Skip to main content

The Microenvironment and Drug Resistance

  • Chapter
Cancer Drug Resistance

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1666 Accesses

Abstract

Although much of the research into cancer drug resistance has focused on the cancer cells themselves, it is becoming increasingly clear that the tumor microenvironment can significantly affect the success of chemotherapy. The interactions between the tumor cells and their environment can be classified into three main categories: (1) cell-cell contacts, (2) interactions with the extracellular matrix, and (3) interactions with soluble factors/cytokines. Each of these interactions can influence the sensitivity of the tumor cells to treatment-induced apoptosis and can therefore affect the outcome of therapy. The pathways responsible for these effects are just beginning to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002; 53:615–627.

    Article  PubMed  CAS  Google Scholar 

  2. Liotta LA, Kohn E. Anoikis: cancer and the homeless cell. Nature 2004; 430:973–974.

    Article  PubMed  CAS  Google Scholar 

  3. Durand RE, Sutherland RM. Effects of intercellular contact on repair of radiation damage. Exp Cell Res 1972; 71:75–80.

    Article  PubMed  CAS  Google Scholar 

  4. Dalton WS. The tumor microenvironment as a determinant of drug response and resistance. Drug Resist Updat 1999; 2:285–258.

    Article  PubMed  CAS  Google Scholar 

  5. Sutherland RM, Durand RE. Cell contact as a possible contribution to radiation resistance of some tumours. Br J Radiol 1972; 45:788–789.

    Article  PubMed  CAS  Google Scholar 

  6. Green SK, Frankel A, Kerbel RS. Adhesion-dependent multicellular drug resistance. Anticancer Drug Des 1999; 14:153–168.

    PubMed  CAS  Google Scholar 

  7. St. Croix B, Kerbel RS. Cell adhesion and drug resistance in cancer. Curr Opin Oncol 1997; 9:549–556.

    PubMed  CAS  Google Scholar 

  8. Kobayashi H, Man S, Graham CH, Kapitain SJ, Teicher BA, Kerbel RS. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci U S A 1993; 90:3294–3298.

    Article  PubMed  CAS  Google Scholar 

  9. St. Croix BS, Rak JW, Kapitain S, Sheehan C, Graham CH, Kerbel RS. Reversal by hyaluronidase of adhesion-dependent multicellular drug resistance in mammary carcinoma cells. J Natl Cancer Inst 1996; 88:1285–1296.

    Article  CAS  Google Scholar 

  10. Frankel A, Buckman R, Kerbel RS. Abrogation of taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids. Cancer Res 1997; 57:2388–2393.

    PubMed  CAS  Google Scholar 

  11. dit Faute MA, Laurent L, Ploton D, Poupon MF, Jardillier JC, Bobichon H. Distinctive alterations of invasiveness, drug resistance and cell-cell organization in 3D-cultures of MCF-7, a human breast cancer cell line, and its multidrug resistant variant. Clin Exp Metastasis 2002; 19:161–168.

    Article  Google Scholar 

  12. Kwok TT, Sutherland RM. The influence of cell-cell contact on radiosensitivity of human squamous carcinoma cells. RadiatRes 1991; 126:52–57.

    Article  CAS  Google Scholar 

  13. Filippovich IV, Sorokina NI, Robillard N, Chatal JF. Radiation-induced apoptosis in human ovarian carcinoma cells growing as a monolayer and as multicell spheroids. Int J Cancer 1997; 72:851–859.

    Article  PubMed  CAS  Google Scholar 

  14. Teicher B A, Herman TS, Holden S A, et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 1990; 247(Pt 1):1457–1461.

    Article  PubMed  CAS  Google Scholar 

  15. Desoize B, Jardillier J. Multicellular resistance: a paradigm for clinical resistance? Crit Rev Oncol Hematol 2000; 36:193–207.

    Article  PubMed  CAS  Google Scholar 

  16. Green SK, Karlsson MC, Ravetch JV, Kerbel RS. Disruption of cell-cell adhesion enhances antibodydependent cellular cytotoxicity: implications for antibody-based therapeutics of cancer. Cancer Res 2002; 62:6891–68900.

    PubMed  CAS  Google Scholar 

  17. Nakamura T, Kato Y, Fuji H, Horiuchi T, Chiba Y, Tanaka K. E-cadherin-dependent intercellular adhesion enhances chemoresistance. Int J Mol Med 2003; 12:693–700.

    PubMed  CAS  Google Scholar 

  18. Green SK, Francia G, Isidoro C, Kerbel RS. Antiadhesive antibodies targeting E-cadherin sensitize multicellular tumor spheroids to chemotherapy in vitro. Mol Cancer Ther 2004; 3:149–159.

    PubMed  CAS  Google Scholar 

  19. St Croix B, Sheehan C, Rak JW, Florenes VA, Slingerland JM, Kerbel RS. E-Cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27KIP1. J Cell Biol 1998; 142:557–571.

    Article  PubMed  CAS  Google Scholar 

  20. St. Croix B, Florenes VA, Rak JW, et al. Impact of the cyclin-dependent kinase inhibitor p27Kip1 on resistance of tumor cells to anticancer agents. Nat Med 1996; 2:1204–1210.

    Article  PubMed  CAS  Google Scholar 

  21. Brown I, Shalli K, McDonald SL, et al. Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells. Breast Cancer Res 2004; 6:R601–R107.

    Article  PubMed  CAS  Google Scholar 

  22. Nahta R, Takahashi T, Ueno NT, Hung MC, Esteva FJ. P27kip1 down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res 2004; 64:3981–3986.

    Article  PubMed  CAS  Google Scholar 

  23. Francia G, Man S, Teicher B, Grasso L, Kerbel RS. Gene expression analysis of tumor spheroids reveals arole for suppressed DNA mismatch repair in multicellularresistance to alkylating agents. Mol Cell Biol 2004; 24:6837–6849.

    Article  PubMed  CAS  Google Scholar 

  24. Jin H, Varner J. Integrins: roles in cancer development and as treatment targets. Br J Cancer 2004; 90:561–565.

    Article  PubMed  CAS  Google Scholar 

  25. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol 2001; 13:555–562.

    Article  PubMed  CAS  Google Scholar 

  26. Anwar AR, Moqbel R, Walsh GM, Kay AB, Wardlaw AJ. Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 1993; 177:839–843.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang Z, Vuori K, Reed JC, Ruoslahti E. The ? 5 ? 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci U S A 1995; 92:6161–6165.

    Article  PubMed  CAS  Google Scholar 

  28. Shain KH, Dalton WS. Cell adhesion is a key determinant in de novo multidrug resistance (MDR): new targets for the prevention of acquired MDR. Mol Cancer Ther 2001; 1:69–78.

    PubMed  CAS  Google Scholar 

  29. Hoyt DG, Rusnak JM, Mannix RJ, Modzelewski RA, Johnson CS, Lazo JS. Integrin activation suppresses etoposide-induced DNA strand breakage in cultured murine tumor-derived endothelial cells. Cancer Res 1996; 56:4146–4149.

    PubMed  CAS  Google Scholar 

  30. Kraus AC, Ferber I, Bachmann SO, etal. In vitro chemo-and radio-resistance in small cell lung cancer correlates with cell adhesion and constitutive activation of AKT and MAP kinase pathways. Oncogene 2002; 21:8683–8695.

    Article  PubMed  CAS  Google Scholar 

  31. Kouniavsky G, Khaikin M, Zvibel I, et al. Stromal extracellular matrix reduces chemotherapy-induced apoptosis in colon cancer cell lines. Clin Exp Metastasis 2002; 19:55–60.

    Article  PubMed  CAS  Google Scholar 

  32. Maubant S, Cruet-Hennequart S, Poulain L, et al. Altered adhesion properties and alphav integrin expression in a cisplatin-resistant human ovarian carcinoma cell line. Int J Cancer 2002; 97:186–194.

    Article  PubMed  CAS  Google Scholar 

  33. Sethi T, Rintoul RC, Moore SM, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 1999; 5:662–668.

    Article  PubMed  CAS  Google Scholar 

  34. Weaver VM, Lelievre S, Lakins JN, et al. β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2002; 2:205–216.

    Article  PubMed  CAS  Google Scholar 

  35. Zahir N, Weaver VM. Death in the third dimension: apoptosis regulation and tissue architecture. Curr Opin Genet Dev 2004; 14:71–80.

    Article  PubMed  CAS  Google Scholar 

  36. Wang CY, Mayo MW, Baldwin AS Jr. TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-β. Science 1996; 274(5288):784–787.

    Article  PubMed  CAS  Google Scholar 

  37. Landowski TH, Olashaw NE, Agrawal D, Dalton WS. Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-?B (RelB/p50) in myeloma cells. Oncogene 2003; 22:2417–2421.

    Article  PubMed  CAS  Google Scholar 

  38. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93:1658–1667.

    PubMed  CAS  Google Scholar 

  39. Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS. Adhesion to fibronectin via ?1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 2000; 19:4319–4327.

    Article  PubMed  CAS  Google Scholar 

  40. Fornaro M, Plescia J, Chheang S, et al. Fibronectin protects prostate cancer cells from tumor necrosis factor-alpha-induced apoptosis via the AKT/survivin pathway. J Biol Chem 2003; 278:50,402–50,411.

    Article  PubMed  CAS  Google Scholar 

  41. Noti JD, Johnson AK. Integrin α 5 1 suppresses apoptosis triggered by serum starvation but notphorbol ester in MCF-7 breast cancer cells that overexpress protein kinase C-alpha. Int J Oncol 2001; 18:195–201.

    PubMed  CAS  Google Scholar 

  42. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990; 61:1303–1313.

    Article  PubMed  CAS  Google Scholar 

  43. Carter WG, Wayner EA. Characterization of the class III collagen receptor, a phosphorylated, transmembrane glycoprotein expressed in nucleated human cells. J Biol Chem 1988; 263:4193–4201.

    PubMed  CAS  Google Scholar 

  44. Jalkanen S, Jalkanen M. Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol 1992; 116:817–825.

    Article  PubMed  CAS  Google Scholar 

  45. Matsumura Y, Tarin D. Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet 1992; 340:1053–1058.

    Article  PubMed  CAS  Google Scholar 

  46. Bates RC, Edwards NS, Burns GF, Fisher DE. A CD44 survival pathway triggers chemoresistance via lyn kinase and phosphoinositide 3-kinase/Akt in colon carcinoma cells. Cancer Res 2001; 61:5275–5783.

    PubMed  CAS  Google Scholar 

  47. Lakshman M, Subramaniam V, Rubenthiran U, Jothy S. CD44 promotes resistance to apoptosis in human colon cancer cells. Exp Mol Pathol 2004; 77:18–25.

    Article  PubMed  CAS  Google Scholar 

  48. Allouche M, Charrad RS, Bettaieb A, Greenland C, Grignon C, Smadja-Joffe F. Ligation of the CD44 adhesion molecule inhibits drug-induced apoptosis in human myeloid leukemia cells. Blood 2000; 96:1187–1190.

    PubMed  CAS  Google Scholar 

  49. Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997; 390:404–407.

    Article  PubMed  CAS  Google Scholar 

  50. O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88:277–285.

    Article  PubMed  CAS  Google Scholar 

  51. Folkman J. Angiogenesis inhibitors: a new class of drugs. Cancer Biol Ther 2003; 2(Suppl 1):S127–S133.

    PubMed  CAS  Google Scholar 

  52. Miller KD, Sweeney CJ, Sledge GW Jr. Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol 2001; 19:1195–1206.

    PubMed  CAS  Google Scholar 

  53. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 2003; 3:422–433.

    Article  PubMed  CAS  Google Scholar 

  54. Sherman-Baust CA, Weeraratna AT, Rangel LBA, et al. Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell 2003; 3:377–86.

    Article  PubMed  CAS  Google Scholar 

  55. Morin PJ. Drug resistance and the microenvironment: nature and nurture. Drug Resist Updat 2003; 6:169–172.

    Article  PubMed  CAS  Google Scholar 

  56. Rintoul RC, Sethi T. Extracellular matrix regulation of drug resistance in small-cell lung cancer. Clin Sci (Lond) 2002; 102:417–424.

    Article  PubMed  CAS  Google Scholar 

  57. Lotem J, Sachs L. Selective regulation of the activity of different hematopoietic regulatory proteins by transforming growth factor α 1 in normal and leukemic myeloid cells. Blood 1990; 76:1315–1322.

    PubMed  CAS  Google Scholar 

  58. Lotem J, Cragoe EJ Jr, Sachs L. Rescue from programmed cell death in leukemic and normal myeloid cells. Blood 1991; 78:953–960.

    PubMed  CAS  Google Scholar 

  59. Klein B, Zhang XG, Lu ZY, Bataille R. Interleukin-6 in human multiple myeloma. Blood 1995; 85:863–872.

    PubMed  CAS  Google Scholar 

  60. Chauhan D, Kharbanda S, Ogata A, et al. Interleukin-6 inhibits Fas-induced apoptosis and stressactivated protein kinase activation in multiple myeloma cells. Blood 1997; 89:227–234.

    PubMed  CAS  Google Scholar 

  61. Lichtenstein A, Tu Y, Fady C, Vescio R, Berenson J. Interleukin-6 inhibits apoptosis of malignant plasma cells. Cell Immunol 1995; 162:248–255.

    Article  PubMed  CAS  Google Scholar 

  62. Frassanito MA, Cusmai A, Iodice G, Dammacco F. Autocrine interleukin-6 production and highly malignantmultiple myeloma: relation with resistance to drug-induced apoptosis. Blood 2001; 97:483–489.

    Article  PubMed  CAS  Google Scholar 

  63. Borsellino N, Belldegrun A, Bonavida B. Endogenous interleukin 6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res 1995; 55:4633–4639.

    PubMed  CAS  Google Scholar 

  64. Conze D, Weiss L, Regen PS, et al. Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res 2001; 61:8851–8858.

    PubMed  CAS  Google Scholar 

  65. Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10:105–115.

    Article  PubMed  CAS  Google Scholar 

  66. Ogata A, Chauhan D, Teoh G, et al. IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol 1997; 159:2212–2221.

    PubMed  CAS  Google Scholar 

  67. Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3K/Akt signaling in multiple myeloma. Oncogene 2001; 20:5991–6000.

    Article  PubMed  CAS  Google Scholar 

  68. Yamagiwa Y, Marienfeld C, Meng F, Holcik M, Patel T. Translational regulation of x-linked inhibitor of apoptosis protein by interleukin-6: a novel mechanism of tumor cell survival. Cancer Res 2004; 64:1293–1298.

    Article  PubMed  CAS  Google Scholar 

  69. Jankowski K, Kucia M, Wysoczynski M, et al. Both hepatocyte growth factor (HGF) and stromalderived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 2003; 63:7926–7935.

    PubMed  CAS  Google Scholar 

  70. Guo YS, Jin GF, Houston CW, Thompson JC, Townsend CM Jr. Insulin-like growth factor-I promotes multidrug resistance in MCLM colon cancer cells. J Cell Physiol 1998; 175:141–148.

    Article  PubMed  CAS  Google Scholar 

  71. Miyake H, Hara I, Gohji K, Yoshimura K, Arakawa S, Kamidono S. Expression of basic fibroblast growth factor is associated with resistance to cisplatin in a human bladder cancer cell line. Cancer Lett 1998; 123:121–126.

    Article  PubMed  CAS  Google Scholar 

  72. Navolanic PM, Steelman LS, McCubrey JA. EGFR family signaling and its association with breast cancer development and resistance to chemotherapy (review).Int J Oncol 2003; 22:237–252.

    PubMed  CAS  Google Scholar 

  73. Alexia C, Fallot G, Lasfer M, Schweizer-Groyer G, Groyer A. An evaluation of the role of insulin-like growth factors (IGF) and of type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug-induced apoptosis. Biochem Pharmacol 2004; 68:1003–1015.

    Article  PubMed  CAS  Google Scholar 

  74. Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 1990; 9:253–266.

    Article  PubMed  CAS  Google Scholar 

  75. JainR K. The next frontier of molecular medicine: delivery of therapeutics. NatMed 1998; 4:655–657.

    CAS  Google Scholar 

  76. Tannock IF, Lee CM, Tunggal JK, Cowan DS, Egorin MJ. Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res 2002; 8:878–884.

    PubMed  CAS  Google Scholar 

  77. Bunz F. Cell death and cancer therapy. Curr Opin Pharmacol 2001; 1:337–341.

    Article  PubMed  CAS  Google Scholar 

  78. Baird RD, Kaye SB. Drug resistance reversal-are we getting closer? Eur J Cancer 2003; 39:2450–2461.

    Article  PubMed  CAS  Google Scholar 

  79. Damiano JS. Integrins as novel drug targets for overcoming innate drug resistance. Curr Cancer Drug Targets 2002; 2:37–43.

    Article  PubMed  CAS  Google Scholar 

  80. Ciardiello F, De Vita F, Orditura M, Tortora G. The role of EGFR inhibitors in nonsmall cell lung cancer. Curr Opin Oncol 2004; 16:130–135.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Morin, P.J. (2006). The Microenvironment and Drug Resistance. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics