Skip to main content

Synaptic Remodeling in Retinal Degeneration

  • Chapter
Retinal Degenerations

Part of the book series: Ophthalmology Research ((OPHRES))

Abstract

Retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases with a complex molecular etiology. Hundreds of RP-inducing mutations, involving dozens of genes, have been identified in patients (see references in other chapters in this book; a list of identified mutations that cause retinal degeneration is updated at www.sph.uth. tmc.edu/RetNet). Despite this genetic heterogeneity, patients with RP tend to have a common pattern of vision loss. Typically, patients experience loss of night vision early in life as a result of degeneration of rod photoreceptors. Some loss of cone photoreceptor function may be detected early as well. Nevertheless, the majority of cones survives and remains functional, and hence daytime vision persists. Over years and decades, however, these cones progressively degenerate, leading ultimately to blindness (1). The link between the myriad of mutations to the disease mechanisms underlying the clinical course of rod-cone degeneration in RP remains unknown; meanwhile, there is no cure or effective treatment broadly available for RP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berson EL. Retinitis pigmentosa. The Friedenwald lecture. Invest Ophthalmol Vis Sci 1993;34:1659–1676.

    PubMed  CAS  Google Scholar 

  2. Wong F. Visual pigments, blue cone monochromasy, and retinitis pigmentosa. Arch Ophthalmol 1990;108:935–936.

    PubMed  CAS  Google Scholar 

  3. Chang GQ, Hao Y, Wong F. Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 1993;11:595–605.

    Article  PubMed  CAS  Google Scholar 

  4. Huang PC, Gaitan AE, Hao Y, Petters RM, Wong F. Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene. Proc Natl Acad Sci USA 1993;90:8484–8488.

    Article  PubMed  CAS  Google Scholar 

  5. Wong F. Investigating retinitis pigmentosa: a laboratory scientist’s perspective. Prog Ret Eye Res 1997;16:353–373.

    Article  Google Scholar 

  6. Peng YW, Hao Y, Petters RM, Wong F. Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations. Nat Neurosci 2000;3:1121–1127.

    Article  PubMed  CAS  Google Scholar 

  7. Peng YW, Senda T, Hao Y, Matsuno K, Wong F. Ectopic synaptogenesis during retinal degeneration in the royal college of surgeons rat. Neuroscience 2003;119:813–820.

    Article  PubMed  CAS  Google Scholar 

  8. Wassle H, Boycott BB. Functional architecture of the mammalian retina. Physiol Rev 1991;71:447–480.

    PubMed  CAS  Google Scholar 

  9. Wassle H. Parallel processing in the mammalian retina. Nat Rev Neurosci 2004;5:747–757.

    Article  PubMed  CAS  Google Scholar 

  10. Rodieck RW. The first steps in seeing. Sunderland, MA: Sihauer Associates, 1998.

    Google Scholar 

  11. Sterling P. Retina. In: the synaptic organization of the brain. New York: Oxford University Press, 1998;205-253.

    Google Scholar 

  12. Rao-Mirotznik R, Harkins AB, Buchsbaum G, Sterling P. Mammalian rod terminal: architecture of a binary synapse. Neuron 1995;14:561–569.

    Article  PubMed  CAS  Google Scholar 

  13. Hack I, Peichl L, Brandstatter JH. An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. Proc Natl Acad Sci USA 1999;96:14,130–14,135.

    Article  PubMed  CAS  Google Scholar 

  14. Tsukamoto Y, Morigiwa K, Ueda M, Sterling P. Microcircuits for night vision in mouse retina. J Neurosci 2001;21:8616–8623.

    PubMed  CAS  Google Scholar 

  15. Calkins DJ, Tsukamoto Y, Sterling P. Foveal cones form basal as well as invaginating junctions with diffuse ON bipolar cells. Vision Res 1996;36:3373–3381.

    Article  PubMed  CAS  Google Scholar 

  16. Chun MH, Grunert U, Martin PR, Wassle H. The synaptic complex of cones in the fovea and in the periphery of the macaque monkey retina. Vision Res 1996;36:3383–3395.

    Article  PubMed  CAS  Google Scholar 

  17. Hopkins JM, Boycott BB. The cone synapses of cone bipolar cells of primate retina. J Neurocytol 1997;26:313–325.

    Article  PubMed  CAS  Google Scholar 

  18. Dacheux RF, Raviola E. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci 1986;6:331–345.

    PubMed  CAS  Google Scholar 

  19. Wassle H, Grunert U, Chun MH, Boycott BB. The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin. J Comp Neurol 1995;361:537–551.

    Article  PubMed  CAS  Google Scholar 

  20. Boycott B, Wassle H. Parallel processing in the mammalian retina: the Proctor lecture. Invest Ophthalmol Vis Sci 1999;40:1313–1327.

    PubMed  CAS  Google Scholar 

  21. Sharpe LT, Stockman A. Rod pathways: the importance of seeing nothing. Trends Neurosci 1999;22:497–504.

    Article  PubMed  CAS  Google Scholar 

  22. Bloomfield SA, Dacheux RF. Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 2001;20:351–384.

    Article  PubMed  CAS  Google Scholar 

  23. Vaney DI. Neuronal coupling in rod-signal pathways of the retina. Invest Ophthalmol Vis Sci 1997;38:267–273.

    PubMed  CAS  Google Scholar 

  24. Soucy E, Wang Y, Nirenberg S, Nathans J, Meister M. A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 1998;21:481–493.

    Article  PubMed  CAS  Google Scholar 

  25. Chader GJ. Animal models in research on retinal degenerations: past progress and future hope. Vision Res 2002;42:393–399.

    Article  PubMed  Google Scholar 

  26. Gerke CG Jr, Hao Y, Wong F. Topography of rods and cones in the retina of the domestic pig. Hong Kong Med J 1995;1:302–308.

    Google Scholar 

  27. Petters RM, Alexander CA, Wells KD, et al. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 1997;15:965–970.

    Article  PubMed  CAS  Google Scholar 

  28. Li ZY, Wong F, Chang JH, et al. Rhodopsin transgenic pigs as a model for human retinitis pigmentosa. Invest Ophthalmol Vis Sci 1998;39:808–819.

    PubMed  CAS  Google Scholar 

  29. Banin E, Cideciyan AV, Aleman TS, et al. Retinal rod photoreceptor-specific gene mutation perturbs cone pathway development. Neuron 1999;23:549–557.

    Article  PubMed  CAS  Google Scholar 

  30. Blackmon SM, Peng YW, Hao Y, et al. Early loss of synaptic protein PSD-95 from rod termnals of rhodopsin P347L transgenic porcine retina. Brain Res 2000;885:53–61.

    Article  PubMed  CAS  Google Scholar 

  31. Tso MO, Li WW, Zhang C, et al. A pathologic study of degeneration of the rod and cone populations of the rhodopsin Pro347Leu transgenic pigs. Trans Am Ophthalmol Soc 1997;95:467–479.

    PubMed  CAS  Google Scholar 

  32. Peng YW, Mahmoud TH, Oliveira LB, et al. Rhodopsin mutation induces ectopic cone-rod bipolar cell synaptic connections in transgenic swine. Mol Biol Cell (suppl) 1999;10:76a.

    Google Scholar 

  33. Negishi K, Kato S, Teranishi T. Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neurosci Lett 1988;94:247–252.

    Article  PubMed  CAS  Google Scholar 

  34. Greferath U, Grunert U, Wassle H. Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol 1990;301:433–442.

    Article  PubMed  CAS  Google Scholar 

  35. Grunert U, Martin PR, Wassle H. Immunocytochemical analysis of bipolar cells in the macaque monkey retina. J Comp Neurol 1994;348:607–627.

    Article  PubMed  CAS  Google Scholar 

  36. Muller B, Peichl L. Rod bipolar cells in the cone-dominated retina of the tree shrew Tupaia belangeri. Vis Neurosci 1991;6:629–639.

    PubMed  CAS  Google Scholar 

  37. Wassle H, Yamashita M, Greferath U, Grunert U, Muller F. The rod bipolar cell of the mammalian retina. Vis Neurosci 1991;7:99–112.

    PubMed  CAS  Google Scholar 

  38. Chun MH, Han SH, Chung JW, Wassle H. Electron microscopic analysis of the rod pathway of the rat retina. J Comp Neurol 1993;332:421–432.

    Article  PubMed  CAS  Google Scholar 

  39. Brandstatter JH, Lohrke S, Morgans CW, Wassle H. Distributions of two homologous synaptic vesicle proteins, synaptoporin and synaptophysin, in the mammalian retina. J Comp Neurol 1996;370:1–10.

    Article  PubMed  CAS  Google Scholar 

  40. Peng YW, Robishaw JD, Levine MA, Yau KW. Retinal rods and cones have distinct G protein beta and gamma subunits. Proc Natl Acad Sci USA 1992;89:10,882–10,886.

    Article  PubMed  CAS  Google Scholar 

  41. Ong OC, Yamane HK, Phan KB, et al. Molecular cloning and characterization of the G protein gamma subunit of cone photoreceptors. J Biol Chem 1995;270:8495–8500.

    Article  PubMed  CAS  Google Scholar 

  42. Hopkins JM, Boycott BB. Synapses between cones and diffuse bipolar cells of a primate retina. J Neurocytol 1995;24:680–694.

    Article  PubMed  CAS  Google Scholar 

  43. Masu M, Iwakabe H, Tagawa Y, et al. Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 1995;80:757–765.

    Article  PubMed  CAS  Google Scholar 

  44. Vardi N, Morigiwa K, Wang TL, Shi YJ, Sterling P. Neurochemistry of the mammalian cone’ synaptic complex.’ Vision Res 1998;38:1359–1369.

    Article  PubMed  CAS  Google Scholar 

  45. Vardi N. Alpha subunit of Go localizes in the dendritic tips of ON bipolar cells. J Comp Neurol 1998;395:43–52.

    Article  PubMed  CAS  Google Scholar 

  46. Morigiwa K, Vardi N. Differential expression of ionotropic glutamate receptor subunits in the outer retina. J Comp Neurol 1999;405:173–184.

    Article  PubMed  CAS  Google Scholar 

  47. Dhingra A, Jiang M, Wang TL, et al. The light response of ON bipolar neurons requires G[alpha]o. J Neurosci 2000;20:9053–9058.

    PubMed  CAS  Google Scholar 

  48. Sieving PA, Murayama K, Naarendorp F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 1994;11:519–532.

    Article  PubMed  CAS  Google Scholar 

  49. Knapp AG, Schiller PH. The contribution of on-bipolar cells to the electroretinogram of rabbits and monkeys. A study using 2-amino-4-phosphonobutyrate (APB). Vision Res 1984;24:1841–1846.

    Article  PubMed  CAS  Google Scholar 

  50. Stockton RA, Slaughter MM. B-wave of the electroretinogram. A reflection of ON bipolar cell activity. J Gen Physiol 1989;93:101–122.

    Article  PubMed  CAS  Google Scholar 

  51. Bowes C, Danciger M, Baxter LC, Applebury ML, Farber DB. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature 1990;347:677–680.

    Article  PubMed  CAS  Google Scholar 

  52. Farber DB, Flannery JG, Bowes-Rickman C. The rd mouse story: seventy years of research on an animal model of inherited retinal degeneration. Prog Ret Eye Res 1994;13:31–64.

    Article  CAS  Google Scholar 

  53. Young S, Rothbard J, Parker PJ. A monoclonal antibody recognising the site of limited proteolysis of protein kinase C. Inhibition of down-regulation in vivo. Eur J Biochem 1988;173:247–252.

    Article  PubMed  CAS  Google Scholar 

  54. Peng YW, Hao Y, Oka K, Wong F. Light-induced changes of PKC alpha immunoreactivity in rod bipolar cells of normal and rd Mice. Invest Ophthalmol Vis Sci 2002;Suppl 43: ARVO e-abstract 741.

    Google Scholar 

  55. Strettoi E, Pignatelli V. Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA 2000;97:11,020–11,025.

    Article  PubMed  CAS  Google Scholar 

  56. Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res 2003;22:607–655.

    Article  PubMed  Google Scholar 

  57. Blanks JC, Adinolfi AM, Lolley RN. Photoreceptor degeneration and synaptogenesis in retinal-degenerative (rd) mice. J Comp Neurol 1974;156:95–106.

    Article  PubMed  CAS  Google Scholar 

  58. Peng YW, Hao Y, Wong F. Metabotropic glutamate receptors mGluR5 and mGluR6 are localized to the dendrites of rd mouse rod bipolar cells. Soc Neurosci Abs 2002;28.

    Google Scholar 

  59. D’Cruz PM, Yasumura D, Weir J, et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 2000;9:645–651.

    Article  PubMed  CAS  Google Scholar 

  60. LaVail MM. Legacy of the RCS rat: impact of a seminal study on retinal cell biology and retinal degenerative diseases. Prog Brain Res 2001;131:617–627.

    Article  PubMed  CAS  Google Scholar 

  61. Vollrath D, Feng W, Duncan JL, et al. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci USA 2001;98:12,584–12,589.

    Article  PubMed  CAS  Google Scholar 

  62. Tso MO, Zhang C, Abler AS, et al. Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. Invest Ophthalmol Vis Sci 1994;35:2693–2699.

    PubMed  CAS  Google Scholar 

  63. Olsson JE, Gordon JW, Pawlyk BS, et al. Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 1992;9:815–830.

    Article  PubMed  CAS  Google Scholar 

  64. Eisenfeld AJ, LaVail MM, LaVail JH. Assessment of possible transneuronal changes in the retina of rats with inherited retinal dystrophy: cell size, number, synapses, and axonal transport by retinal ganglion cells. J Comp Neurol 1984;223:22–34.

    Article  PubMed  CAS  Google Scholar 

  65. Suber ML, Pittler SJ, Qin N, et al. Irish setter dogs affected with rod/cone dysplasia contain a nonsense mutation in the rod cGMP phosphodiesterase beta-subunit gene. Proc Natl Acad Sci USA 1993;90:3968–3972.

    Article  PubMed  CAS  Google Scholar 

  66. Baekelandt V, Arckens L, Annaert W, Eysel UT, Orban GA, Vandesande F. Alterations in GAP-43 and synapsin immunoreactivity provide evidence for synaptic reorganization in adult cat dorsal lateral geniculate nucleus following retinal lesions. Eur J Neurosci 1994;6:754–765.

    Article  PubMed  CAS  Google Scholar 

  67. Gilbert CD. Adult cortical dynamics. Physiol Rev 1998;78:467–485.

    PubMed  CAS  Google Scholar 

  68. Fiala JC, Spacek J, Harris KM. Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Rev 2002;39:29–54.

    Article  PubMed  Google Scholar 

  69. Rubel EW, Fritzsch B. Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 2002;25:51–101.

    Article  PubMed  CAS  Google Scholar 

  70. Mears AJ, Kondo M, Swain PK, et al. Nrl is required for rod photoreceptor development. Nat Genet 2001;29:447–452.

    Article  PubMed  CAS  Google Scholar 

  71. Strettoi E, Mears AJ, Swaroop A. Recruitment of the rod pathway by cones in the absence of rods. J Neurosci 2004;24:7576–7582.

    Article  PubMed  CAS  Google Scholar 

  72. Cuenca N, Pinilla I, Sauve Y, Lu B, Wang S, Lund RD. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina. Neuroscience 2004;127:301–317.

    Article  PubMed  CAS  Google Scholar 

  73. Milam AH, Li ZY, Fariss RN. Histopathology of the human retina in retinitis pigmentosa. Prog Ret Eye Res 1998;17:175–205.

    Article  CAS  Google Scholar 

  74. Li ZY, Kljavin IJ, Milam AH. Rod photoreceptor neurite sprouting in retinitis pigmentosa. J Neurosci 1995;15:5429–5438.

    PubMed  CAS  Google Scholar 

  75. Fariss RN, Li ZY, Milam AH. Abnormalities in rod photoreceptors, amacrine cells, and horizontal cells in human retinas with retinitis pigmentosa. Am J Ophthalmol 2000;129:215–223.

    Article  PubMed  CAS  Google Scholar 

  76. Milam AH, Li ZY, Cideciyan AV, Jacobson SG. Clinicopathologic effects of the Q64ter rhodopsin mutation in retinitis pigmentosa. Invest Ophthalmol Vis Sci 1996;37:753–765.

    PubMed  CAS  Google Scholar 

  77. Fei Y. Cone neurite sprouting: an early onset abnormality of the cone photoreceptors in the retinal degeneration mouse. Mol Vis 2002;8:306–314.

    PubMed  CAS  Google Scholar 

  78. Lewis GP, Linberg KA, Fisher SK. Neurite outgrowth from bipolar and horizontal cells after experimental retinal detachment. Invest Ophthalmol Vis Sci 1998;39:424–434.

    PubMed  CAS  Google Scholar 

  79. Dick O, tom Dieck S, Altrock WD, et al. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in retina. Neuron 2003;37:775–786.

    Article  PubMed  CAS  Google Scholar 

  80. Haeseleer F, Imanishi Y, Maeda T, et al. Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat Neurosci 2004;7:1079–1087.

    Article  PubMed  CAS  Google Scholar 

  81. Strettoi E, Pignatelli V, Rossi C, Porciatti V, Falsini B. Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Res 2003;43:867–877.

    Article  PubMed  Google Scholar 

  82. Peng Y-W, Hao Y, Gaitan A, Zhang W, Wong F. Loss of invaginating rod bipolar cell dendrites in degenerating rod terminals. Invest Ophthalmol Vis Sci 2004;(Suppl) 45:ARVO e-abstract 5360.

    Google Scholar 

  83. Marc RE, Jones BW. Retinal remodeling in inherited photoreceptor degenerations. Mol Neurobiol 2003;28:139–147.

    Article  PubMed  CAS  Google Scholar 

  84. Park SJ, Lim EJ, Oh SJ, et al. Ectopic localization of putative AII amacrine cells in the outer plexiform layer of the developing FVB/N mouse retina. Cell Tissue Res 2004;315:407–412.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Peng, YW., Wong, F. (2007). Synaptic Remodeling in Retinal Degeneration. In: Tombran-Tink, J., Barnstable, C.J. (eds) Retinal Degenerations. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-186-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-186-4_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-620-7

  • Online ISBN: 978-1-59745-186-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics