Skip to main content

Application of Serum and Tissue Proteomics to Understand and Detect Solid Tumors

  • Chapter
  • 1168 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

Proteomics embodies a diverse set of platforms devoted to the study of protein structure and function. Mass spectrometry and protein microarrays enable detailed analysis of a diverse set of proteins and their isoforms at the molecular level. These new, high-throughput, and comprehensive proteomic studies can be useful in advancing our understanding of disease processes and have wide potential for integration within clinical trials. Clinical trials incorporating proteomic-based endpoints are geared toward biomarker development, pathway discovery, and target validation. Screening the proteome has the potential to discover a protein biomarker or a signature of markers to predict disease presence, and we have initiated a multi-center clinical trial with the goal of defining a proteomic signature that can predict relapse of ovarian cancer. Serum and tissue proteomics reflect information from the tumor as well as from the tumor microenvironment, as demonstrated in our two recent clinical trials employing these analyses to evaluate effects of targeted agents. Proteomic techniques strengthen the link between bench and bedside by testing existing hypotheses about a disease state or treatment and validating them in the clinical setting. Defining signaling pathways and protein regulatory events in the clinical venue may thus lead to generation of new hypotheses and subsequently to novel treatment strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hortin GL, Shen RF, Martin BM, Remaley AT. Diverse range of small peptides associated with high-density lipoprotein. Biochem Biophys Res Commun 2006;340(3):909–15.

    Article  PubMed  CAS  Google Scholar 

  2. Engle LJ, Simpson CL, Landers JE. Using high-throughput SNP technologies to study cancer. Oncogene 2006;25(11):1594–601.

    Article  PubMed  CAS  Google Scholar 

  3. van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347(25):1999–2009.

    Article  PubMed  Google Scholar 

  4. Zhang ZY. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol 2002;42:209–34.

    Article  PubMed  CAS  Google Scholar 

  5. Faber MJ, Agnetti G, Bezstarosti K, et al. Recent developments in proteomics: implications for the study of cardiac hypertrophy and failure. Cell Biochem Biophys 2006;44(1):11–29.

    Article  PubMed  CAS  Google Scholar 

  6. Traum AZ, Schachter AD. Transplantation proteomics. Pediatr Transplant 2005;9(6):700–11.

    Article  PubMed  CAS  Google Scholar 

  7. Ahn BY, Song ES, Cho YJ, Kwon OW, Kim JK, Lee NG. Identification of an anti-aldolase autoantibody as a diagnostic marker for diabetic retinopathy by immunoproteomic analysis. Proteomics 2006;6(4):1200–9.

    Article  PubMed  CAS  Google Scholar 

  8. Merchant ML, Klein JB. Proteomics and diabetic nephropathy. Curr Diab Rep 2005;5(6):464–9.

    Article  PubMed  CAS  Google Scholar 

  9. Chung LP, Clifford D, Buckley M, Baxter RC. Novel biomarkers of human growth hormone action from serum proteomic profiling using protein chip mass spectrometry. J Clin Endocrinol Metab 2006;91(2):671–7.

    Article  PubMed  CAS  Google Scholar 

  10. Becker S, Cazares LH, Watson P, et al. Surfaced-enhanced laser desorption ionization time-of-flight (SELDI-TOF) differentiation of serum protein profiles of BRCA-1 and sporadic breast cancer. Ann Surg Oncol 2004;11(10):907–14.

    Article  PubMed  Google Scholar 

  11. Dey P. Urinary markers of bladder carcinoma. Clin Chim Acta 2004;340(1–2):57–65.

    Article  PubMed  CAS  Google Scholar 

  12. Dwek MV, Alaiya AA. Proteome analysis enables separate clustering of normal breast, benign breast and breast cancer tissues. Br J Cancer 2003;89(2):305–7.

