Skip to main content

Abstract

Lime is one of the most widely used and cheapest alkalizing agents employed worldwide. It is often applied in chemical processes in a slaked or calcium hydroxide or slurry form. The term “calcinations of limestone” refers to the process of thermal decomposition into quick lime and carbon dioxide. It is frequently referred to as “calcinations.” Decomposition of limestone is characterized by very simple chemical reactions. Complexity is seen to arise when dealing with dolomite, which is believed to cause a change in crystallography and microstructure. Kinetics of decomposition of granular and lumped limestones has been found to be very complex. This has resulted in a limited validity to produce a unified theory on calcinations. This is controlled by many factors, which includes:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. S. Boynton, Chemistry and Technology of Lime and Limestone. John Wiley & Sons. (1980).

    Google Scholar 

  2. F. Schwarzkopf, Lime Burning Technology-a manual for lime plant operators (3rd ed.). Svedala Industries Kennedy, Van Saun, 1994.

    Google Scholar 

  3. N. V. S. Knibbs and B. J. Gee, Lime and Limestone. the origin, occurrence, properties, chemistry, analysus and testing of Limestone. Dolomite and their products, and the theory of Lime burning and hydration. Canada: H.L. Hall Corporation Limited, 1974.

    Google Scholar 

  4. V. J. Azbe, Theory and practice of lime manufacture. Part II, Rock Products. 1953, pp. 102–104.

    Google Scholar 

  5. L. C. Anderson, Resume of ICI work on Limestone calcination, lime reactivity and apparent density, (Internal report) ( 1973).

    Google Scholar 

  6. A. L. Campbell, A. R. Job, and J. F. Robertson, Lime calcination: time and temperature of calcination expressed as a single variable and the effect of selected impurities on lime properties. Zement Ralk Gips 9, 442(1988).

    Google Scholar 

  7. E. J. Koval, G. L. Messing, and R. C. Bradt, Effects of raw material properties and Fe2O3 additions on the sintering of dolomites. Ceremic Bulletin 9, 274–277 (1983).

    Google Scholar 

  8. G. V. Kukolev and G. Z. Doglina, Study of the properties of difficulty sinterable dolomites in the Abono deposits. Ogneupory 13, 17–21 (1948).

    CAS  Google Scholar 

  9. A. Muller and J. Stark, Calcination of limestone powders in suspension. Zement Ralk Gips 12, 620 (1989).

    Google Scholar 

  10. A. Trikkel, Estonian calcareous rocks and oil shale ash as sorbents for sulphur dioxide, Ph.D Thesis. Tallinn University (2001).

    Google Scholar 

  11. H. El-Didamony, K. A. Khalil, and M. S. El-Attar, Physicochemical characteristics of fired clay limestone mixes. Cem. Concr. Res. 30, 7–11 (2000).

    Article  CAS  Google Scholar 

  12. A. Benedetto Di and P. Salatino, Modelling attrition of limestone during calcination and sulpnation in a fluidized bed reactor. Powder Technol. 95, 119 (1998).

    Article  Google Scholar 

  13. J. Khinast, G. H. Krammer, C. H. Brunner, and G. Staudinger, Decomposition of limestone influence of carbon dioxide and particle size on the reaction rate. Chem. Eng. Sci. 51(4), 623–634 (1996).

    Article  CAS  Google Scholar 

  14. R. H. Borgwardt, K. R. Bruce, and J. Blake, An investigation of product layer and dif-fusurty for calcium oxide sulpnation. Ind. Eng. Chem. Res. 26, 1993 (1986).

    Article  Google Scholar 

  15. S. V. Krishnan and S. V. Sotirehas, Experimental and theoretical investigation of factors affecting the direct sulfation of limestone-hydrogen sulphide reaction. Ind. Eng. Chem. Res. 33, 1444–1453 (1994).

    Article  CAS  Google Scholar 

  16. K. Dam-Johnson and K. Ostegaard, High temperature reaction between sulphur dioxide and limestone-I. Composition of limestones in two laboratory reactors and a pilot plant. Chem. Eng. Sci. 46, 827–837 (1991).

    Article  Google Scholar 

  17. J. A. Murray, Summary of fundamental research on lime. National lime association, 1956.

    Google Scholar 

  18. J. H. Potgieter, S. S. Potgieter, S. S. Moja, and A. Mulaba-Bafubiadi, An empirical study of factors influencing lime slaking. Part 1 production and storage conditions. Miner. Eng. 15, 201–206 (2002).

    Article  CAS  Google Scholar 

  19. C. A. Strydom and J. H. Potgieter, An investigation of chemical reactivity of lime. In Proceeding of the 10th International Chemistry at Cement Conference. Gothenberg, Sweden, Vol 2. paper no 21,049 (1997).

    Google Scholar 

  20. H. El-Didamony, K. A. Khalil, and M. S. El-Attar, Physicochemical characteristics of fired clay limestone mines. Cem. Concr. Res. 30, 7–11 (2000).

    Article  CAS  Google Scholar 

  21. Trasportation Research board, Recycling and use of waste materials and by-products in high way construction. NCHRP synthesis 199, Washington DC, National Academy Press, 1994.

    Google Scholar 

  22. Canjun Shi, P. E. Gratten Bellew, and J. A. Stegemann, Conversion of a waste mud into a pozzolanic material. Constr. Build. Mater. 13, 279–284 (1999).

    Article  Google Scholar 

  23. Jean Pera and Achene Amrouz, Development of Highly reactive metakaolin iron paper sludge. Adv. Cem. Bas. Mat. 7, 49–56 (1998).

    Article  CAS  Google Scholar 

  24. N. Kantiranis, Recycling of sugar ash—a raw feed material for rotary kilns. Waste Manage. 24(10), 999–1004 ( 2004).

    Article  CAS  Google Scholar 

  25. J. A. H. Oates, Lime and Limestone chemistry and technology, production and uses. Germany: Weinem Wiley VCH Verlag, GmbH, 1998.

    Google Scholar 

  26. E. H. Males, Lime production and the environment: challenges and opportunities. In: Proc 9th International lime congress, Yokohama, Japan, October 27–28. P 902–12 (1998)

    Google Scholar 

  27. G. Flamant, D. Hernandez, C. Bonet, and J. P. Traverse, Experimental aspects of the ther-mochemical conversion of solar energy. Decarbonation of calcium carbonate. Sol. energy 24, 383–395 (1980).

    Google Scholar 

  28. A. Imhof, Decomposition of limestone in a solar reactor. Renewable Energy 10(23), 239–246 (1997).

    Article  CAS  Google Scholar 

  29. A. Imhof, The cyclone reactor, an atmospheric open solar reactor. Sol. Energy Mater. 24, 733–741 (1991).

    Article  CAS  Google Scholar 

  30. A. Meier, B. Bonaldi, G. M. Cella, W. Lipinski, D. Wuillemin, and R. Palumbo, Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime. Energy. 29, 811–821 (2004).

    Article  CAS  Google Scholar 

  31. Columbia University. Calcination. The Columbia Encyclopedia, 6th ed. Columbia University, NY, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 The Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kumar, G.S., Ramakrishnan, A., Hung, YT. (2007). Lime Calcination. In: Wang, L.K., Hung, YT., Shammas, N.K. (eds) Advanced Physicochemical Treatment Technologies. Handbook of Environmental Engineering, vol 5. Humana Press. https://doi.org/10.1007/978-1-59745-173-4_14

Download citation

Publish with us

Policies and ethics