Mandenoff, A., Apfelbaum, M. Stress and sucrose hyperphagia: role of endogenous opiates. Pharmacol. Biochem. Behav. 1984;20:675–679.

    Article  CAS  PubMed  Google Scholar 

  138. Morley, J.E., Levine, A.S. Stress-induced eating is mediated through endogenous opiates. Science 1980;209:1259–1261.

    Article  CAS  PubMed  Google Scholar 

  139. Millan, M.J., Morris, B.J. Long-term blockade of mu-opioid receptors suggests a role in control of ingestive behavior, body weight and core temperature in the rat. Brain Res. 1988; 450:247–258.

    Article  CAS  PubMed  Google Scholar 

  140. Ukai, M., Holtzman, S.G. Effects of beta-funaltrexamine on ingestive behaviors in the rat. Eur. J. Pharmacol. 1988;153:161–165.

    Article  CAS  PubMed  Google Scholar 

  141. Olszewski, P.K., Shaw, T.J., Grace, M.K., Billington, C.J., Levine, A.S. Nocistatin inhibits food intake in rats. Brain Res. 2000;872:181–187.

    Article  CAS  PubMed  Google Scholar 

  142. Glass, M.J., Hahn, B., Joseph, A., Bodnar, R.J. Central opioid receptor subtype mediation of isoproterenol-induced drinking in rats. Brain Res. 1994;657:310–314.

    Article  CAS  PubMed  Google Scholar 

  143. Ruegg, H., Hahn, B., Koch, J.E., Bodnar, R.J. Differential modulation of angiotensin II and hypertonic saline-induced drinking by opioid receptor subtype antagonists in rats. Brain Res. 1994;635:203–210.

    Article  CAS  PubMed  Google Scholar 

  144. Gosnell, B.A., Majchrzak, M.J. Effects of a selective mu opioid receptor agonist and naloxone on the intake of sodium chloride solutions. Psychopharmacology 1990;100:66–71.

    Article  CAS  PubMed  Google Scholar 

  145. Bodnar, R.J., Glass, M.J., Koch, J.E. Analysis of central opioid receptor subtype antagonism of hypotonic and hypertonic saline intake in water-deprived rats. Brain Res. Bull. 1995; 36:293–300.

    Article  CAS  PubMed  Google Scholar 

  146. Cole, J.L., Leventhal, L., Pasternak, G.W., Bowen, W.D., Bodnar, R.J. Reductions in body weight following chronic central opioid receptor subtype antagonists during development of dietary obesity in rats. Brain Res. 1995;678:168–176.

    Article  CAS  PubMed  Google Scholar 

  147. Cole, J.L., Ross, A., Bodnar, R.J. Dietary history affects the potency of chronic opioid receptor subtype antagonist effects upon body weight in rats. Nutr. Neurosci. 1999;1:405–418.

    CAS  Google Scholar 

  148. Cole, J.L., Berman, N., Bodnar, R.J. Evaluation of chronic opioid receptor antagonist effects upon weight and intake measures in lean and obese Zucker rats. Peptides 1997;18:1201–1207.

    Article  CAS  PubMed  Google Scholar 

  149. Carr, K.D., Bak, T.H., Simon, E.J., Portoghese, P.S. Effects of the selective K opioid antagonist, nor-binaltorphamine, on electrically-elicited feeding in the rat. Life Sci. 1989;45:1787–1792.

    Article  CAS  PubMed  Google Scholar 

  150. Papadouka, V., Carr, K.D. The role of multiple opioid receptors in the maintenance of stimulation-induced feeding. Brain Res. 1994;639:42–48.

    Article  CAS  PubMed  Google Scholar 

  151. Carr, K.D., Aleman, D.O., Bak, T.H., Simon, E.J. Effects of parabrachial opioid antagonism on stimulation-induced feeding. Brain Res. 1991;545:283–286.

    Article  CAS  PubMed  Google Scholar 

  152. Carr, K.D., Papadouka, V., Wolinsky, T.D. Norbinaltorphamine blocks the feeding but not the reinforcing effect of lateral hypothalamic electrical stimulation. Psychopharmacology 1993;111:345–350.

    Article  CAS  PubMed  Google Scholar 

  153. Carr, K.D. Effects of antibodies to dynorphin A and beta-endorphin on lateral hypothalamic self-stimulation in ad libitum fed and food-deprived rats. Brain Res. 1990;534:8–14.

    Article  CAS  PubMed  Google Scholar 

  154. Carr, K.D., Bak, T.H. Rostral and caudal ventricular infusion of antibodies to dynorphin A (1–17) and dynorphin A (1–8): effects on electrically-elicited feeding in the rat. Brain Res. 1990;507:289–294.

    Article  CAS  PubMed  Google Scholar 

  155. Carr, K.D., Bak, T.H., Gioannini, T.L., Simon, E.J. Antibodies to dynorphin A(1–13) but not beta-endorphin inhibit electrically-elicited feeding in the rat. Brain Res. 1987;422:384–388.

    Article  CAS  PubMed  Google Scholar 

  156. Schulz, R., Wilhelm, A., Dirlich, G. Intracerebral microinjection of different antibodies against the endogenous opioids suggests alpha-neoendorphin participation in control of feeding behavior. Naunyn Schmiedebergs Arch. Pharmacol. 1984;326:222–226.

    Article  CAS  PubMed  Google Scholar 

  157. Hawkins, M.F., Cubic, B., Baumeister, A.A., Bartin, C. Microinjection of opioid antagonists into the substantia nigra reduces stress-induced eating in rats. Brain Res. 1992;584:261–265.

    Article  CAS  PubMed  Google Scholar 

  158. Koch, J.E., Bodnar, R.J. Involvement of mu-1 and mu-2 opioid receptor subtypes in tail-pinch feeding in rats. Physiol. Behav. 1993;53:603–605.

    Article  CAS  PubMed  Google Scholar 

  159. Margules, D.L., Moisset, B., Lewis, M.J., Shibuya, H., Pert, C.B. Beta-endorphin is associated with overeating in genetically-obese mice (ob/ob) and rats (fa/fa). Science 1978;202:988–991.

    Article  CAS  PubMed  Google Scholar 

  160. Kim, E.M., O'Hare, E., Grace, M.K., Welch, C.C., Billington, C.J., Levine, A.S. ARC POMC mRNA and PVN alpha-MSH are lower in obese relative to lean Zucker rats. Brain Res. 2000;1000:11–16.

    Article  Google Scholar 

  161. Przewlocki, R., Lason, W. The opioid peptide dynorphin, circadian rhythms and starvation. Science 1982;219:71–73.

    Article  Google Scholar 

  162. Takahashi, H., Motomatsu, T., Nobunaga, M. Influences of water deprivation and fasting on hypothalamic, pituitary and plasma opioid peptides and prolactin in rats. Physiol. Behav. 1986;37:603–608.

    Article  CAS  PubMed  Google Scholar 

  163. Glass, M.J., Briggs, J.E., Billington, C.J., Kotz, C.M., Levine, A.S. Opioid receptor blockade in rat nucleus tractus solitarius alters amygdala dynorphin gene expression. Am. J. Physiol. 2002;283:R161–R167.

    CAS  Google Scholar 

  164. Appleyard, S.M., Haywood, M., Young, J.I., Butler, A.A., Cone, R.D., Rubinstein, M., Low, M.J. A role for the endogenous opioid beta-endorphin in energy homeostasis. Endocrinology 2003;144:1753–1760.

    Article  CAS  PubMed  Google Scholar 

  165. Haywood, M.D., Pintar, J.E., Low, M.J. Selective reward deficit in mice lacking beta-endorphin and enkephalin. J. Neurosci. 2002;22:8251–8258.

    Google Scholar 

  166. Leventhal, L., Cole, J.L., Rossi, G.C., Pan, Y.X., Pasternak, G.W., Bodnar, R.J. Antisense oligodeoxynucleotides against the MOR-1 clone alter weight and ingestive responses in rats. Brain Res. 1996;719:78–84.

    Article  CAS  PubMed  Google Scholar 

  167. Pomonis, J.D., Billington, C.J., Levine, A.S. Orphanin FQ, agonist of orphan opioid receptor ORL1, stimulates feeding in rats. Neuroreport 1996;8:369–371.

    Article  CAS  PubMed  Google Scholar 

  168. Stratford, T.R., Holahan, M.R., Kelley, A.E. Injections of nociceptin into nucleus accumbens shell or ventromedial hypothalamic nucleus increase food intake. Neuroreport 1997;8:423–426.

    Article  CAS  PubMed  Google Scholar 

  169. Hagan, M.M., Rushing, P.A., Benoit, S.C., Woods, S.C., Seeley, R.J. Opioid receptor involvement in the effect of AgRP-(83–132) on food intake and food selection. Am. J. Physiol. 2001;280:R814–R821.

    CAS  Google Scholar 

  170. Olszewski, P.K., Wirth, M.M., Grace, M.K., Levine, A.S., Giraudo, S.Q. Evidence of interactions between melanocortin and opioid systems in regulation of feeding. Neuroreport 2001;12:1727–1730.

    Article  CAS  PubMed  Google Scholar 

  171. O'Hare, E., Levine, A.S., Semotuk, M.T., Tierney, K.J., Shephard, R.A., Grace, M.K., Cleary, J. Utilization of a novel model of food reinforced behavior involving neuropeptide Y, insulin, 2-deoxy-D-glucose and naloxone. Behav. Pharmacol. 1996;7:742–753.

    PubMed  Google Scholar 

  172. Rudski, J.M., Grace, M., Kuskowski, M.A., Billington, C.J., Levine, A.S. Behavioral effects of naloxone on neuropeptide Y-induced feeding. Pharmacol. Biochem. Behav. 1996;54:771–777.

    Article  CAS  PubMed  Google Scholar 

  173. Hagan, M.M., Moss, D.E. Effect of naloxone and antidepressants on hyperphagia produced by peptide Y Y. Pharmacol. Biochem. Behav. 1993;45:941–944.

    Article  CAS  PubMed  Google Scholar 

  174. Fletcher, P.J. Opiate antagonists inhibit feeding induced by 8-OH-DPAT: possible mediation in the nucleus accumbens. Brain Res. 1991;560:260–267.

    Article  CAS  PubMed  Google Scholar 

  175. Jackson, H.C., Griffin, I.J., Nutt, D.J. Endogenous opioids may be involved in idazoxan-induced food intake. Neuropharmacology 1992;31:771–776.

    Article  CAS  PubMed  Google Scholar 

  176. Clegg, D.J., Air, E.L., Woods, S.C., Seeley, R.J. Eating elicited by orexin-a, but not melanin-concentrating hormone, is opioid-mediated. Endocrinology 2002;143:2995–3000.

    Article  CAS  PubMed  Google Scholar 

  177. Mann, P.E., Arjune, D., Romero, M.T., Pasternak, G.W., Hahn, E.F., Bodnar, R.J. Differential sensitivity of opioid-induced feeding to naloxone and naloxonazine. Psychopharmacology 1988;94:330–341.

    Article  Google Scholar 

  178. Jackson, H.C., Sewell, R.D.E. Are delta opioid receptors involved in the regulation of food and water intake? Neuropharmacology 1985;24:885–888.

    Article  CAS  PubMed  Google Scholar 

  179. Yu, W.-Z., Ruegg, H., Bodnar, R.J. Delta and kappa opioid receptor subtypes and ingestion: antagonist and glucoprivic effects. Pharmacol. Biochem. Behav. 1997;56:353–361.

    Article  CAS  PubMed  Google Scholar 

  180. Koch, J.E., Pasternak, G.W., Arjune, D., Bodnar, R.J. Naloxone benzoylhydrazone, a kappa-3 opioid agonist, stimulates food intake in rats. Brain Res. 1992;581:311–314.

    Article  CAS  PubMed  Google Scholar 

  181. Sipols, A.J., Bayer, J., Bennett, R., Figlewicz, D.P. Intraventricular insulin decreases kappa opioid-mediated sucrose intake in rats. Peptides 2002;23:2181–2187.

    Article  CAS  PubMed  Google Scholar 

  182. Jewett, D.C., Grace, M.K., Jones, R.M., Billington, C.J., Portoghese, P.S., Levine, A.S. The kappa-opioid antagonist GNTI reduces U50,488-, DAMGO-, and deprivation-induced feeding, but not butorphanol- and neuropeptide Y-induced feeding in rats. Brain Res. 2001; 909:75–80.

    Article  CAS  PubMed  Google Scholar 

  183. Silva, R.M., Hadjimarkou, M.M., Rossi, G.C., Pasternak, G.W., Bodnar, R.J. Beta-endorphin-induced feeding: pharmacological characterization using selective opioid antagonists and antisense probes in rats. J. Pharmacol. Exp. Ther. 2001;297:590–596.

    CAS  PubMed  Google Scholar 

  184. DePedro, N., Cespedes, M.V., Delgado, M.J., Alonso-Bedate, M. Mu-opioid receptor is involved in beta-endorphin-induced feeding in goldfish. Peptides 1996;17:421–424.

    Article  CAS  Google Scholar 

  185. Silva, R.M., Grossman, H.C., Hadjimarkou, M.M., Rossi, G.C., Pasternak, G.W., Bodnar, R.J. Dynorphin A1-17-induced feeding: pharmacological characterization using selective opioid antagonists and antisense probes in rats. J. Pharmacol. Exp. Ther. 2002;301:513–518.

    Article  CAS  PubMed  Google Scholar 

  186. Kotz, C.M., Grace, M.K., Billington, C.J., Levine, A.S. The effect of nor-binaltorphamine, beta-funaltrexamine and naltrindole on NPY-induced feeding. Brain Res. 1993;631:325–328.

    Article  CAS  PubMed  Google Scholar 

  187. Israel, Y., Kandov, Y., Kest, A., Lewis, S.R., Bodnar, R.J. Neuropeptide Y-induced feeding: pharmacological characterization using selective opioid antagonists and antisense probes in rats. Peptides 2005;26:1167–1175.

    Article  CAS  PubMed  Google Scholar 

  188. Barton, C., York, D.A., Bray, G.A. Opioid receptor subtype control of galanin-induced feeding. Peptides 1996;17:237–240.

    Article  CAS  PubMed  Google Scholar 

  189. Brugman, S., Clegg, D.J., Woods, S.C., Seeley, R.J. Combined blockade of both micro-and kappa-opioid receptors prevents the acute orexigenic action of Agouti-related protein. Endocrinology 2002;143:4265–4270.

    Article  CAS  PubMed  Google Scholar 

  190. Grossman, H.C., Hadjimarkou, M.M., Silva, R.M., Giraudo, S.Q., Bodnar, R.J. Interrelationships between mu opioid and melanocortin receptors in mediating food intake in rats. Brain Res. 2003;991:240–244.

    Article  CAS  PubMed  Google Scholar 

  191. Polidori, C., deCaro, G., Massi, M. The hyperphagic effect of nociceptin/orphanin FQ in rats. Peptides 2000;21:1051–1062.

    Article  CAS  PubMed  Google Scholar 

  192. Kotz, C.M., Glass, M.J., Levine, A.S., Billington, C.J. Regional effect of naltrexone in the nucleus of the solitary tract in blockade of NPY-induced feeding. Am. J. Physiol. 2000;278:R499–R503.

    CAS  Google Scholar 

  193. Kotz, C.M., Grace, M.K., Briggs, J., Levine, A.S., Billington, C.J. Effects of opioid antagonists naloxone and naltrexone on neuropeptide Y-induced feeding and brown fat thermogen-esis in the rat. J. Clin. Invest. 1995;96:163–170.

    Article  CAS  PubMed  Google Scholar 

  194. Kelley, A.E., Bakshi, V.P., Fleming, S., Holahan, M.R. A pharmacological analysis of the substrates underlying conditioned feeding induced by repeated opioid stimulation of the nucleus accumbens. Neuropsychopharmacology 2000;23:455–467.

    Article  CAS  PubMed  Google Scholar 

  195. Ragnauth, A., Moroz, M., Bodnar, R.J. Multiple opioid receptors mediate feeding elicited by mu and delta opioid receptor subtype agonists in the nucleus accumbens shell in rats. Brain Res. 2000;876:76–87.

    Article  CAS  PubMed  Google Scholar 

  196. Lamonte, N., Echo, J.A., Ackerman, T.F., Christian, G., Bodnar, R.J. Analysis of opioid receptor subtype antagonist effects upon mu opioid agonist-induced feeding elicited from the ventral tegmental area of rats. Brain Res. 2002;929:96–100.

    Article  CAS  PubMed  Google Scholar 

  197. Znamensky, V., Echo, J.A., Lamonte, N., Christian, G., Ragnauth, A., Bodnar, R.J. GABA receptor subtype antagonists differentially alter opioid-induced feeding in the shell region of the nucleus accumbens. Brain Res. 2001;906:84–91.

    Article  CAS  PubMed  Google Scholar 

  198. Echo, J.A., Lamonte, N., Ackerman, T.F., Bodnar, R.J. Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats. Physiol. Behav. 2002;76:107–116.

    Article  CAS  PubMed  Google Scholar 

  199. Khaimova, E., Kandov, Y., Israel, Y., Cataldo, G., Hadjimarkou, M.M., Bodnar, R.J. Opioid receptor subtype antagonistas differentially alter GABA agonist-induced feeding elicited from either the nucleus accumbens shell or ventral tegmental area region in rats. Brain Res. 2004;1026:284–294.

    Article  CAS  PubMed  Google Scholar 

  200. MacDonald, A.F., Billington, C.J., Levine, A.S. Effects of the opioid antagonist naltrexone on feeding induced by DAMGO in the ventral tegmental area and in the nucleus accumbens shell region in the rat. Am. J. Physiol. 2003;285:R999–R1004.

    CAS  Google Scholar 

  201. Bodnar, R.J., Lamonte, N., Israel, Y., Kandov, Y., Ackerman, T.F., Khaimova E. Reciprocal opioid—opioid interactions between the ventral tegmental area and nucleus accumbens regions in mediating mu agonist-induced feeding in rats. Peptides 2005;26:621–629.

    Article  CAS  PubMed  Google Scholar 

  202. Quinn, J.G., O'Hare, E., Levine, A.S., Kim, E.M. Evidence for a mu-opioid-opioid connection between the paraventricular nucleus and ventral tegmental area in the rat. Brain Res. 2003;991:206–211.

    Article  CAS  PubMed  Google Scholar 

  203. Giraudo, S.Q., Kotz, C.M., Billington, C.J., Levine, A.S. Association between the amygdala and the nucleus of the solitary tract in mu opioid induced feeding in the rat. Brain Res. 1998;802:184–188.

    Article  CAS  PubMed  Google Scholar 

  204. Giraudo, S.Q., Billington, C.J., Levine, A.S. Effects of the opioid antagonist naltrexone on feeding induced by DAMGO in the central nucleus of the amygdala and in the paraventricu-lar nucleus in the rat. Brain Res. 1998;782:18–23.

    Article  CAS  PubMed  Google Scholar 

  205. Leventhal, L., Silva, R.M., Rossi, G.C., Pasternak, G.W., Bodnar, R.J. Morphine-6beta-glucuronide-induced hyperphagia: characterization of opioid action by selective antagonists and antisense mapping in rats. J. Pharmacol. Exp. Ther. 1998;287:538–544.

    CAS  PubMed  Google Scholar 

  206. Leventhal, L., Stevens, L.B., Rossi, G.C., Pasternak, G.W., Bodnar, R.J. Antisense mapping of the MOR-1 opioid receptor clone: modulation of hyperphagia induced by DAMGO. J. Pharmacol. Exp. Ther. 1997;282:1402–1407.

    CAS  PubMed  Google Scholar 

  207. Leventhal, L., Mathis, J.P., Rossi, G.C., Pasternak, G.W., Bodnar, R.J. Orphan opioid receptor antisense probes block orphanin F-Qinduced hyperphagia. Eur. J. Pharmacol. 1998; 349:R1–R3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bodnar, R.J. (2009). Preclinical Effects of Opioid Antagonists on Feeding and Appetite. In: Dean, R.L., Bilsky, E.J., Negus, S.S. (eds) Opiate Receptors and Antagonists. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-197-0_20

Download citation

Publish with us

Policies and ethics