Skip to main content

The Impact of Diabetes on Neuronal, Glial, and Vascular Cells of the Retina

Implications for the Pathogenesis of Diabetic Retinopathy

  • Chapter

Part of the book series: Ophthalmology Research ((OPHRES))

Abstract

Diabetic retinopathy is the leading cause of blindness in working-aged Americans (1); the seriousness of the disease is underscored by the burgeoning literature in this field. Reviews of pathogenesis and mechanisms of the disease abound. Indeed, a PubMed search of the topic yields more than 14,000 papers dating back to the late 1940s. It is beyond the scope of this chapter to review such a staggering volume of literature and largely unnecessary given the plethora of outstanding reviews on the topic of mechanisms of diabetic retinopathy that have been published in the last decade.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klein R, Klein BEK. Vision Disorders in Diabetes. National Diabetes Data Group Diabetes in America. NIH, Bethesda, MD pp. 293–337. NIH publication no 95–1468, 1995.

    Google Scholar 

  2. Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic retinopathy. More than meets the eye. Surv Ophthalmol 2002;47:S253–S262.

    Article  Google Scholar 

  3. Bringmann A, Reichenbach A. Role of Müller cells in retinal degenerations. Front Bio Sci 2001;6:E72–E92.

    CAS  Google Scholar 

  4. Poitry S, Poitry-Yamate C, Ueberfeld J, MacLeish PR, Tsacopoulos M. Mechanisms of glutamate metabolic signaling in retinal glial (Müller) cells. J Neurosci 2000;20:1809–1821.

    PubMed  CAS  Google Scholar 

  5. Li Q, Zemel E, Miller B, Perlman I. Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Exp Eye Res 2002;74:615–625.

    Article  PubMed  CAS  Google Scholar 

  6. Rungger-Brandle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy. Invest. Ophthalmol Vis Sci 2000;41:1971–1980.

    CAS  Google Scholar 

  7. Lieth E, Barber AJ, Xu B, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Diabetes 1998;47:815–820.

    Article  PubMed  CAS  Google Scholar 

  8. Kowluru RA, Engerman RL, Case GL, Kern TS. Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int 2001;38:385–390.

    Article  PubMed  CAS  Google Scholar 

  9. Ambati J, Chalam KV, Chawla DK, et al. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 1997;115:1161–1166.

    PubMed  CAS  Google Scholar 

  10. Mizutani M, Gerhardinger C, Lorenzi M. Müller cell changes in human diabetic retinopathy. Diabetes 1998;47:445–449.

    Article  PubMed  CAS  Google Scholar 

  11. Li Q, Puro DG. Diabetes induced dysfunction of the glutamate transporter in retinal Muller cells. Invest Ophthalmol Vis Sci 2002;43:3109–3116.

    PubMed  Google Scholar 

  12. Mysona BA, Rankin D, Van Ells TK, Ganapathy V, Smith SB. Effects of glucose and insulin on glast and xc-transporter function in primary mouse Müller cells. Invest Ophthalmol Vis Sci 2005;46 Abstract #2967.

    Google Scholar 

  13. Trotti D, Rossi D, Gjesdal O, et al. Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem 1996;271:5976–5979.

    Article  PubMed  CAS  Google Scholar 

  14. van Reyk DM, Gillies MC, Davies MJ. The retina: oxidative stress and diabetes. Redox Rep 2003;8:187–192.

    Google Scholar 

  15. Du Y, Sarthy VP, Kern TS. Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Amer J Physiol Reg Integ Comp Phys 2004;287:R735–R741.

    CAS  Google Scholar 

  16. Abu El-Asrar AM, Desmet S, Meersschaert A, Dralands L, Missotten L, Geboes K. Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus. Amer J Ophthalmol 2001;132:551–556.

    Article  CAS  Google Scholar 

  17. Du Y, Miller CM, Kern TS. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radical Biol Medicine 2003;35:1491–1499.

    Article  CAS  Google Scholar 

  18. Sarthy VP, Brodjian SJ, Dutt K, Kennedy BN, French RP, Crabb JW. Establishment and characterization of a retinal Müller cell line. Invest Ophthalmol Vis Sci 1998;39:212–216.

    PubMed  CAS  Google Scholar 

  19. Inokuchi N, Ikeda T, Imamura Y, et al. Vitreous levels of insulin-like growth factor-I in patients with proliferative diabetic retinopathy. Curr Eye Res 2001;23:368–371.

    Article  PubMed  CAS  Google Scholar 

  20. Guidry C, Feist R, Morris R, Hardwick CW. Changes in IGF activities in human diabetic vitreous. Diabetes 2004;53:2428–2435.

    Article  PubMed  CAS  Google Scholar 

  21. Ruberte J, Ayuso E, Navarro M, et al. Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease. J Clin Invest 2004;13:1149–1157.

    Article  CAS  Google Scholar 

  22. King JL, Guidry C. Müller cell production of insulin-like growth factor-binding proteins in vitro: modulation with phenotype and growth factor stimulation. Invest Ophthalmol Vis Sci 2004;45:4535–4542.

    Article  PubMed  Google Scholar 

  23. Guidry C. The role of Müller cells in fibrocontractive retinal disorders. Prog Retin Eye Res 2005;24:75–86.

    Article  PubMed  CAS  Google Scholar 

  24. Guidry C, Bradley KM, King JL. Tractional force generation by human Müller cells growth factor responsiveness and integrin receptor involvement. Invest Ophthalmol Vis Sci 2003;44:1355–1363.

    Article  PubMed  Google Scholar 

  25. Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P. Expression of acutephase response proteins in retinal Müller cells in Diabetes Invest Ophthalmol Vis Sci 2005;46:349–357.

    Article  Google Scholar 

  26. Kuiper EJ, Witmer AN, Klaassen I, Oliver N, Goldschmeding R, Schlingemann RO. Differential expression of connective tissue growth factor in microglia and pericytes in the human diabetic retina. Br J Ophthalmol 2004;88:1082–1087.

    Article  PubMed  CAS  Google Scholar 

  27. Wolter JR. Diabetic retinopathy. Am J Ophthalmol 1961;51:1123–1139.

    PubMed  CAS  Google Scholar 

  28. Bloodworth JMB. Diabetic retinopathy. Diabetes 1962;2:1–22.

    Google Scholar 

  29. Roy M, Gunkel R, Podgor M. Color vision defects in early diabetic retinopathy. Arch Ophthalmol 1986;104:225–228.

    PubMed  CAS  Google Scholar 

  30. Hirsh J, Puklin J. Reduced contrast sensitivity may precede clinically observable retinopathy in type 1 diabetes. In: Henkind P, ed. Acta XXIV International Congress of Ophthalmology. New York: Lippincott, 1982:719–724.

    Google Scholar 

  31. Greco AV, Di Leo MA, Caputo S, et al. Early selective neuroretinal disorder in prepubertal type 1 (insulin-dependent) diabetic children without microvascular abnormalities. Acta Diabetol 1994;31:98–102.

    Article  PubMed  CAS  Google Scholar 

  32. Ghirlanda G, Di Leo MA, Caputo S, et al. Detection of inner retina dysfunction by steady-state focal electroretinogram pattern and flicker in early IDDM. Diabetes 1991;40:1122–1127.

    Article  PubMed  CAS  Google Scholar 

  33. Shimada Y, Li Y, Bearse MA Jr, Sutter EE, Fung W. Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol 2001;85:414–419.

    Article  PubMed  CAS  Google Scholar 

  34. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes: early onset and effect of insulin. J Clin Invest 1998;102:783–791.

    PubMed  CAS  Google Scholar 

  35. Bek T. Transretinal histopathological changes in capillary-free areas of diabetic retinopathy. Acta Ophthalmol 1994;72:409–415.

    Article  CAS  Google Scholar 

  36. Kerrigan LA, Zack DJ, Quigley HA, Smith SD, Pease ME. TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch Ophthalmol 1997;115:1031–1035.

    PubMed  CAS  Google Scholar 

  37. Abu-El-Asrar AM, Dralands L, Missotten L, Al-Jadaan IA, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci 2004;45:2760–2766.

    Article  PubMed  Google Scholar 

  38. Lonneville YH, Ozdek SC, Onol M, Yetkin I, Gurelik G, Hasanreisoglu B. The effect of blood glucose regulation on retinal nerve fiber layer thickness in diabetic patients. Ophthalmologica 2003;217:347–350.

    Article  PubMed  CAS  Google Scholar 

  39. Ozdek S, Lonneville YH, Onol M, Yetkin I, Hasanreisoglu BB. Assessment of nerve fiber layer in diabetic patients with scanning laser polarimetry. Eye 2002;16:761–765.

    Article  PubMed  CAS  Google Scholar 

  40. Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 2003;52:506–511.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang L, Inoue M, Dong K, Yamamoto M. Retrograde axonal transport impairment of large-and medium-sized retinal ganglion cells in diabetic rat. Curr Eye Res 2000;20: 131–136.

    Article  PubMed  CAS  Google Scholar 

  42. Lieth E, Gardner TW, Barber AJ, Antonetti DA. Retinal neurodegeneration: early pathology in diabetes. Clin Experiment Ophthalmol 2000;28:3–8.

    Article  PubMed  CAS  Google Scholar 

  43. Scott TM, Foote J, Peat B, Galway G. Vascular and neural changes in the rat optic nerve following induction of diabetes with streptozotocin. J Anat 1986;144:145–152.

    PubMed  CAS  Google Scholar 

  44. Chihara E, Matsuoka T, Ogura Y, Matsumura M. Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy. Ophthalmology 1993;100:1147–1151.

    PubMed  CAS  Google Scholar 

  45. Hammes HP, Federoff HJ, Brownlee M. Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1997;1: 527–534.

    Google Scholar 

  46. Sima AA, Zhang WX, Cherian PV, Chakrabarti S. Impaired visual evoked potential and primary axonopathy of the optic nerve in the diabetic BB/W-rat. Diabetologia 1992;35: 602–607.

    Article  PubMed  CAS  Google Scholar 

  47. Kim YS, Kim YH, Cheon EW, et al. Retinal expression of clusterin in the streptozotocininduced diabetic rat. Brain Res 2003;976:53–59.

    Article  PubMed  CAS  Google Scholar 

  48. Li Q, Zemel E, Miller B, Perlman I. Early retinal damage in experimental diabetes: electroretinographical and morphological observations. Exp Eye Res 2002;74:615–625.

    Article  PubMed  CAS  Google Scholar 

  49. Kern TS, Engerman RL. A mouse model of diabetic retinopathy. Arch Ophthalmol 1996;114:986–990.

    PubMed  CAS  Google Scholar 

  50. Hammes HP, Lin J, Renner O, et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 2002;51:3107–3112.

    Article  PubMed  CAS  Google Scholar 

  51. Mohr S, Xi X, Tang J, Kern TS. Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes 2002;51:1172–1179.

    Article  PubMed  CAS  Google Scholar 

  52. Martin PM, Roon P, Van Ells TK, Ganapathy V, Smith SB. Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci 2004;45:3330–3336.

    Article  PubMed  Google Scholar 

  53. Kowluru RA. Retinal metabolic abnormalities in diabetic mouse: comparison with diabetic rat. Curr Eye Res 2002;24:123–128.

    Article  PubMed  Google Scholar 

  54. Goldstein M, Leibovitch I, Yeffimov I, Gavendo S, Sela BA, Loewenstein A. Hyperhomocysteinemia in patients with diabetes mellitus with and without diabetic retinopathy. Eye 2004;18:460–465.

    Article  PubMed  CAS  Google Scholar 

  55. Neugebauer S, Baba T, Kurokawa K, Watanabe T. Defective homocysteine metabolism as a risk factor for diabetic retinopathy. Lancet 1997;349:473–474.

    Article  PubMed  CAS  Google Scholar 

  56. Smith SB, Van Ells TK, Mysona B, Martin PM, Roon P, Ganapathy V. Assessment of retinas of diabetic mice with mild elevation of plasma homocysteine. Invest Ophthalmol Vis Sci 2004;45 Abstract #3231.

    Google Scholar 

  57. Barber AJ, Antonetti DA, Kern TS, et al. The Ins2Akita mouse as a model of early retinal complications in Diabetes Invest Ophthalmol Vis Sci 2005;46:2210–2218.

    Article  Google Scholar 

  58. Ning X, Baoyu Q, Yuzhen L, Shuli S, Reed E, Li QQ. Neuro-optic cell apoptosis and microangiopathy in KKAY mouse retina. Int J Mol Med 2004;13:87–92.

    PubMed  Google Scholar 

  59. Lambooij AC, van Wely KH, Lindenbergh-Kortleve DJ, Kuijpers RW, Kliffen M, Mooy CM. Insulin-like growth factor-I and its receptor in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 2003;44:2192–2198.

    Article  PubMed  Google Scholar 

  60. Ohashi H, Takagi H, Koyama S, et al. Alterations in expression of angiopoietins and the Tie-2 receptor in the retina of streptozotocin induced diabetic rats. Mol Vis 2004; 26:10:608–617.

    Google Scholar 

  61. Tikellis C, Cooper ME, Twigg SM, Burns WC, Tolcos M. Connective tissue growth factor is up-regulated in the diabetic retina: amelioration by angiotensin-converting enzyme inhibition. Endocrinology 2004;145:860–866.

    Article  PubMed  CAS  Google Scholar 

  62. Cox OT, Simpson DA, Stitt AW, Gardiner TA. Sources of PDGF expression in murine retina and the effect of short-term diabetes. Mol Vis 2003;9:665–672.

    PubMed  CAS  Google Scholar 

  63. Vinores SA, Youssri AI, Luna JD, et al. Upregulation of vascular endothelial growth factor in ischemic and non-ischemic human and experimental retinal disease. Histol Histopath 1997;12:99–109.

    CAS  Google Scholar 

  64. Lu M, Kuroki M, Amano S, et al. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 1998;101:1219–1224.

    Article  PubMed  CAS  Google Scholar 

  65. Ng YK, Zeng XX, Ling EA. Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin-induced diabetic rats. Brain Res 2004;1018:66–72.

    Article  PubMed  CAS  Google Scholar 

  66. Ola MS, Moore P, Maddox D, et al. Analysis of sigma receptor (σR1) expression in retinal ganglion cells cultured under hyperglycemic conditions and in diabetic mice. Brain Res Mol Brain Res 2002;107:97–107.

    PubMed  Google Scholar 

  67. Park SH, Park JW, Park SJ, et al. Apoptotic death of photoreceptors in the streptozotocininduced diabetic rat retina. Diabetologia 2003;46:1260–1268.

    Article  PubMed  Google Scholar 

  68. Seki M, Tanaka T, Nawa H, et al. Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brainderived neurotrophic factor for dopaminergic amacrine cells. Diabetes 2004;53:2412–2419.

    Article  PubMed  CAS  Google Scholar 

  69. Kaneko M, Sugawara T, Tazawa Y. Electrical responses from the inner retina of rats with streptozotocin-induced early diabetes mellitus. Acta Societ Ophthalmol Jap 2000;104: 775–778.

    CAS  Google Scholar 

  70. Agardh E, Bruun A, Agardh CD. Retinal glial cell immunoreactivity and neuronal cell changes in rats with STZ-induced diabetes. Curr Eye Res 2001;23:276–284.

    Article  PubMed  CAS  Google Scholar 

  71. Ng YK, Zeng XX, Ling EA. Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin-induced diabetic rats. Brain Res 2004;1018:66–72.

    Article  PubMed  CAS  Google Scholar 

  72. Nork TM. Acquired color vision loss and a possible mechanism of ganglion cell death in glaucoma. Trans Amer Ophthalmol Soc 2000;98:331–363.

    CAS  Google Scholar 

  73. Lahdenranta J, Pasqualini R, Schlingemann RO, et al. An anti-angiogenic state in mice and humans with retinal photoreceptor cell degeneration. Proc Natl Acad Sci USA 2001;98: 10,368–10,373.

    Article  PubMed  CAS  Google Scholar 

  74. Kumagai AK. Glucose transport in brain and retina: implications in the management and complications of diabetes. Diabetes/Metab Res Rev 1999;15:261–273.

    Article  CAS  Google Scholar 

  75. Chancy CD, Kekuda R, Huang W, et al. Expression and Differential Polarization of the Reduced-Folate Transporter-1 and the Folate Receptor α in Mammalian Retinal Pigment Epithelium. J Biol Chem 2000;275:20,676–20,684.

    Article  PubMed  CAS  Google Scholar 

  76. Naggar H, Ola MS, Moore P, et al. Downregulation of reduced-folate transporter by glucose in cultured RPE cells and in RPE of diabetic mice. Invest Ophthalmol Vis Sci 2002;43:556–563.

    PubMed  Google Scholar 

  77. Stevens MJ, Hosaka Y, Masterson JA, Jones SM, Thomas TP, Larkin DD. Downregulation of the human taurine transporter by glucose in cultured retinal pigment epithelial cells. Am J Physiol 1999;277:E760–E771.

    PubMed  CAS  Google Scholar 

  78. Rollin R, Mediero A, Martinez-Montero JC, et al. Atrial natriuretic peptide in the vitreous humor and epiretinal membranes of patients with proliferative diabetic retinopathy. Mol. Vis 2004;10:450–457.

    PubMed  CAS  Google Scholar 

  79. Framme C, Roider J. Immediate and long-term changes of fundus autofluorescence in continuous wave laser lesions of the retina. Ophthal Surg Lasers Imag 2004;35:131–138.

    Google Scholar 

  80. Framme C, Brinkmann R, Birngruber R, Roider J. Autofluorescence imaging after selective RPE laser treatment in macular diseases and clinical outcome: a pilot study. Br J Ophthalmol 2002;86:1099–1106.

    Article  PubMed  CAS  Google Scholar 

  81. Bensaoula T, Ottlecz A. Biochemical and ultrastructural studies in the neural retina and retinal pigment epithelium of STZ-diabetic rats: effect of captopril. J Ocul Pharmacol Therapeut 2001;17:573–586.

    Article  CAS  Google Scholar 

  82. Du Y, Smith MA, Miller CM, Kern TS. Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine. J Neuro Chem 2002;80:771–779.

    CAS  Google Scholar 

  83. Zheng L, Szabo C, Kern TS. Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB. Diabetes 2004;53: 2960–2967.

    Article  PubMed  CAS  Google Scholar 

  84. Kowluru RA, Koppolu P, Chakrabarti S, Chen S. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Rad Res 2003;37:1169–1180.

    Article  CAS  Google Scholar 

  85. Kowluru RA. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sciences 2005;76:1051–1060.

    Article  PubMed  CAS  Google Scholar 

  86. Kowluru RA, Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. Br J Ophthalmol 2004;88:1343–1347.

    Article  PubMed  CAS  Google Scholar 

  87. Butler JM, Guthrie SM, Koc M, et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 2005;115:86–93.

    Article  PubMed  CAS  Google Scholar 

  88. Kondo T, Vicent D, Suzuma K, et al. Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization. J Clin Invest 2003;111: 1835–1842.

    Article  PubMed  CAS  Google Scholar 

  89. Kondo T, Kahn CR. Altered insulin signaling in retinal tissue in diabetic states. J Biol Chem 2004;279:37,997–38,006.

    Article  PubMed  CAS  Google Scholar 

  90. Fernandes R, Carvalho AL, Kumagai A, et al. Downregulation of retinal GLUT1 in diabetes by ubiquitinylation. Mol Vis 2004;10:618–628.

    PubMed  CAS  Google Scholar 

  91. Fernandes R, Suzuki K, Kumagai AK. Inner blood-retinal barrier GLUT1 in long-term diabetic rats: an immunogold electron microscopic study. Invest Ophthalmol Vis Sci 2003;44: 3150–3154.

    Article  PubMed  Google Scholar 

  92. Zhang JZ, Gao L, Widness M, Xi X, Kern TS. Captopril inhibits glucose accumulation in retinal cells in Diabetes Invest Ophthalmol Vis Sci 2003;44:4001–4005.

    Article  Google Scholar 

  93. Suganami E, Takagi H, Ohashi H, et al. Leptin stimulates ischemia-induced retinal neovascularization: possible role of vascular endothelial growth factor expressed in retinal endothelial cells. Diabetes 2004;53:2443–2448.

    Article  PubMed  CAS  Google Scholar 

  94. Chibber R, Ben-Mahmud BM, Mann GE, Zhang JJ, Kohner EM. Protein kinase C beta2-dependent phosphorylation of core 2 GlcNAc-T promotes leukocyte-endothelial cell adhesion: a mechanism underlying capillary occlusion in diabetic retinopathy. Diabetes 2003; 52:1519–1527.

    Article  PubMed  CAS  Google Scholar 

  95. Khan ZA, Cukiernik M, Gonder JR, Chakrabarti S. Oncofetal fibronectin in diabetic retinopathy. Invest Ophthalmol Vis Sci 2044;45:287–295.

    Article  Google Scholar 

  96. Grammas P, Riden M. Retinal endothelial cells are more susceptible to oxidative stress and increased permeability than brain-derived endothelial cells. Microvasc Res 2003;65:18–23.

    Article  PubMed  CAS  Google Scholar 

  97. Hammes HP, Lin J, Renner O, et al. Deutsch Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 2002;51:3107–3112.

    Article  PubMed  CAS  Google Scholar 

  98. Beltramo E, Pomero F, Allione A, D’Alu F, Ponte E, Porta M. Pericyte adhesion is impaired on extracellular matrix produced by endothelial cells in high hexose concentrations. Diabetologia 2002;45:416–419.

    Article  PubMed  CAS  Google Scholar 

  99. Krishnamoorthy RR, Agarwal P, Prasanna G, et al. Characterization of a transformed rat retinal ganglion cell line. Brain Res Mol Brain Res 2001;86:1–12.

    Article  PubMed  CAS  Google Scholar 

  100. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 1996;62:155–169.

    Article  PubMed  CAS  Google Scholar 

  101. Tan E, Ding XQ, Saadi A, Agarwal N, Naash MI, Al-Ubaidi MR. Expression of conephotoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest Ophthalmol Vis Sci 2004;45:764–768.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Smith, S.B. (2007). The Impact of Diabetes on Neuronal, Glial, and Vascular Cells of the Retina. In: Tombran-Tink, J., Barnstable, C.J. (eds) Retinal Degenerations. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-186-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-186-4_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-620-7

  • Online ISBN: 978-1-59745-186-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics