Skip to main content

Cellular Signals Mediating Growth Arrest After Polyamine Depletion

  • Chapter

Abstract

The natural polyamines spermidine and spermine and their precursor putrescine are ubiquitous organic cations of low molecular weight in eukaryotic cells and are intimately involved in distinct cellular functions (1,2). For many years, regulation of cellular polyamines has been recognized to be the central convergence point for multiple signaling pathways driving different cellular functions. It has been shown that increased levels of cellular polyamines, either synthesized endogenously or supplied exogenously, are essential for the stimulation of cell proliferation, and that depletion of cellular polyamines inhibits cell proliferation and causes G1 phase growth arrest in a variety of cell types (13). To define the exact role of polyamines in cell proliferation at the molecular level, an increasing body of evidence indicates that polyamines regulate cell proliferation by virtue of their ability to modulate expression of various growth-related genes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tabor, C. W. (1984) Polyamines. Ann. Rev. Biochem. 53, 749–790.

    Article  PubMed  CAS  Google Scholar 

  2. Gerner, E. W. and Meyskens, F. L. (2004) Polyamines and cancer: old molecules, new understanding. Nat. Rev. 4, 781–792.

    CAS  Google Scholar 

  3. Luk, G. D., Marton, L. J., and Baylin, S. B. (1980) Ornithine decarboxylase is important in intestinal mucosal maturation and recovery from injury in rats. Science 210, 195–198.

    Article  CAS  Google Scholar 

  4. Celano, P., Baylin, S. B., and Casero, R. A. (1989) Polyamines differentially modulate the transcription of growth-associated genes in human colon carcinoma cells. J. Biol. Chem. 264, 8922–8927.

    PubMed  CAS  Google Scholar 

  5. Wang, J. Y., McCormack, S. A., Viar, M. J., et al. (1993) Decreased expression of protooncogenes c-fo s, c-my c, and c-jun following polyamine depletion in IEC-6 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 265, G331–G338.

    CAS  Google Scholar 

  6. Li, L., Li, J., Rao, J. N., Li, M.-L., Bass, B. L., and Wang, J. Y.(1999) Inhibition of polyamine synthesis induces p53 gene expression but not apoptosis. Am. J. Physiol. Cell. Physiol. 276, C946–C954.

    CAS  Google Scholar 

  7. Kramer, D. L., Vujcic, S., Diegelman, P., et al. (1999) Polyamine analogue induction of the p53-p21WAF1/CIP1-Rb pathway and G1 arrest in human melanoma cells. Can. Res. 59, 1278–1286.

    CAS  Google Scholar 

  8. Li, L., Liu, L., Rao, J. N., et al. (2002) JunD stabilization results in inhibition of normal intestinal epithelial cell growth through p21 after polyamine depletion. Gastroentro l ogy 123, 764–779.

    CAS  Google Scholar 

  9. Patel, A. R. and Wang, J. Y. (1999) Polyamine depletion is associated with an increase in JunD/AP-1 activity in small intestinal crypt cells. Am. J. Physiol. Gastrointest. Liver Physiol. 276, G441–G450.

    CAS  Google Scholar 

  10. Patel, A. R., Li, J., Bass, B. L., and Wang, J. Y. (1998) Expression of the transforming growth factor-b gene during growth inhibition following polyamine depletion. Am. J. Physiol. Cell. Physiol. 275, C590–C598.

    CAS  Google Scholar 

  11. Rao, J. N., Li, L., Bass, B. L., and Wang, J. Y. (2000) Expression of the TGF-b receptor gene and sensitivity to growth inhibition following polyamine depletion. Am. J. Physiol. Cell. Physiol. 279, C1034–C1044.

    PubMed  CAS  Google Scholar 

  12. Patel, A. R. and Wang, J. Y. (1997) Polyamines modulate transcription but not posttranscription of c-myc and c-jun in IEC-6 cells. Am. J. Physiol. 273, C1020–C1029.

    PubMed  CAS  Google Scholar 

  13. Liu, L., Li, L., Rao, N. J., et al. (2005) Polyamine-modulated expression of c-my c plays a critical role in stimulation of normal intestinal epithelial cell proliferation. Am. J. Physiol. Cell. Physiol. 288, C89–C99.

    PubMed  CAS  Google Scholar 

  14. Wang, J. Y. and Johnson, L. R. (1994) Expression of protooncogenes c-fo s and c-myc in healing of gastric mucosal stress ulcers. Am. J. Physiol. Gastrointest. Liver Physiol. 266, G878–G886.

    CAS  Google Scholar 

  15. Li, L., Rao, J. N., Bass, B. L., and Wang, J. Y. (2001) NF-kB activation and susceptibility to apoptosis following polyamine depletion in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G992–G1004.

    PubMed  CAS  Google Scholar 

  16. Slee, E. A., O’Connor, D. J., and Lu, X. (2004) To die or not die: how does p53 decide? Oncogene 23, 2809–2818.

    Article  PubMed  CAS  Google Scholar 

  17. Appella, E. and Anderson, C. W. (2001) Post-transcriptional modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. 268, 2764–2772.

    Article  PubMed  CAS  Google Scholar 

  18. Kurki, S., Peltonen, K., and Laiho, M. (2004) Nucleophosmin, HDM2 and p53: players in UV damage incited nucleolar stress response. Cell Cycle 3, 976–979.

    PubMed  CAS  Google Scholar 

  19. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H., and Weissman, A. M. (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951.

    Article  PubMed  CAS  Google Scholar 

  20. Li, L., Rao, J. N., Li, J., Patel, A. R., Bass, B. L., and Wang, J. Y. (2001) Polyamine depletion stabilizes p53 resulting in inhibition of normal intestinal epithelial cell proliferation. Am. J. Physiol. Cell. Physiol. 281, C941–C953.

    PubMed  CAS  Google Scholar 

  21. Mercer WE, Shields MT, Amin M, et al. (1990) Negative growth regulation in glioblastoma tumor cell line that conditionally expresses human wild-type p53. Pro c. Natl. Acad. Sci. USA 87, 6166–6170.

    Article  CAS  Google Scholar 

  22. Kramer, D. L., Chang, B. D., Chen, Y., et al. (2001) Polyamine depletion in human melanoma cells leads to G1 arrest associated with induction of p21WAF1/CIP1/SDI1, changes in the expression of p21-regulated genes, and a senescence-like phenotype. Can. Res. 61, 7754–7762.

    CAS  Google Scholar 

  23. Ray, R. M., Zimmerman, B. J., McCormack, S. A., Patel, T. B., and Johnson, L. R. (1999) Polyamine depletion arrests cell cycle and induces inhibitors p21Waf1/Cip1, p27Kip1, and p53 in IEC-6 cells. Am. J. Physiol. Cell. Physiol. 276, C684–C691.

    CAS  Google Scholar 

  24. Pfeffer, L. M., Yang, C. H., Pfeffer, S. R., Murti, A., McCormack, S. A., and Johnson, L. R. (2000) Inhibition of ornithine decarboxylase induces STAT3 tyrosine phosphorylation and DNA binding in IEC-6 cells. Am. J. Physiol. Cell. Physiol. 278, C331–C335.

    PubMed  CAS  Google Scholar 

  25. Maiguel, D. A., Jones, L., Chakravarty, D., Yang, C., and Carrier, F. (2004) Nucleophosmin sets a threshold for p53 response to UV radiation. Mol. Cell. Biol. 24, 3703–3711.

    Article  PubMed  CAS  Google Scholar 

  26. Wu, M. H. and Yung, B. Y. M. (2002) UV stimulation of nucleophosmin/B23 expression is an immediate-early gene response induced by damage DNA. J. Biol. Chem. 277, 48,234–48,240.

    Article  PubMed  CAS  Google Scholar 

  27. You, Y., Chen, C.-Y., and Shyu, A. B. (1992) U-rich sequence-binding protein (URBPs) interacting with a 20-uncleotide U-rich sequence in the 3¢ untranslated region of c-fos mRNA may be involved in the first step of c-fo s mRNA degradation. Mol. Cell. Biol. 12, 2931–2940.

    PubMed  CAS  Google Scholar 

  28. Paulding, W. R. and Czyzk-Krzeska, M. F. (1999) Regulation of tyrosine hydroxylase mRNA stability by protein-binding, pyrimidine-Reich sequence in the 3¢-untranslated region. J. Biol. Chem. 274, 2532–2538.

