Skip to main content

DNA Repair Genes and Genomic Instability in Severe Male Factor Infertility

  • Chapter
  • 1048 Accesses

Abstract

The maintenance of genomic integrity is of key importance for gametogenesis. Nevertheless, the processes of DNA replication, mitosis, and meiosis are surprisingly error-prone and subject to damage. Accordingly, a series of DNA repair mechanisms have evolved that recognize and repair DNA damage and DNA replication errors to maintain the fidelity of the DNA sequence. Gradually translating findings from targeted gene deletion and mutant mouse models to human male infertility, we have learned that the processes of mitosis and meiosis require proper functioning of the entire DNA repair mechanism in the cell for normal fertility to be present in the male. This chapter focuses on our current understanding of the processes required for the maintenance of DNA integrity during spermatogensis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Filho DW, Torres MA, Bordin AL, Crezcynski-Pasa TB, Boveris A. Spermatic cord torsion, reactive oxygen and nitrogen species and ischemia-reperfusion injury. Mol Aspects Med 2004;25:199–210.

    Article  PubMed  Google Scholar 

  2. Paul M, Himmelstein J. Reproductive hazards in the workplace: what the practitioner needs to know about chemical exposures. Obstet Gynecol 1988;71:921–938.

    PubMed  CAS  Google Scholar 

  3. Bracken MB, Eskenazi B, Sachse K, McSharry JE, Hellenbrand K, Leo-Summers L. Association of cocaine use with sperm concentration, motility, and morphology. Fertil Steril 1990;53:315–322.

    PubMed  CAS  Google Scholar 

  4. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E. Klinefelter’s syndrome. Lancet 2004;364:273–283.

    Article  PubMed  CAS  Google Scholar 

  5. Brandell RA, Mielnik A, Liotta D, et al. AZFb deletions predict the absence of spermatozoa with testicular sperm extraction: preliminary report of a prognostic genetic test. Hum Reprod 1998;13:2812–2815.

    PubMed  CAS  Google Scholar 

  6. Foresta C, Moro E, Ferlin A. Y chromosome microdeletions and alterations of spermatogenesis. Endocr Rev 2001;22:226–239.

    Article  PubMed  CAS  Google Scholar 

  7. Eaker S, Pyle A, Cobb J, Handel MA. Evidence for meiotic spindle checkpoint from analysis of spermatocytes from Robertsonian-chromosome heterozygous mice. J Cell Sci 2001;114:2953–2965.

    PubMed  CAS  Google Scholar 

  8. Lyon MF, Ward HC, Simpson GM. A genetic method for measuring non-disjunction in mice with Robertsonian translocations. Genet Res 1975;26:283–295.

    PubMed  CAS  Google Scholar 

  9. Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Cell Biol 2002;4:S41–S49.

    Article  PubMed  Google Scholar 

  10. de Vries SS, Baart EB, Dekker M, et al. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev 1999;13:523–531.

    PubMed  Google Scholar 

  11. Lipkin SM, Moens PB, Wang V, et al. Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat Genet 2002;31:385–390.

    PubMed  CAS  Google Scholar 

  12. Sun F, Greene C, Turek PJ, Ko E, Rademaker A, Martin RH. Immunofluorescent synaptonemal complex analysis in azoospermic men. Cytogenet Genome Res 2005;111:366–370.

    Article  PubMed  CAS  Google Scholar 

  13. Svetlanov A, Cohen PE. Mismatch repair proteins, meiosis, and mice: understanding the complexities of mammalian meiosis. Exp Cell Res 2004;296:71–79.

    Article  PubMed  CAS  Google Scholar 

  14. Costa Y, Speed R, Ollinger R, et al. Two novel proteins recruited by synaptonemal complex protein 1 (SYCP1) are at the centre of meiosis. J Cell Sci 2005;118:2755–2762.

    Article  PubMed  CAS  Google Scholar 

  15. Richardson C, Horikoshi N, Pandita TK. The role of the DNA double-strand break response network in meiosis. DNA Repair (Amst) 2004;3:1149–1164.

    Article  CAS  Google Scholar 

  16. Agarwal S, Roeder GS. Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 2000;102:245–255.

    Article  PubMed  CAS  Google Scholar 

  17. Oliver-Bonet M, Turek PJ, Sun F, Ko E, Martin RH. Temporal progression of recombination in human males. Mol Hum Reprod 2005;11:517–522.

    Article  PubMed  CAS  Google Scholar 

  18. Ollinger R, Alsheimer M, Benavente R. Mammalian protein SCP1 forms synaptonemal complex-like structures in the absence of meiotic chromosomes. Mol Biol Cell 2005;16:212–217.

    Article  PubMed  Google Scholar 

  19. Snowden T, Acharya S, Butz C, Berardini M, Fishel R. hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraceshomologous chromosomes. Mol Cell 2004;15:437–451.

    Article  PubMed  CAS  Google Scholar 

  20. Borner GV, Kleckner N, Hunter N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 2004;117:29–45.

    Article  PubMed  Google Scholar 

  21. Fukuda T, Ohya Y. Recruitment of RecA homologs Dmc 1p and Rad5 1p to the double-strand break repair site initiated by meiosis-specific endonuclease VDE (PI-SceI). Mol Genet Genomics 2006;275:204–214.

    Article  PubMed  CAS  Google Scholar 

  22. Marcon E, Moens P. MLH1p and MLH3p localize to precociously induced chiasmata of okadaic-acid-treated mouse spermatocytes. Genetics 2003;165:2283–2287.

    PubMed  CAS  Google Scholar 

  23. Santucci-Darmanin S, Walpita D, Lespinasse F, Desnuelle C, Ashley T, Paquis-Flucklinger V. MSH4 acts in conjunction with MLH1 during mammalian meiosis. FASEB J 2000;14:1539–1547.

    Article  PubMed  CAS  Google Scholar 

  24. Santucci-Darmanin S, Neyton S, Lespinasse F, Saunieres A, Gaudray P, Paquis-Flucklinger V. The DNA mismatch-repair MLH3 protein interacts with MSH4 in meiotic cells, supporting a role for this MutL homolog in mammalian meiotic recombination. Hum Mol Genet 2002;11:1697–1706.

    Article  PubMed  CAS  Google Scholar 

  25. Wang TF, Kung WM. Supercomplex formation between Mlh1-Mlh3 and Sgs1-Top3 heterocomplexes in meiotic yeast cells. Biochem Biophys Res Commun 2002;296:949–953.

    Article  PubMed  CAS  Google Scholar 

  26. Gonsalves J, Turek PJ, Schlegel PN, Hopps CV, Weier JF, Pera RA. Recombination in men with Klinefelter syndrome. Reproduction 2005;130:223–229.

    Article  PubMed  CAS  Google Scholar 

  27. Gonsalves J, Sun F, Schlegel PN, et al. Defective recombination in infertile men. Hum Mol Genet 2004;13:2875–2883.

    Article  PubMed  CAS  Google Scholar 

  28. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 2000;6:989–998.

    Article  PubMed  CAS  Google Scholar 

  29. Romanienko PJ, Camerini-Otero RD. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 2000;6:975–987.

    Article  PubMed  CAS  Google Scholar 

  30. Barlow C, Hirotsune S, Paylor R, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 1996;86:159–171.

    Article  PubMed  CAS  Google Scholar 

  31. Elson A, Wang Y, Daugherty CJ, et al. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci USA 1996;93:13,084–13,089.

    Article  PubMed  CAS  Google Scholar 

  32. Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell 1998;1:707–718.

    Article  PubMed  CAS  Google Scholar 

  33. Pittman DL, Cobb J, Schimenti KJ, et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific Rec A homolog. Mol Cell 1998;1:697–705.

    Article  PubMed  CAS  Google Scholar 

  34. Libby BJ, Reinholdt LG, Schimenti JC. Positional cloning and characterization of Mei1, a vertebrate-specific gene required for normal meiotic chromosome synapsis in mice. Proc Natl Acad Sci USA 2003;100:15,706–15,711.

    Article  PubMed  CAS  Google Scholar 

  35. Libby BJ, De La FR, O’Brien MJ, et al. The mouse meiotic mutation mei1 disrupts chromosome synapsis with sexually dimorphic consequences for meiotic progression. Dev Biol 2002;242:174–187.

    Article  PubMed  CAS  Google Scholar 

  36. Inoue N, Hess KD, Moreadith RW, et al. New gene family defined by MORC, a nuclear protein required for mouse spermatogenesis. Hum Mol Genet 1999;8:1201–1207.

    Article  PubMed  CAS  Google Scholar 

  37. Goedecke W, Eijpe M, Offenberg HH, van AM, Heyting C. Mre1 1 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 1999;23:194–198.

    Article  PubMed  CAS  Google Scholar 

  38. Offenberg HH, Schalk JA, Meuwissen RL, et al. SCP2: a major protein component of the axial elements of synaptonemal complexes of the rat. Nucleic Acids Res 1998;26:2572–2579.

    Article  PubMed  CAS  Google Scholar 

  39. Yuan L, Liu JG, Hoja MR, Wilbertz J, Nordqvist K, Hoog C. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 2002;296:1115–1118.

    Article  PubMed  CAS  Google Scholar 

  40. Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Hoog C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 2000;5:73–83.

    Article  PubMed  CAS  Google Scholar 

  41. Miyamoto T, Hasuike S, Yogev L, et al. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 2003;362:1714–1719.

    Article  PubMed  CAS  Google Scholar 

  42. Crackower MA, Kolas NK, Noguchi J, et al. Essential role of Fkbp6 in male fertility and homologous chromosome pairing in meiosis. Science 2003;300:1291–1295.

    Article  PubMed  CAS  Google Scholar 

  43. Her C, Wu X, Bailey SM, Doggett NA. Mouse MutS homolog 4 is predominantly expressed in testis and interacts with MutS homolog 5. Mamm Genome 2001;12:73–76.

    Article  PubMed  CAS  Google Scholar 

  44. Winand NJ, Panzer JA, Kolodner RD. Cloning and characterization of the human and Caenorhabditis elegans homologs of the Saccharomyces cerevisiae MSH5 gene. Genomics 1998;53:69–80.

    Article  PubMed  CAS  Google Scholar 

  45. Paquis-Flucklinger V, Santucci-Darmanin S, Paul R, Saunieres A, Turc-Carel C, Desnuelle C. Cloning and expression analysis of a meiosis-specific MutS homolog: the human MSH4 gene. Genomics 1997;44:188–194.

    Article  PubMed  CAS  Google Scholar 

  46. Lipkin SM, Wang V, Jacoby R, et al. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet 2000;24:27–35.

    Article  PubMed  CAS  Google Scholar 

  47. Maduro MR, Casella R, Kim E, et al. Microsatellite instability and defects in mismatch repair proteins: a new aetiology for Sertoli cell-only syndrome. Mol Hum Reprod 2003;9:61–68.

    Article  PubMed  CAS  Google Scholar 

  48. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995;81:323–330.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell 1999;97:53–61.

    Article  PubMed  CAS  Google Scholar 

  50. Choy KW, Pang CP, To KF, Yu CB, Ng JS, Lam DS. Impaired expression and promotor hypermethylation of O6-methylguanine-DNA methyltransferase in retinoblastoma tissues. Invest Ophthalmol Vis Sci 2002;43:1344–1349.

    PubMed  Google Scholar 

  51. Choy KW, Pang CP, Fan DS, et al. Microsatellite instability and MLH1 promoter methylation in human retinoblastoma. Invest Ophthalmol Vis Sci 2004;45:3404–3409.

    Article  PubMed  Google Scholar 

  52. Bawa S, Xiao W. A single amino acid substitution in MSH5 results in DNA alkylation tolerance. Gene 2003;315:177–182.

    Article  PubMed  CAS  Google Scholar 

  53. Calmann MA, Evans JE, Marinus MG. MutS inhibits RecA-mediated strand transfer with methylated DNA substrates. Nucleic Acids Res 2005;33:3591–3597.

    Article  PubMed  CAS  Google Scholar 

  54. Kohya N, Miyazaki K, Matsukura S, et al. Deficient expression of O(6)-methyl-guanine-DNA methyltransferase combined with mismatch-repair proteins hMLH1 and hMSH2 is related to poor prognosis in human biliary tract carcinoma. Ann Surg Oncol 2002;9:371–379.

    PubMed  Google Scholar 

  55. Kruger S, Bier A, Plaschke J, et al. Ten novel MSH2 and MLH1 germline mutations in families with HNPCC. Hum Mutat 2004;24:351–352.

    Article  PubMed  Google Scholar 

  56. Liu B, Parsons RE, Hamilton SR, et al. hMSH2 mutations in hereditary nonpoly-posis colorectal cancer kindreds. Cancer Res 1994;54:4590–4594.

    PubMed  CAS  Google Scholar 

  57. Suter CM, Martin DI, Ward RL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 2004;36:497–501.

    Article  PubMed  CAS  Google Scholar 

  58. Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2001;2:169–178.

    Article  PubMed  CAS  Google Scholar 

  59. Ciechanover A. Ubiquitin-mediated proteolysis and male sterility. Nat Med 1996;2:1188–1190.

    Article  PubMed  CAS  Google Scholar 

  60. Dover J, Schneider J, Tawiah-Boateng MA, et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 2002;277:28,368–28,371.

    Article  PubMed  CAS  Google Scholar 

  61. Wilkinson KD. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 2000;11:141–148.

    Article  PubMed  CAS  Google Scholar 

  62. Rajapurohitam V, Bedard N, Wing SS. Control of ubiquitination of proteins in rat tissues by ubiquitin conjugating enzymes and isopeptidases. Am J Physiol Endocrinol Metab 2002;282:E739–E745.

    PubMed  CAS  Google Scholar 

  63. Baarends WM, Wassenaar E, Hoogerbrugge JW, et al. Loss of HR6B ubiquitin-conjugating activity results in damaged synaptonemal complex structure and increased crossing-over frequency during the male meiotic prophase. Mol Cell Biol 2003;23:1151–1162.

    Article  PubMed  CAS  Google Scholar 

  64. Escalier D, Bai XY, Silvius D, Xu PX, Xu X. Spermatid nuclear and sperm periaxonemal anomalies in the mouse Ube2b null mutant. Mol Reprod Dev 2003;65:298–308.

    Article  PubMed  CAS  Google Scholar 

  65. Lyakhovich A, Shekhar MP. RAD6B overexpression confers chemoresistance: RAD6 expression during cell cycle and its redistribution to chromatin during DNA damage-induced response. Oncogene 2004;23:3097–3106.

    Article  PubMed  CAS  Google Scholar 

  66. Tateishi S, Niwa H, Miyazaki J, Fujimoto S, Inoue H, Yamaizumi M. Enhanced genomic instability and defective postreplication repair in RAD18 knockout mouse embryonic stem cells. Mol Cell Biol 2003;23:474–481.

    Article  PubMed  CAS  Google Scholar 

  67. Broomfield S, Hryciw T, Xiao W. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res 2001;486:167–184.

    PubMed  CAS  Google Scholar 

  68. Cheng NC, van de Vrugt HJ, van der Valk MA, et al. Mice with a targeted disruption of the Fanconi anemia homolog Fanca. Hum Mol Genet 2000;9:1805–1811.

    Article  PubMed  CAS  Google Scholar 

  69. van der Valk MA, Cheng NC, de Vries Y, et al. Cloning and characterization of murine fanconi anemia group A gene: Fanca protein is expressed in lymphoid tissues, testis, and ovary. Mamm Genome 2000;11:326–331.

    Article  Google Scholar 

  70. Meetei AR, de Winter JP, Medhurst AL, et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nat Genet 2003;35:165–170.

    Article  PubMed  CAS  Google Scholar 

  71. Yang Y, Kuang Y, De Oca RM, et al. Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrcc9. Blood 2001;98:3435–3440.

    Article  PubMed  CAS  Google Scholar 

  72. Nadler JJ, Braun RE. Fanconi anemia complementation group C is required for proliferation of murine primordial germ cells. Genesis 2000;27:117–123.

    Article  PubMed  CAS  Google Scholar 

  73. Whitney MA, Royle G, Low MJ, et al. Germ cell defects and hematopoietic hyper-sensitivity to gamma-interferon in mice with a targeted disruption of the Fanconi anemia C gene. Blood 1996;88:49–58.

    PubMed  CAS  Google Scholar 

  74. Chen M, Tomkins DJ, Auerbach W, et al. Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nat Genet 1996;12:448–451.

    Article  PubMed  CAS  Google Scholar 

  75. Agoulnik AI, Lu B, Zhu Q, et al. A novel gene, Pog, is necessary for primordial germ cell proliferation in the mouse and underlies the germ cell deficient mutation, gcd. Hum Mol Genet 2002;11:3047–3053.

    Article  PubMed  CAS  Google Scholar 

  76. Xu Y, Baltimore D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev 1996;10:2401–2410.

    Article  PubMed  CAS  Google Scholar 

  77. Hamer G, Kal HB, Westphal CH, Ashley T, de Rooij DG. Ataxia telangiectasia mutated expression and activation in the testis. Biol Reprod 2004;70:1206–1212.

    Article  PubMed  CAS  Google Scholar 

  78. Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003;3:155–168.

    Article  PubMed  CAS  Google Scholar 

  79. Scherthan H, Jerratsch M, Dhar S, Wang YA, Goff SP, Pandita TK. Meiotic telomere distribution and Sertoli cell nuclear architecture are altered in Atm-and Atm-p53-deficient mice. Mol Cell Biol 2000;20:7773–7783.

    Article  PubMed  CAS  Google Scholar 

  80. Petrini JH. The Mre1 1 complex and ATM: collaborating to navigate S phase. Curr Opin Cell Biol 2000;12:293–296.

    Article  PubMed  CAS  Google Scholar 

  81. Li S, Ting NS, Zheng L, et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 2000;406:210–215.

    Article  PubMed  CAS  Google Scholar 

  82. Brown TA. Genomes, 2nd Edition. 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Gordon, F.K.E., Lamb, D.J. (2007). DNA Repair Genes and Genomic Instability in Severe Male Factor Infertility. In: Carrell, D.T. (eds) The Genetics of Male Infertility. Humana Press. https://doi.org/10.1007/978-1-59745-176-5_9

Download citation

Publish with us

Policies and ethics