    Article  PubMed  CAS  Google Scholar 

  13. Engel C, Forberg J, Holinski-Feder E, et al. Novel strategy for optimal sequential application of clinical criteria, immunohistochemistry and microsatellite analysis in the diagnosis of hereditary nonpolyposis colorectal cancer. Int J Cancer 2006;118(1):115–22.

    Article  PubMed  CAS  Google Scholar 

  14. Hirota S, Isozaki K. Pathology of gastrointestinal stromal tumors. Pathol Int 2006;56(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  15. Pawlik TM, Kuerer HM. The evolving role of proteomics in the early detection of breast cancer. Int J Fertil Womens Med 2005;50(5 Pt 1):212–6.

    PubMed  CAS  Google Scholar 

  16. Semmes OJ, Malik G, Ward M. Application of mass spectrometry to the discovery of biomarkers for detection of prostate cancer. J Cell Biochem 2006;98(3):496–503.

    Article  PubMed  CAS  Google Scholar 

  17. Beer HL, Jenkins RE, Gutowska-Owsiak D, Pazmany L, Birchall MA, Kitteringham NR. 2-Dimensional gel electrophoresis and MALDI-MS of cystic cervical metastasis from head and neck squamous cell carcinoma. Clin Otolaryngol 2006;31(3):246.

    Article  PubMed  Google Scholar 

  18. Tchabo NE, Liel MS, Kohn EC. Applying proteomics in clinical trials: assessing the potential and practical limitations in ovarian cancer. Am J Pharmacogenomics 2005;5(3):141–8.

    Article  PubMed  CAS  Google Scholar 

  19. Alaiya A, Al-Mohanna M, Linder S. Clinical cancer proteomics: promises and pitfalls. J Proteome Res 2005;4(4):1213–22.

    Article  PubMed  CAS  Google Scholar 

  20. Liotta LA, Kohn EC, Petricoin EF. Clinical proteomics: personalized molecular medicine. JAMA 2001;286(18):2211–4.

    Article  PubMed  CAS  Google Scholar 

  21. Rai AJ, Chan DW. Cancer proteomics: serum diagnostics for tumor marker discovery. Ann N Y Acad Sci 2004;1022:286–94.

    Article  PubMed  CAS  Google Scholar 

  22. Rosen DG, Wang L, Atkinson JN, Yu Y, Lu KH, Diamandis EP, Hellstrom I, Mock SC, Liu SC, Bast RC Jr. Potential markers that complement expression of CAIZS in epithelial ovarian cancer. Gynecol Oncol 2005; 99:267–77.

    Google Scholar 

  23. Hoefner DM. Serum tumor markers. Part I: clinical utility. MLO Med Lab Obs 2005;37(12):20, 22–4.

    PubMed  Google Scholar 

  24. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359(9306):572–7.

    Article  PubMed  CAS  Google Scholar 

  25. Petricoin EF, III, Ornstein DK, Paweletz CP, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 2002;94(20):1576–8.

    PubMed  CAS  Google Scholar 

  26. Zhang Z, Bast RC, Jr., Yu Y, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res 2004;64(16):5882–90.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang D, Tai LK, Wong LL, Chiu LL, Sethi SK, Koay ES. Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Mol Cell Proteomics 2005;4(11):1686–96.

    Article  PubMed  CAS  Google Scholar 

  28. Petricoin EF, Bichsel VE, Calvert VS, et al. Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol 2005;23(15):3614–21.

    Article  PubMed  CAS  Google Scholar 

  29. Drews J. Drug discovery: a historical perspective. Science 2000;287(5460):1960–4.

    Article  PubMed  CAS  Google Scholar 

  30. Kopec KK, Bozyczko-Coyne D, Williams M. Target identification and validation in drug discovery: the role of proteomics. Biochem Pharmacol 2005;69(8):1133–9.

    Article  PubMed  CAS  Google Scholar 

  31. Posadas EM, Simpkins F, Liotta LA, MacDonald C, Kohn EC. Proteomic analysis for the early detection and rational treatment of cancer–realistic hope? Ann Oncol 2005;16(1):16–22.

    Article  PubMed  CAS  Google Scholar 

  32. Jubb AM, Hurwitz HI, Bai W, et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 2006;24(2):217–27.

    Article  PubMed  CAS  Google Scholar 

  33. Robert F, Ezekiel MP, Spencer SA, et al. Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol 2001;19(13):3234–43.

    PubMed  CAS  Google Scholar 

  34. Vincenzi B, Santini D, Russo A, et al. Angiogenesis modifications related with cetuximab plus irinotecan as anticancer treatment in advanced colorectal cancer patients. Ann Oncol 2006;17(5):835–41.

    Article  PubMed  CAS  Google Scholar 

  35. Esteva FJ, Valero V, Booser D, et al. Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 2002;20(7):1800–8.

    Article  PubMed  CAS  Google Scholar 

  36. Gennari R, Menard S, Fagnoni F, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 2004;10(17):5650–5.

    Article  PubMed  CAS  Google Scholar 

  37. Cohen EEW, Kane MA, List MA, et al. Phase II trial of gefitinib 250 mg daily in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res 2005;11(23):8418–24.

    Article  PubMed  CAS  Google Scholar 

  38. Janmaat ML, Gallegos-Ruiz MI, Rodriguez JA, et al. Predictive factors for outcome in a phase II study of gefitinib in second-line treatment of advanced esophageal cancer patients. J Clin Oncol 2006;24(10):1612–9.

    Article  PubMed  CAS  Google Scholar 

  39. Lassman AB, Rossi MR, Razier JR, et al. Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01–03 and 00–01. Clin Cancer Res 2005;11(21):7841–50.

    Article  PubMed  CAS  Google Scholar 

  40. Ogino S, Meyerhardt JA, Cantor M, et al. Molecular alterations in tumors and response to combination chemotherapy with gefitinib for advanced colorectal cancer. Clin Cancer Res 2005;11(18):6650–6.

    Article  PubMed  CAS  Google Scholar 

  41. Coleman RL, Broaddus RR, Bodurka DC, et al. Phase II trial of imatinib mesylate in patients with recurrent platinum- and taxane-resistant epithelial ovarian and primary peritoneal cancers. Gynecol Oncol 2006;101(1):126–31.

    Article  PubMed  CAS  Google Scholar 

  42. Johnson FM, Krug LM, Tran HT, et al. Phase I studies of imatinib mesylate combined with cisplatin and irinotecan in patients with small cell lung carcinoma. Cancer 2006;106(2):366–74.

    Article  PubMed  CAS  Google Scholar 

  43. Vuky J, Isacson C, Fotoohi M, et al. Phase II trial of imatinib (Gleevec (R)) in patients with metastatic renal cell carcinoma. Invest New Drugs 2006;24(1):85–8.

    Article  PubMed  CAS  Google Scholar 

  44. Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet 2003;33:311–23.

    Article  PubMed  CAS  Google Scholar 

  45. Hua C, Langlet C, Buferne M, Schmittverhulst AM. Selective destruction by formaldehyde fixation of an H-2kb serological determinant involving lysine-89 without loss of T-cell reactivity. Immunogenetics 1985;21(3):227–34.

    Article  PubMed  CAS  Google Scholar 

  46. Laemmli UK. Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 1970;227(5259):680–5.

    Article  PubMed  CAS  Google Scholar 

  47. Simpkins F, Czechowicz JA, Liotta L, Kohn EC. SELDI-TOF mass spectrometry for cancer biomarker discovery and serum proteomic diagnostics. Pharmacogenomics 2005;6(6):647–53.

    Article  PubMed  CAS  Google Scholar 

  48. Winters M, Lowenthal M, Feldman A, Liotta L. The future of cancer diagnostics: proteomics, immunopreoteomics, and beyond. In: Detrick B HR, Folds JD, ed. Molecular and Clinical Laboratory Immunology. Washington: ASM Press; 2006:1183–92.

    Google Scholar 

  49. Choudhary J, Grant SG. Proteomics in postgenomic neuroscience: the end of the beginning. Nat Neurosci 2004;7(5):440–5.

    Article  PubMed  CAS  Google Scholar 

  50. Krimbou L, Tremblay M, Davignon J, Cohn JS. Characterization of human plasma apolipoprotein E-containing lipoproteins in the high density lipoprotein size range: focus on pre-beta1-LpE, pre-beta2-LpE, and alpha-LpE. J Lipid Res 1997;38(1):35–48.

    PubMed  CAS  Google Scholar 

  51. Ye B, Skates S, Mok SC, et al. Proteomic-based discovery and characterization of glycosylated eosinophil-derived neurotoxin and COOH-terminal osteopontin fragments for ovarian cancer in urine. Clin Cancer Res 2006;12(2):432–41.

    Article  PubMed  CAS  Google Scholar 

  52. Paweletz CP, Charboneau L, Bichsel VE, et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 2001;20(16):1981–9.

    Article  PubMed  CAS  Google Scholar 

  53. EmmertBuck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science 1996;274(5289):998–1001.

    Article  CAS  Google Scholar 

  54. Ekins R, Chu F. Immunoassay and other ligand assays: present status and future trends. J Int Fed Clin Chem 1997;9(3):100–9.

    PubMed  CAS  Google Scholar 

  55. Ekins RP, Chu FW. Multianalyte microspot immunoassay–microanalytical “compact disk” of the future. Clin Chem 1991;37(11):1955–67.

    PubMed  CAS  Google Scholar 

  56. Wiese R. Analysis of several fluorescent detector molecules for protein microarray use. Luminescence 2003;18(1):25–30.

    Article  PubMed  CAS  Google Scholar 

  57. Tannapfel A, Anhalt K, Hausermann P, et al. Identification of novel proteins associated with hepatocellular carcinomas using protein microarrays. J Pathol 2003;201(2):238–49.

    Article  PubMed  CAS  Google Scholar 

  58. Sheehan KM, Calvert VS, Kay EW, et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 2005;4(4):346–55.

    Article  PubMed  CAS  Google Scholar 

  59. Yip TT, Hutchens TW. Immobilized metal ion affinity chromatography. Mol Biotechnol 1994;1(2):151–64.

    PubMed  CAS  Google Scholar 

  60. Mehta AI, Ross S, Lowenthal MS, et al. Biomarker amplification by serum carrier protein binding. Dis Markers 2003;19(1):1–10.

    PubMed  CAS  Google Scholar 

  61. Li JN, White N, Zhang Z, et al. Detection of prostate cancer using serum proteomics pattern in a histologically confirmed population J Urol 2004;171(5):1782–7, Erratum in 172(1):389.

    Article  PubMed  CAS  Google Scholar 

  62. Chen R, Pan S, Brentnall TA, Aebersold R. Proteomic profiling of pancreatic cancer for biomarker discovery. Mol Cell Proteomics 2005;4(4):523–33.

    Article  PubMed  CAS  Google Scholar 

  63. Rogers MA, Clarke P, Noble J, et al. Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res 2003;63(20):6971–83.

    PubMed  CAS  Google Scholar 

  64. Sorace JM, Zhan M. A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 2003;4:24.

    Article  PubMed  Google Scholar 

  65. Wong YF, Cheung TH, Lo KW, Wang VW, Chan CS, NG TB, Chung TK, Mok SC. “Protein profiling of cervical cancer by protein bio chips: proteomic scoring to discriminate cervical cancer from normal cervix.” Cancer Lett 2004: 211(2):227–34.

    Article  PubMed  CAS  Google Scholar 

  66. Becker S, Cazares LH, Watson P, et al. Surfaced-enhanced laser desorption ionization time-of-flight (SELDI-TOF) differentiation of serum protein profiles of BRCA-1 and sporadic breast cancer. Ann Surg Oncol 2004;11(10):907–14.

    Article  PubMed  Google Scholar 

  67. Gericke B, Raila J, Sehouli J, et al. Microheterogeneity of transthyretin in serum and ascitic fluid of ovarian cancer patients. BMC Cancer 2005;5:133.

    Article  PubMed  CAS  Google Scholar 

  68. Ord JJ, Streeter E, Jones A, et al. Phase I trial of intravesical Suramin in recurrent superficial transitional cell bladder carcinoma. Br J Cancer 2005;92(12):2140–7.

    Article  PubMed  CAS  Google Scholar 

  69. Liotta LA, Lowenthal M, Mehta A, et al. Importance of communication between producers and consumers of publicly available experimental data. J Natl Cancer Inst 2005;97(4):310–4.

    PubMed  Google Scholar 

  70. Ransohoff DF. Lessons from controversy: ovarian cancer screening and serum proteomics. J Natl Cancer Inst 2005;97(4):315–9.

    Article  PubMed  CAS  Google Scholar 

  71. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 2005;23(36):9067–72.

    Article  PubMed  Google Scholar 

  72. Karsan A, Eigl BJ, Flibotte S, et al. Analytical and preanalytical biases in serum proteomic pattern analysis for breast cancer diagnosis. Clin Chem 2005;51(8):1525–8.

    Article  PubMed  CAS  Google Scholar 

  73. Ullrich B, Ushkaryov YA, Sudhof TC. Cartography of neurexins - more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 1995;14(3):497–507.

    Article  PubMed  CAS  Google Scholar 

  74. Alessandro R, Belluco C, Kohn EC. Proteomic approaches in colon cancer: promising tools for new cancer markers and drug target discovery. Clin Colorectal Cancer 2005;4(6):396–402.

    Article  PubMed  CAS  Google Scholar 

  75. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359(9306):572–7.

    Article  PubMed  CAS  Google Scholar 

  76. Tan AR, Yang X, Hewitt SM, et al. Evaluation of biologic end points and pharmacokinetics in patients with metastatic breast cancer after treatment with erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor. J Clin Oncol 2004;22(15):3080–90.

    Article  PubMed  CAS  Google Scholar 

  77. Posadas EM, Liel MS, Kwitkouski V, Minasian L, Godwin AK, Hussain MM, Espina V, Wood BJ, Steinberg SM, Konn EC. “A phase II study of gefitinib in patients with refractory or recurrent epithelial ovarian cancer.” Cancer 2007;109(7):1323–30.

    Article  PubMed  CAS  Google Scholar 

  78. Posadas EM, Kwitkouski Kotz HL, Espina V, Minasian L, Tchabo N, Premkumar A, Hussain MM, Chang R, Stemberg SM, Konn EC. “A prospective analysis of imatinib induced c-kit modulation in ovarian cancer: a phase II clinical study with proteomic profiling.” Cancer 207;110(2):309–17.

    Google Scholar 

  79. Ito M, Harada T, Tanikawa M, Fujii A, Shiota G, Terakawa N. Hepatocyte growth factor and stem cell factor involvement in paracrine interplays of theca and granulosa cells in the human ovary. Fertil Steril 2001;75(5):973–9.

    Article  PubMed  CAS  Google Scholar 

  80. Parrott JA, Kim G, Skinner MK. Expression and action of kit ligand/stem cell factor in normal human and bovine ovarian surface epithelium and ovarian cancer. Biol Reprod 2000;62(6):1600–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this chapter

Cite this chapter

Annunziata, C.M., Roque, D.M., Azad, N., Kohn, E.C. (2008). Application of Serum and Tissue Proteomics to Understand and Detect Solid Tumors. In: Daoud, S.S. (eds) Cancer Proteomics. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-169-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-169-7_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-858-4

  • Online ISBN: 978-1-59745-169-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics