Skip to main content

Cellular Signaling and Polyamines in the Control of Apoptosis in Intestinal Epithelial Cells

  • Chapter

Abstract

A recent review article by Jänne et al. (1) begins with, “The polyamines, putrescine, spermidine, and spermine, are organic cations shown to participate in a bewildering number of cellular reactions, yet their exact functions in intermediary metabolism and specific interactions with cellular components remain largely elusive.” As documented by Schipper et al. (2) in their article entitled “Involvement of polyamines in apoptosis. Facts and controversies: effectors or protectors?” apoptosis or programmed cell death certainly belongs on the list. As the title of the Schipper et al. review indicates, the role of polyamines in apoptosis is anything but clear. In most, but not all instances, ornithine decarboxylase (ODC) activity increased with the induction of apoptosis, but there was no clear cut change in polyamine levels as they increased, decreased, or stayed the same depending on the system (2). Most experiments examining the effect of blocking ODC with α-difluoromethylornithine (DFMO) reported protection from apoptosis, whereas a few found no effect (2). The effects of polyamine analogs on apoptosis were also variable (2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jäne, J., Alhonen, L., Pietilä, M., and Keinänen, T. A. (2004) Genetic approaches to the cellular functions of polyamines in mammals. Eur. J. Biochem. 271, 877–894.

    Article  CAS  Google Scholar 

  2. Schipper, R. G., Penning, L. C., and Verhofstad, A. A. J. (2000) Involvement of polyamines in apoptosis. Facts and controversies: effectors or protectors? Semin. Cancer Biol. 10, 55–68.

    Article  PubMed  CAS  Google Scholar 

  3. Quaroni, A., Wands, J., Trelstad, R. L., and Isselbacher, K. J. (1979) Epithelioid cell cultures from rat small intestine. J. Cell Biol. 80, 248–265.

    Article  PubMed  CAS  Google Scholar 

  4. McCormack, S. A., Viar, M. J., and Johnson, L. R. (1993) Polyamines are necessary for cell migration by a small intestinal crypt cell line. Am. J. Physiol. Gastrointest. Liver Physiol. 264, G367–G374.

    CAS  Google Scholar 

  5. Ziegler, U. and Groscurth, P. (2004) Morphological features of cell death. News Physiol. Sci. 19, 124–128.

    PubMed  CAS  Google Scholar 

  6. Thornberry, N. A. and Lazebnik, Y. (1998) Caspases: enemies within. Science 281, 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  7. Liu, X., Li, P., Widlak, P., et al. (1998) The 40 kDa subunit of DNA fragmentation factors induces DNA fragmentation and condensation during apoptosis. Proc. Natl. Acad. Sci. USA 95, 8461–8466.

    Article  PubMed  CAS  Google Scholar 

  8. Nicholson, D. W. and Thornberry, N. A. (2003) Life and death decisions. Science 299, 214–215.

    Article  PubMed  CAS  Google Scholar 

  9. Deveraux, Q. L., Leo, E., Steinnicke, H. R., Welsh, K., Salvesen, G. S., and Reed, J. C. (1999) Cleavage of human inhibitors of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18, 5242–5251.

    Article  PubMed  CAS  Google Scholar 

  10. Wu, G., Chai, J., Suber, T. L., et al. (2000) Structural basis of IAP recognition of Smac/Diablo. Nature 408, 1008–1012.

    Article  PubMed  CAS  Google Scholar 

  11. Kelekar, A. and Thompson, C. B. (1998) Bcl-2 family proteins: the role of the BH3 domain in apoptosis. Trends Cell. Biol. 8, 324–330.

    Article  PubMed  CAS  Google Scholar 

  12. Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J. (1993) Bcl-2 heterodimerizes with a conserved homolog, Bax, that accelerates programmed cell death. Cell in Vivo 74, 609–619.

    Article  CAS  Google Scholar 

  13. Ledgerwood, E. C., Pober, J. S., and Bradley, J. R. (1999) Recent advances in the molecular basis of TNF signal transduction. Lab. Invest. 79, 1041–1050.

    PubMed  CAS  Google Scholar 

  14. Hsu, H., Shu, H.-B., Pan, M.-G., and Goedeel, D. V. (1996) TRADD-TRF2 and TRADDFADD interaction define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–309.

    Article  PubMed  CAS  Google Scholar 

  15. Beg, A. A. and Baltimore, D. (1996) An essential role for NF-κB in preventing TNF-α induced cell death. Science 274, 782–784.

    Article  PubMed  CAS  Google Scholar 

  16. Lewis, T. S., Shapiro, P. S., and Ahn, N. G. (1998) Signal transduction through MAPK cascades. Adv. Cancer Res. 74, 49–139.

    Article  PubMed  CAS  Google Scholar 

  17. Reinhard, C., Shamoon, B., Shyamala, V., and Williams, L. T. (1997) TNFα-induced activation of JNK is mediated by TRAF2. EMBO J. 16, 1080–1092.

    Article  PubMed  CAS  Google Scholar 

  18. Bhattacharya, S., Ray, R. M., and Johnson, L. R. (2004) Prevention of TNF-α-induced apoptosis in polyamine-depleted IEC-6 cells is mediated through the activation of ERK 1/2. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G479–G490.

    Article  PubMed  CAS  Google Scholar 

  19. Wright, N. A. and Irwin, M. (1982) The kinetics of villus cell populations in the mouse small intestine: normal villi-the steady state requirement. Cell Tissue Kinet. 15, 595–609.

    PubMed  CAS  Google Scholar 

  20. Grossman, J., Walther, K., Artinger, M., Kiessling, S., and Scholmerich, J. (2001) Apoptotic signaling during initiation of detachment induced apoptosis (“anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ. 12, 147–155.

    Google Scholar 

  21. Ray, R. M., Zimmerman, B. J., McCormack, S. A., Patel, T. B., and Johnson, L. R. (1999) Polyamine depletion arrests cell cycle and induces inhibitors p21waf1/cip1, p27kip1 and p53 in IEC-6 cells. Am. J. Physiol. Cell Physiol. 276, C684–C691.

    CAS  Google Scholar 

  22. Agarwal, M. L., Taylor, W. R., Chernov, M. V., Chernova, O. B., and Stark, G. R. (1998) The p53 network. J. Biol. Chem. 273, 1–4.

    Article  PubMed  CAS  Google Scholar 

  23. Merritt, A. J., Potten, C. S., Kemp, C. J., et al. (1994) The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res. 54, 614–617.

    PubMed  CAS  Google Scholar 

  24. Ray, R. M., Viar, M. J., Yuan, Q., and Johnson, L. R. (2000) Polyamine depletion delays apoptosis of rat intestinal epithelial cells. Am. J. Physiol. Cell Physiol. 278, C480–C489.

    PubMed  CAS  Google Scholar 

  25. Deng, W. and Johnson, L. R. (2005) Polyamine depletion inhibits irradiation-induced apoptosis in intestinal epithelia. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G599–G606.

    Article  PubMed  CAS  Google Scholar 

  26. Yuan, Q., Ray, R. M., and Johnson, L. R. (2002) Polyamine depletion prevents camptothecin-induced apoptosis by inhibiting the release of cytochrome c. Am. J. Physiol. Cell Physiol. 282, C1290–C1297.

    PubMed  CAS  Google Scholar 

  27. Bhattacharya, S., Ray, R. M., Viar, M. J., and Johnson, L. R. (2003) Polyamines are required for the activation of c-Jun NH2-terminal kinase and apoptosis in response to TNF-α in IEC-6 cells. Am. J. Physiol. Gstrointest. Liver Physiol. 285, G980–G991.

    CAS  Google Scholar 

  28. Pfeffer, L. M., Yang, C. H., Murti, A., et al. (2001) Polyamine depletion induces rapid NF-κB activation in IEC-6 cells. J. Biol. Chem. 276, 45,909–45,913.

    Article  PubMed  CAS  Google Scholar 

  29. Li, L., Rao, J. N., Bass, B. L., and Wang, J.-Y. (2001) NF-κB activation and susceptibility to apoptosis after polyamine depletion in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G992–G1004.

    PubMed  CAS  Google Scholar 

  30. Zou, T., Rao, J. N., Guo, X., et al. (2004) NF-(kappa)B-mediated IAP expression induces resistance of intestinal epithelial cells to apoptosis after polyamine depletion. Am. J. Physiol. Cell Physiol. 286, C1009–C1018.

    Article  PubMed  CAS  Google Scholar 

  31. Madrid, L. V., Wang, C. Y., Guttridge, D. C., Schottelins, A. J., Baldwin, A. S. Jr., and Mayo, M. W. (2000) Akt suppresses apoptosis by stimulating the transactivation potential of the Rel/p65 subunit of NF-kappa B. Mol. Cell Biol. 20, 1626–1638.

    Article  PubMed  CAS  Google Scholar 

  32. Pap, M. and Cooper, G. M. (1998) Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt survival pathway. J. Biol. Chem. 273, 19,929–19,932.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, H. M., Rao, J. N., Guo, X., et al. (2004) Akt kinase activation blocks apoptosis in intestinal epithelial cells by inhibiting caspase-3 after polyamine depletion. J. Biol. Chem. 279, 22,539–22,547.

    Article  PubMed  CAS  Google Scholar 

  34. Bhattacharya, S., Ray, R. M., and Johnson, L. R. (2005) Decreased apoptosis in IEC-6 cells following polyamine depletion depends on NF-?B activation but not GSK3β activity. Apoptosis 10, 759–776.

    Article  PubMed  CAS  Google Scholar 

  35. Pfeffer, L. M., Yang, C. H., Pfeffer, S. R., Murti, A., McCormack, S., A., and Johnson, L. R. (2000) Inhibition of ornithine decarboxylase induces STAT3 tyrosine phosphorylation and DNA binding in IEC-6 cells. Am. J. Physiol. Cell Physiol. 278, C331–C335.

    PubMed  CAS  Google Scholar 

  36. Kanda, N., Seno, H., Konda, Y., and Chiba, T. (2004) STAT3 is constitutively activated and supports cell survival in association with surviving expression and in gastric cancer cells. Oncogene 23, 4921–4929.

    Article  PubMed  CAS  Google Scholar 

  37. Bhattacharya, S., Ray, R. M., and Johnson, L. R. (2005) STAT3-mediated transcription of Bcl-2, Mcl-1 and BIRC3 prevents apoptosis in polyamine-depleted cells. Biochem. J. 392, 335–344.

    Article  PubMed  CAS  Google Scholar 

  38. Garcia, A., Cayla, X., Guergnon, J., et al. (2003) Serine/threonine protein phosphatases PP1 and PP2A are key players in apoptosis. Biochimie 85, 721–726.

    Article  PubMed  CAS  Google Scholar 

  39. Tung, H. Y., Pelech, S., Fisher, M. J., Pogson, C. I., and Cohen, P. (1985) The protein phosphatases involved in cellular regulation. Influence of polyamines on the activities of PP-1 and PP2A. Eur. J. Biochem. 149, 305–313.

    Article  PubMed  CAS  Google Scholar 

  40. Cornwell, T., Mehta, P., and Shenolikar, S. (1986) Polyamine stimulation of PP-2A from rat liver using a non-protein phosphoester substrate. J. Cyclic Nacleotide Protein Phosphor. Res. 11, 373–382.

    CAS  Google Scholar 

  41. Ray, R. M., Bhattacharya, S., and Johnson, L. R. (2005) Inhibition of PP2A in polyamine depleted cells is responsible for their resistance to apoptosis. J. Biol. Chem. 280, 31,091–31,100.

    Article  PubMed  CAS  Google Scholar 

  42. Chen, J., Martin, B. L., Brautigan, D. L. (1992) Regulation of protein serine-threonine phosphatase type 2A by tyrosine phosphorylation. Science 257, 1261–1264.

    Article  PubMed  CAS  Google Scholar 

  43. Pengetnze, Y., Steed, M., Roby, K. F., Terranova, P. F., and Taylor, C. C. (2003) Src tyrosine kinase promotes survival and resistance to chemotherapeutics in a mouse ovarian cancer cell line. Biochem. Biophys. Res. Commun. 309, 377–383.

    Article  PubMed  CAS  Google Scholar 

  44. Anderson, S. M., Carroll, P. M., and Lee, F. D. (1990) Aborgation of IL-3 dependent growth requires a functional v-Src gene product. Oncogene 5, 317–325.

    PubMed  CAS  Google Scholar 

  45. Gardner, A. M., and Johnson, G. L. (1996) Fibroblast growth factor-2 suppression of TNFα-mediated apoptosis requires Ras and the activation MAP kinase. J. Biol. Chem. 271, 14,560–14,566.

    Article  PubMed  CAS  Google Scholar 

  46. Yao, R. and Cooper, R. M. (1995) Requirement for PI-3 kinase in the prevention of apoptosis by NGF. Science 267, 2003–2006.

    Article  PubMed  CAS  Google Scholar 

  47. Bhattacharya, S., Ray, R. M., and Johnson, L. R. Activation of Src regulates apoptosis in intestinal epithelial cells. In press.

    Google Scholar 

  48. Brown, M. T., and Cooper, J. A. (1996) Regulation, substrates, and functions of Src. Biochim. Biophys. Acta 1287, 121–149.

    PubMed  Google Scholar 

  49. Gracia, R., Bowman, T. L., Guillian, N., et al. (2001) Constitutive activation of STAT3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20, 2499–2513.

    Article  CAS  Google Scholar 

  50. Cao, X., Tay, A., Guy, G. R., and Tan, Y. H. (1996) Activation and association of STAT3 with Src in v-Src transformed cell lines. Mol. Cell Biol. 16, 1595–1603.

    PubMed  CAS  Google Scholar 

  51. Zhang, Y., Turkson, J., Carter-Su, C., et al. (2000) Activation of STAT3 in v-Src-transformed fibroblasts requires cooperation of JAK1 kinase activity. J. Biol. Chem. 275, 24,935–24,944.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Johnson, L.R., Ray, R.M. (2006). Cellular Signaling and Polyamines in the Control of Apoptosis in Intestinal Epithelial Cells. In: Wang, JY., Casero, R.A. (eds) Polyamine Cell Signaling. Humana Press. https://doi.org/10.1007/978-1-59745-145-1_13

Download citation

Publish with us

Policies and ethics