Skip to main content

Ultra-Low-Dose Opioid Antagonists Enhance Opioid Analgesia and Reduce Tolerance

  • Chapter
Opiate Receptors and Antagonists

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Ultra-low-dose opioid antagonists have been shown to enhance opioid analgesia and attenuate the tolerance to analgesic effects normally seen with chronic opioid administration. This chapter reviews the early work with ultra-low-dose opioid antagonists starting with electrophysiological recordings of dorsal root ganglion neurons and continuing to antinociception in rodents. These pharmacological findings have not adhered to typical dose response curves and have instead been reported to occur at wide ranges of extremely low doses of several opioid antagonists as well as with the rare opioid agonist. Optimal dose ranges have also been reported to vary with sex and strain of rat. Translation into small clinical studies has been met with varied results, related to variations in dose, route of administration, and antagonist selected. Nevertheless, the clinical studies that have demonstrated enhanced analgesia or opioid sparing effects have utilized opioid antagonist doses in lower dose ranges than the studies that failed to demonstrate efficacy. Furthermore, a large double-blind, placebo- and active-controlled clinical trial demonstrated enhanced opioid analgesia with the extremely low dose of 2 μg naltrexone/patient/day. Preclinical data also extend the effects of ultra-low-dose opioid antagonists to neuropathic pain, which is comparatively resistant to opioid treatment and, interestingly, to cannabinoid analgesia. The mechanism of action has been shown to be the prevention of a chronic opioid-induced mu opioid receptor—G protein coupling switch that is associated with analgesic tolerance and dependence. Finally, recent data shows that this G protein coupling switch is controlled by filamin A and that a high-affinity interaction of naloxone or naltrexone with this scaffolding protein mediates their prevention of the altered coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bijur PE, Schechter C, Esses D, Chang AK, Gallagher EJ (2006) Intravenous bolus of ultra-low-dose naloxone added to morphine does not enhance analgesia in emergency department patients. J Pain 7:75–81.

    Article  CAS  PubMed  Google Scholar 

  2. Burns, LH (2005) Ultra-low-dose opioid antagonists enhance opioid analgesia while decreasing tolerance, dependence and addictive properties. In: Recent Developments in Pain Research, Anna Capasso (Ed.), pp 115–136.

    Google Scholar 

  3. Cai G, Wang H-Y, Friedman E (2002) Increased dopamine receptor signaling and dopamine receptor—protein coupling in denervated striatum. J Pharmacol Exp Ther 302:1105–1112.

    Article  CAS  PubMed  Google Scholar 

  4. Cepeda MS, Africano JM, Manrique AM, Fragoso W, Carr DB (2002) The combination of low dose naloxone and morphine in PCA does not decrease opioid requirements in the postoperative period. Pain 96:73–79.

    Article  CAS  PubMed  Google Scholar 

  5. Cepeda MS, Alvarez H, Morales O, Carr DB (2004) Addition of ultra low dose naloxone to postoperative morphine PCA: unchanged analgesia and opioid requirement but decreased incidence of opioid side effects. Pain 107:41–46.

    Article  PubMed  Google Scholar 

  6. Chakrabarti S, Regec A, Gintzler AR (2005) Biochemical demonstration of mu-opioid receptor association with Gsα: enhancement following morphine exposure. Mol Brain Res 135:217–224.

    Article  CAS  PubMed  Google Scholar 

  7. Chindalore VL, Craven RA, Butera PG, Yu KP, Burns LH, Friedmann N (2005) Adding ultra-low-dose naltrexone to oxycodone enhances and prolongs analgesia. J Pain 6:392–399.

    Article  CAS  PubMed  Google Scholar 

  8. Connor M, Christie MD (1999) Opioid receptor signalling mechanisms. Clin Exp Pharmacol Physiol 26:493–499.

    Article  CAS  PubMed  Google Scholar 

  9. Crain SM, Shen K-F (1990) Opioids can evoke direct receptor-mediated excitatory effects on sensory neurons. Trends Pharmacol Sci 11:77–81.

    Article  CAS  PubMed  Google Scholar 

  10. Crain SM, Shen K-F (1992) After chronic opioid exposure sensory neurons become supersen-sitive to the excitatory effects of opioid agonists and antagonists as occurs after acute elevation of GM1 ganglioside. Brain Res 575:13–24.

    Article  CAS  PubMed  Google Scholar 

  11. Crain SM, Shen K-F (1995) Ultra-low concentrations of naloxone selectively antagonize excitatory effects of morphine on sensory neurons, thereby increasing its antinociceptive potency and attenuating tolerance/dependence during chronic cotreatment. Proc Natl Acad Sci USA 92:10540–10544.

    Article  CAS  PubMed  Google Scholar 

  12. Crain SM, Shen K-F (1998) Modulation of opioid analgesia, tolerance and dependence by Gs-coupled, GM1 ganglioside-regulated opioid receptor functions. Trends Pharmacol Sci 19:358–365.

    Article  CAS  PubMed  Google Scholar 

  13. Crain SM, Shen K-F (2000a) Antagonists of excitatory opioid receptor functions enhance morphine's analgesic potency and attenuate opioid tolerance/dependence liability. Pain 84: 121–131.

    Article  CAS  Google Scholar 

  14. Crain SM, Shen K-F (2000b) Enhanced analgesic potency and reduced tolerance of morphine in 129/SvEv mice: evidence for a deficiency in GM1 ganglioside-regulated excitatory opioid receptor functions. Brain Res 856:227–235.

    Article  CAS  Google Scholar 

  15. Crain SM, Shen K-F (2001) Acute thermal hyperalgesia elicited by low-dose morphine in normal mice is blocked by ultra-low-dose naltrexone, unmasking potent opioid analgesia. Brain Res 888:75–82.

    Article  CAS  PubMed  Google Scholar 

  16. Cruciani RA, Lussier D, Miller-Saultz D, Arbuck DM (2003) Ultra-low dose oral naltrexone decreases side effects and potentiates the effect of methadone. J Pain Symptom Management 25:491–494.

    Article  Google Scholar 

  17. Emmerson P, Liu M, Woods J, Medzihradsky F (1994) Binding affinity and selectivity of opioids at mu, delta and kappa receptors in monkey brain membranes. J Pharmacol Exp Ther 271:1630–1637.

    CAS  PubMed  Google Scholar 

  18. Gan TJ, Ginsberg B, Glass PSA, Fortney J, Jhaveri R, Perno R (1997) Opioid-sparing effects of a low-dose infusion of naloxone in patient-administered morphine sulfate. Anesthesiology 87:1075–1081.

    Article  CAS  PubMed  Google Scholar 

  19. Gharagozlou P, Demirci H, Clark J, Lameh J (2003) Activity of opioid ligands in cells expressing cloned μ opioid receptors. BMC Pharmacology 3:1471–2210.

    Article  Google Scholar 

  20. Gintzler AR, Chakrabarti S (2001) Opioid tolerance and the emergence of new opioid receptor-coupled signaling. Mol Neurobiol 21:21–33.

    Article  Google Scholar 

  21. Hamman SR, Malik H, Sloan JW, Wala EP (2004) Interactions of “ultra-low” doses of nal-trexone and morphine in mature and young male and female rats. Recept Chan 10:73–81.

    Article  Google Scholar 

  22. Holtman JR and Wala EP (2005) Characterization of morphine-induced hyperalgesia in male and female rats. Pain 114:62–70.

    Article  CAS  PubMed  Google Scholar 

  23. Holtman JR and Wala EP (2006) Characterization of the antinociceptive effect of oxycodone in male and female rats. Pharmacol Biochem Behav 83:100–108.

    Article  CAS  PubMed  Google Scholar 

  24. Ikeda K, Kobayashi T, Kumanishi T, Niki H, Yano R (2000) Involvement of G-protein-activated inwardly rectifying K + (GIRK) channels in opioid-induced analgesia. Neurosci Res 38:113–116.

    Article  CAS  PubMed  Google Scholar 

  25. Jin LQ, Wang H-Y, Friedman E (2001) Stimulated D(1) dopamine receptors couple to multiple G-alpha proteins in different brain regions. J Neurochem 78:981–990.

    Article  CAS  PubMed  Google Scholar 

  26. Joshi GP, Duffy L, Chehade J, Wesevich J, Gajraj N, Johnson ER (1999) Effects of prophylactic nalmefene on the incidence of morphine-related side effects in patients receiving intravenous patient-controlled analgesia. Anesthesiology 90:1007–1011.

    Article  CAS  PubMed  Google Scholar 

  27. Kayser V, Besson JM, Guilbaud G (1987) Paradoxical hyperalgisic effect of exceedingly low doses of systemic morphine in an animal model of persistent pain (Freund's adjuvant-induced arthritis rats). Brain Res 414:155–157.

    Article  CAS  PubMed  Google Scholar 

  28. Kest B, Sarton E, Dahan A (2000) Gender differences in opioid-mediated analgesia. Anesthe-siology 93:539–547.

    Article  CAS  Google Scholar 

  29. Kiyatkin EA (1989) Morphine: some puzzles of a well-known substance. Int J Neurosci 45:231–246.

    Article  CAS  PubMed  Google Scholar 

  30. Largent-Milnes TM, Guo W, Wang H-Y, Burns LH, Vanderah T (2008) Oxycodone + ultra-low-dose naltrexone attenuates neuropathic pain and associated mu opioid receptor—Gs coupling. J Pain 9:700–713.

    Article  CAS  PubMed  Google Scholar 

  31. Laugwitz KL, Offermanns S, Spicher K, Schultz G (1993) Mu and delta opioid receptors differentially couple to G protein subtypes in membranes of human neuroblastoma SH-SY5Y cells. Neuron 10:233–242.

    Article  CAS  PubMed  Google Scholar 

  32. Maldonado R, Valverde O (2003) Participation of the opioid system in cannabinoid-induced antinociception and emotional like responses. Eur Neuropsychopharmacol 13:401–410.

    Article  CAS  PubMed  Google Scholar 

  33. Matsumoto A, Ma T, Babul N, Ahdieh H, Lee D (2002) Oxymorphine ER (20 mg and 40 mg) provides superior efficacy compared with placebo and oxycontin (20 mg) in pain associated with osteoarthritis: results of a randomized, controlled trial. In: 10th World Congress of Pain. San Diego, CA.

    Google Scholar 

  34. Onoprishvili I, Andria M, Kramer H, Ancevska-Taneva N, Hiller J, Simon E (2003) Interaction between the μ opioid receptor and fliamin A is involved in receptor regulation and trafficking. Mol Pharmacol 64:1092–1100.

    Article  CAS  PubMed  Google Scholar 

  35. Paquette J, Olmstead M (2005) Ultra-low dose naltrexone enhances cannabinoid-induced antinociception. Behav Pharmacol 16:597–603.

    Article  CAS  PubMed  Google Scholar 

  36. Powell KJ, Abul-Husn NS, Jhamandas A, Olmstead MC, Beninger RJ, Jhamandas K (2002) Paradoxical effects of the opioid antagonist naltrexone on morphine analgesia, tolerance, and reward in rats. J Pharmacol Exp Ther 300:588–596.

    Article  CAS  PubMed  Google Scholar 

  37. Roth SH, Fleischmann RM, Burch FX, Dietz R, Bockow B, Rapoport RJ, Rutstein J, Lacouture PG (2000) Around-the-clock, controlled-release oxycodone therapy for osteoar-thritis-related pain. Arch Intern Med 160:853–860.

    Article  CAS  PubMed  Google Scholar 

  38. Saegusa H, Kurihara T, Zong S, Minowa O, Kazuno A, Han W, Matsuda Y, Yamanaka H, Osanai M, Noda T, Tanabe T (2000) Altered pain responses in mice lacking α1E subunit of the voltage-dependent Ca2 + channel. Proc Natl Acad Sci USA 97:6132–6137.

    Article  CAS  PubMed  Google Scholar 

  39. Shen KF, Crain SM (1989) Dual opioid modulation of the action potential duration of mouse dorsal root ganglion neurons in culture. Brain Research 491:227–242.

    Article  CAS  PubMed  Google Scholar 

  40. Shen K-F, Crain SM (1990) Cholera toxin-A subunit blocks opioid excitatory effects on sensory neuron action potentials indicating mediation by Gs-linked opioid receptors. Brain Research 525:225–231.

    Article  CAS  PubMed  Google Scholar 

  41. Shen KF, Crain SM (1994) Antagonists at excitatory opioid receptors on sensory neurons in culture increase potency and specificity of opiate analgesics and attenuate development of tolerance/dependence. Brain Res 636:286–297.

    Article  CAS  PubMed  Google Scholar 

  42. Shen KF, Crain SM (1995) Specific N- or C-terminus modified dynorphin and beta-endorphin peptides can selectively block excitatory opioid receptor functions in sensory neurons and unmask potent inhibitory effects of opioid agonists. Brain Res 673:30–38.

    Article  CAS  PubMed  Google Scholar 

  43. Shen KF, Crain SM (1997) Ultra-low doses of naltrexone or etorphine increase morphine's antinociceptive potency and attenuate tolerance/dependence in mice. Brain Res 757: 176–190.

    Article  CAS  PubMed  Google Scholar 

  44. Shen K-F, Crain SM, Moate P, Boston R, de Kater AW, Schoenhard GL (2002a) PTI-801, a novel formulation of oxycodone, shows absence of tolerance, physical dependence and naloxone-precipitated withdrawal effects in mice. J Pain 3:49.

    Google Scholar 

  45. Shen K-F, Crain SM, Moate P, Boston R, de Kater AW, Schoenhard GL (2002b) PTI-555, reverses and prevents morphine-induced tolerance and naloxone-precipitated withdrawal in mice chronically treated with morphine. J Pain 3:50.

    Article  Google Scholar 

  46. Terner JM, Barrett AC, Lomas LM, Negus SS, Picker MJ (2006) Influence of low doses of naltrexone on morphine antinociception and morphine tolerance in male and female rats of four strains. Pain 122:90–101.

    Article  CAS  PubMed  Google Scholar 

  47. Vanderah TW, Gardell LR, Burgess SE, Ibrahim M, Zhong C-M, Ossipov MH, Lai J, Malan Jr. TP, Porreca F. (2000) Repeated spinal opioid administration produces abnormal pain and antinociceptive tolerance which is reversed by dynorphin antiserum. J Neurosci., 20: 7074–7079.

    CAS  PubMed  Google Scholar 

  48. Vanderah TW, Suenaga NMH, Ossipov MH, Malan Jr. TP, Lai J, Porreca F. (2001) Descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J Neurosci 21:279–286.

    CAS  PubMed  Google Scholar 

  49. Vanderah TW, Burns LH (2004) Ultra-low-dose naltrexone plus morphine blocks thermal hyperalgesia and attenuates mechanical hypersensitivity in a neuropathic pain model. In: 2nd Joint Meeting of the American and Canadian Pain Societies, Vancouver, BC.

    Google Scholar 

  50. Wang H-Y, Friedman E (1999) Effects of lithium on receptor-mediated activation of G proteins in rat brain cortical membranes. Neuropharmacology 38:403–414.

    Article  CAS  PubMed  Google Scholar 

  51. Wang H-Y, Burns LH (2006) Gβγ that interacts with adenylyl cyclase in opioid tolerance originates from a Gs protein. J Neurbiol 66:1302–1310.

    Article  CAS  Google Scholar 

  52. Wang H-Y, Frankfurt M, Burns LH (2008) High-affinity naloxone binding to filamin A prevents mu opioid receptor — Gs coupling underlying opioid tolerance and dependence. PLoS One 3:e1554.

    Article  PubMed  Google Scholar 

  53. Wang H-Y, Friedman E, Olmstead MC, Burns LH (2005) Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in Mu opioid receptor—G protein coupling and Gβγ signaling. Neuroscience 135:247–261.

    Article  CAS  PubMed  Google Scholar 

  54. Webster LR, Butera PG, Moran LV, Wu N, Burns LH, Friedmann N (2006) Oxytrex minimizes physical dependence while providing effective analgesia: a randomized controlled trial in low-back pain. J Pain 7:937–946.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang S-P, Wang H-Y, Lovenberg T, Codd E (2001) Functional studies of bradykinin receptors in Chinese hamster ovary cells stably expressing the human B2 bradykinin receptor. Internat Immunopharmacol 1:955–965.

    Article  CAS  Google Scholar 

  56. Zhen X, Torres C, Wang H-Y, Friedman E (2001) Protein phosphatase 1 regulates brain D1A dopamine receptor phosphorylation: role in dopaminergic dysfunction after in utero cocaine exposure. J Neurosci 21:9160–9167.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay H. Burns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burns, L.H., Vanderah, T.W., Wang, HY. (2009). Ultra-Low-Dose Opioid Antagonists Enhance Opioid Analgesia and Reduce Tolerance. In: Dean, R.L., Bilsky, E.J., Negus, S.S. (eds) Opiate Receptors and Antagonists. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-197-0_1

Download citation

Publish with us

Policies and ethics