    Article  PubMed  CAS  Google Scholar 

  29. Shih, S.-C. and Claffey, K. P. (1999) Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. J. Biol. Chem. 274, 1359–1365.

    Article  PubMed  CAS  Google Scholar 

  30. Schmidt-Zachmann, M. S., Hugle-Dorr, B., and Franke, W. W. (1987) A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBO J. 6, 1881–1890.

    PubMed  CAS  Google Scholar 

  31. Chan, W. Y., Liu, Q. R., Borjigin, J., et al. (1989) Characterization of the cDNA encoding human nucleophosmin and studies of its role in normal and abnormal growth. Biochemistry 28, 1033–1039.

    Article  PubMed  CAS  Google Scholar 

  32. Zou, T., Rao, J. N., Liu, L., et al. (2005) Polyamine depletion induces nucleophosmin modulating stability and transcriptional activity of p53 in intestinal epithelial cells. Am. J. Physiol. Cell. Physiol. 289, C686–C696.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, H. F., Rao, J. N., Guo, X., et al. (2004) Akt kinase activation blocks apoptosis in intestinal epithelial cells by inhibiting caspase-3 after polyamine depletion. J. Biol. Chem. 279, 22,539–22,547.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, J. Y., McCormark, S. A., Viar, M. J., and Johnson, L. R. (1991) Stimulation of proximal small intestinal mucosal growth by luminal polyamines. Am. J. Physiol. Gastrointest. Liver Physiol. 261, G504–G511.

    CAS  Google Scholar 

  35. Hall, P. A., Coates, P. J., Ansari, B., and Hopwood, D. (1994) Regulation of cell number in the mammalian gastrointestinal tract-the importance of apoptosis. J. Cell. Sci. 107, 3569–3577.

    PubMed  CAS  Google Scholar 

  36. Potten, C. S. and Loeffler, M. (1990) Stem cells: attributes, cycles, spirals, pitfalls, and uncertainties-lessons for and from the crypt. Development 110, 1001–1020.

    PubMed  CAS  Google Scholar 

  37. Hirai, S. I., Ryseck, R. P., Mechta, F., Bravo, K., and Yaniv, M. (1989) Characterization of junD: a new member of the jun proto-oncogene family. EMBO J. 8, 1433–1439.

    PubMed  CAS  Google Scholar 

  38. Ryder, K., Lanahan, A., Perez-Albuerne, E., and Nathans, D. (1989) JunD: a third member of the jun gene family. Proc. Natl. Acad. Sci. USA 86, 1500–1503.

    Article  PubMed  CAS  Google Scholar 

  39. Angel, P., Allegretto, E. A., Okino, S. T., et al. (1988) Oncogene Jun encodes a sequencespecific transactivator similar to AP-1. Nature 332, 166–171.

    Article  PubMed  CAS  Google Scholar 

  40. Nakabeppu, Y., Ryder, K., and Nathans, D. (1988) DNA binding activities of three murine Jun proteins: stimulation by Fos. Cell 55, 907–915.

    Article  PubMed  CAS  Google Scholar 

  41. Pfarr, C. M., Mechta, F., Spyrou, G., Lallemand, D., Carillo, S., and Yaniv, M. (1994) Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell 76, 747–760.

    Article  PubMed  CAS  Google Scholar 

  42. Barnard, J. A., Lyons, R. M., and Moses, H. L. (1990) The cell biology of transforming growth factor b. Biochim. Biophys. Acta. 1032, 79–87.

    PubMed  CAS  Google Scholar 

  43. Barnard, J. A., Warwick, G. J., and Gold, L. I. (1993) Localization of transforming growth factor-bisoforms in the normal murine small intestine and colon. Gastroenterology 105, 67–73.

    PubMed  CAS  Google Scholar 

  44. Franzen, P., Dijke, P. T., Ichijo, H., et al. (1993) Cloning of a TGFb type I receptor that forms a heteromeric complex with the TGFb type II receptor. Cell 75, 681–692.

    Article  PubMed  CAS  Google Scholar 

  45. Massague J. (1992) Receptors for the TGF-b family. Cell 69, 1067–1070.

    Article  PubMed  CAS  Google Scholar 

  46. Sarkar, D. K., Pastorcic, M., De, A., Engel, M., Moses, H., and Ghasemzadeh, B. (1998) Role of transforming growth factor (TGF)-b type I and TGF-b type II receptors in the TGFb1-regulated gene expression in pituitary prolactin-secreting lactotropes. E n d o c ri n o l ogy 139, 3620–3628.

    CAS  Google Scholar 

  47. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F., and Massague, J. (1994) Mechanism of activation of the TGF-b receptor. Nature 370, 341–347.

    Article  PubMed  CAS  Google Scholar 

  48. Wieser, R., Wrana, J. L., and Massague, J. (1995) GS domain mutations that constitutively activate TbR-I, the downstream signaling component in the TGF-b receptor complex. EMBO J. 14, 2199–2208.

    PubMed  CAS  Google Scholar 

  49. Barnard, J. A., Beauchamp, R. D., Coffey, R. J., and Moses, H. L. (1989) Regulation of intestinal epithelial cells growth by transforming growth factor type b. Pro c. Natl. A c a d. Sci. USA 86, 1578–1582.

    Article  CAS  Google Scholar 

  50. Suemori, S., Ciacci, C., and Podolsky, D. K. (1991) Regulation of transforming growth factor expression in rat intestinal epithelial cell lines. J. Clin. Invest. 87, 2216–2221.

    Article  PubMed  CAS  Google Scholar 

  51. Attisano, L. and Wrana, J. L. (2000) Smads as transcriptional co-modulators. C u rr. Opin. Cell. Biol. 12, 235–243.

    Article  CAS  Google Scholar 

  52. Zawel, L., Dai, J. L., Buckhaults, P., et al. (1998) Human Smad3 and Smad4 are sequence specific transcription activators. Mol. Cell. 1, 611–617.

    Article  PubMed  CAS  Google Scholar 

  53. Itoh, S., Itoh, F., Goumans, M. J., and Dijke, P. T. (2000) Signaling of transforming growth factor-b family members through Smad proteins. Eur. J. Biochem. 267, 6954–6967.

    Article  PubMed  CAS  Google Scholar 

  54. Liberati, N. T., Moniwa, M., Borton, A. J., Davie, J. R., and Wang, X. F. (2001) An essential role for mad homology domain 1 in the association of Smad3 with histone deacetylase activity. J. Biol. Chem. 276, 22,595–22,603.

    Article  PubMed  CAS  Google Scholar 

  55. Massague, J. and Wotton, D. (2000) Transcriptional control by the TGF-b/Smad signaling system. EMBO J. 19, 1745–1754.

    Article  PubMed  CAS  Google Scholar 

  56. Heldin, C. H., Miyazono, K., and Dijke, P. T. (1997) TGF-b signaling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471.

    Article  PubMed  CAS  Google Scholar 

  57. Dennler, S., Itoh, S., Vivien, D., Dijke, P. T., Huet, S., and Gauthier, J. M. (1998) Direct binding of Smad3 and Smad4 to critical TGF-b-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17, 3091–3100.

    Article  PubMed  CAS  Google Scholar 

  58. Dijke, P. T., Goumans, M. J., Itoh, F., and Itoh, S. (2002) Regulation of cell proliferation by Smad proteins. J. Cell. Physiol. 191, 1–16.

    Article  PubMed  CAS  Google Scholar 

  59. Wong, C., Rougier-Chapman, E. M., Frederick, J. P., et al. (1999) Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor b. Mol. Cell. Biol. 19, 1821–1830.

    PubMed  CAS  Google Scholar 

  60. Liu, L., Santora, R., Rao, J. N., et al. (2003) Activation of TGF-b/Smad signaling pathway following polyamine depletion in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G1056–G1067.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wang, JY. (2006). Cellular Signals Mediating Growth Arrest After Polyamine Depletion. In: Wang, JY., Casero, R.A. (eds) Polyamine Cell Signaling. Humana Press. https://doi.org/10.1007/978-1-59745-145-1_4

Download citation

Publish with us

Policies and ethics