Skip to main content

The Biology and Genetics of Melanoma

  • Chapter
  • 1289 Accesses

Abstract

Like all human malignancies, the incidence of melanoma reflects the interaction of genetic predisposition with environmental exposures. Melanoma is perhaps unusual in this regard, however, in that in no other common tumor type is there such an advanced understanding of both the underlying environmental and genetic factors. The majority of melanoma occurs in the setting of a common environmental exposure: ultraviolet irradiation. Likewise, several congenital melanoma-prone genetic conditions have been identified, including germline polymorphisms that attenuate cell cycle regulation, that decrease skin pigmentation, that hamper DNA repair, and that impair melanocytic differentiation. Lastly, the large majority of sporadic melanomas share 2 classes of acquired mutations: those affecting RAS-RAF signaling and those that target the INK4a/ARF locus on chromosome 9p21. This well-developed comprehension of both the environmental and genetic causes of this disease has allowed for the generation of sophisticated in vitro and murine models, which have reinforced and furthered our understanding of the development of this cancer. This chapter reviews decades’ worth of genetic and biologic insights from the study of these models, and their contribution to our understanding of the pathogenesis of melanoma. A review of this work also makes obvious the continued challenges in the field: to use our hard-earned molecular comprehension of this disease to elucidate the disturbing clinical features of melanoma; namely, an intense therapeutic resistance and proclivity for early metastasis. The present ability to study faithful murine melanoma models, coupled with advances in rational drug design, has generated optimism for the development of effective prevention and screening programs, as well as successful targeted therapeutics in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Norris W. A case of fungoid disease. Edinburgh Medicine and Surgery, 1820;16:562–565.

    Google Scholar 

  2. Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photochem Photobiol B 2001;63(1–3):8–18.

    Article  PubMed  CAS  Google Scholar 

  3. Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med 1999;340(17):1341–1348.

    Article  PubMed  CAS  Google Scholar 

  4. Marrett LD, Nguyen HL, Armstrong BK. Trends in the incidence of cutaneous malignant melanoma in New South Wales, 1983–1996. Int J Cancer 2001;92(3):457–462.

    Article  PubMed  CAS  Google Scholar 

  5. Fountain JW, Bale SJ, Housman DE, Dracopoli NC. Genetics of melanoma. Cancer Surv 1990;9(4):645–671.

    PubMed  CAS  Google Scholar 

  6. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994;368:753–756.

    Article  PubMed  CAS  Google Scholar 

  7. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 1994;264(5157):436–440.

    Article  PubMed  CAS  Google Scholar 

  8. Hussussian CJ, Struewing JP, Goldstein AM, et al. Germline p16 mutations in familial melanoma. Nat Genet 1994;8(1):15–21.

    Article  PubMed  CAS  Google Scholar 

  9. Kamb A, Shattuck-Eidens D, Eeles R, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 1994;8(1):23–26.

    Article  PubMed  CAS  Google Scholar 

  10. Kamb A. Cell-cycle regulators and cancer. Trends Genet 1995;11(4):136–140.

    Article  PubMed  CAS  Google Scholar 

  11. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995;83(6):993–1000.

    Article  PubMed  CAS  Google Scholar 

  12. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993;366(6456):704–707.

    Article  PubMed  CAS  Google Scholar 

  13. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA, 1998;95:8292–8297.

    Article  PubMed  CAS  Google Scholar 

  14. Pomerantz J, Schreiber-Agus N, Liegeois NJ, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998;92(6):713–723.

    Article  PubMed  CAS  Google Scholar 

  15. Stott FJ, Bates S, James MC, et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998;17:5001–5014.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARFINK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998;92(6):725–734.

    Article  PubMed  CAS  Google Scholar 

  17. Sharpless NE. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res 2004, in press. Au: Please update publication information for Ref. 17, if known.

    Google Scholar 

  18. Aitken J, Welch J, Duffy D, et al. CDKN2A variants in a population-based sample of Queensland families with melanoma. J Natl Cancer Inst 1999;91(5):446–452.

    Article  PubMed  CAS  Google Scholar 

  19. Tsao H, Zhang X, Kwitkiwski K, Finkelstein DM, Sober AJ, Haluska FG. Low prevalence of germline CDKN2A and CDK4 mutations in patients with early-onset melanoma. Arch Dermatol 2000;136(9):1118–1122.

    Article  PubMed  CAS  Google Scholar 

  20. Liu L, Dilworth D, Gao L, et al. Mutation of the CDKN2A 5′ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat Genet 1999;21(1):128–132.

    Article  PubMed  CAS  Google Scholar 

  21. Kumar R, Smeds J, Berggren P, et al. A single nucleotide polymorphism in the 3′ untranslated region of the CDKN2A gene is common in sporadic primary melanomas but mutations in the CDKN2B, CDKN2C, CDK4 and p53 genes are rare. Int J Cancer 2 2001;95(6):388–393.

    Article  CAS  Google Scholar 

  22. Sharpless NE, Bardeesy N, Lee KH, et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 2001;413(6851):86–91.

    Article  PubMed  CAS  Google Scholar 

  23. Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 2001;413(6851):83–86.

    Article  PubMed  CAS  Google Scholar 

  24. Yarbrough WG, Aprelikova O, Pei H, Olshan AF, Liu ET. Familial tumor syndrome associated with a germline nonfunctional p16INK4a allele. J Natl Cancer Inst 1996;88(20):1489–1491.

    Article  PubMed  CAS  Google Scholar 

  25. Hruban RH, Petersen GM, Goggins M, et al. Familial pancreatic cancer. Ann Oncol 1999;10(suppl 4):6–73.

    Google Scholar 

  26. Vasen HF, Gruis NA, Frants RR, van Der Velden PA, Hille ET, Bergman W. Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden). Int J Cancer 2000;87(6):809–811.

    Article  PubMed  CAS  Google Scholar 

  27. Whelan AJ, Bartsch D, Goodfellow PJ. A familial syndrome of pancreatic cancer and melanoma in the CDKN2 tumor-suppressor gene. N Engl J Med 1995;333:975–977.

    Article  PubMed  CAS  Google Scholar 

  28. Bahuau M, Viduad D, Jenkins R, et al. Germ-line deletion involving the ink4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res 1998;58:2298–2303.

    PubMed  CAS  Google Scholar 

  29. Tachibana I, Smith JS, Sato K, Hosek SM, Kimmel DW, Jenkins RB. Investigation of germline PTEN, p53, p16(INK4A)/p14(ARF), and CDK4 alterations in familial glioma. Am J Med Genet 2000;92(2):136–141.

    Article  PubMed  CAS  Google Scholar 

  30. Dilworth D, Liu L, Stewart AK, Berenson JR, Lassam N, Hogg D. Germline CDKN2A mutation implicated in predisposition to multiple myeloma. Blood 2000;95(5):1869–1871.

    PubMed  CAS  Google Scholar 

  31. Oldenburg RA, de Vos tot Nederveen Cappel WH, van Puijenbroek M, et al. Extending the p16-Leiden tumour spectrum by respiratory tract tumours. J Med Genet 2004;41(3):e31.

    Article  PubMed  CAS  Google Scholar 

  32. Borg A, Sandberg T, Nilsson K, et al. High frequency of multiple melanomas and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma families. J Natl Cancer Inst 2000;92(15):1260–1266.

    Article  PubMed  CAS  Google Scholar 

  33. Lal G, Liu L, Hogg D, Lassam NJ, Redston MS, Gallinger S. Patients with both pancreatic adenocarcinoma and melanoma may harbor germline CDKN2A mutations. Genes Chromosomes Cancer 2000;27(4):358–361.

    Article  PubMed  CAS  Google Scholar 

  34. Bartsch DK, Sina-Frey M, Lang S, et al. CDKN2A germline mutations in familial pancreatic cancer. Ann Surg 2002;236(6):730–737.

    Article  PubMed  Google Scholar 

  35. Fahraeus R, Lane DP. The p16(INK4a) tumour suppressor protein inhibits alphavbeta3 integrinmediated cell spreading on vitronectin by blocking PKC-dependent localization of alphavbeta3 to focal contacts. EMBO J 1999;18(8):2106–2118.

    Article  PubMed  CAS  Google Scholar 

  36. Wolff B, Naumann M. INK4 cell cycle inhibitors direct transcriptional inactivation of NF-kappaB. Oncogene, 1999;18(16):2663–2666.

    Article  PubMed  CAS  Google Scholar 

  37. Kannan K, Sharpless NE, Xu J, O’Hagan RC, Bosenberg M, Chin L. Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proc Natl Acad Sci USA 2003;100(3):1221–1225.

    Article  PubMed  CAS  Google Scholar 

  38. Bishop DT, Demenais F, Goldstein AM, et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst 2002;94(12):894–903.

    PubMed  CAS  Google Scholar 

  39. Wolfel T, Hauer M, Schneider J, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995;269(5228):1281–1284.

    Article  PubMed  CAS  Google Scholar 

  40. Zuo L, Weger J, Yang Q, et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 1996;12(1):97–99.

    Article  PubMed  CAS  Google Scholar 

  41. Soufir N, Avril MF, Chompret A, et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum Mol Genet 1998;7:209–216.

    Article  PubMed  CAS  Google Scholar 

  42. Tsao H, Benoit E, Sober AJ, Thiele C, Haluska FG. Novel mutations in the p16/CDKN2A binding region of the cyclin-dependent kinase-4 gene. Cancer Res 1998;58(1):109–113.

    PubMed  CAS  Google Scholar 

  43. Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP. Structural basis for inhibition of the cyclindependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 1998;395(6699):237–243.

    Article  PubMed  CAS  Google Scholar 

  44. Goldstein AM, Struewing JP, Chidambaram A, Fraser MC, Tucker MA. Genotype-phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst 2000;92(12):1006–1010.

    Article  PubMed  CAS  Google Scholar 

  45. Sotillo R, Garcia JF, Ortega S, et al. Invasive melanoma in Cdk4-targeted mice. Proc Natl Acad Sci USA 2001;98(23):13,312–13,317.

    Article  PubMed  CAS  Google Scholar 

  46. Draper GJ, Sanders BM, Kingston JE. Second primary neoplasms in patients with retinoblastoma. Br J Cancer 1986;53(5):661–671.

    PubMed  CAS  Google Scholar 

  47. Sanders BM, Jay M, Draper GJ, Roberts EM. Non-ocular cancer in relatives of retinoblastoma patients. Br J Cancer 1989;60(3):358–365.

    PubMed  CAS  Google Scholar 

  48. Fletcher O, Easton D, Anderson K, Gilham C, Jay M, Peto J. Lifetime risks of common cancers among retinoblastoma survivors. J Natl Cancer Inst 2004;96(5):357–363.

    Article  PubMed  Google Scholar 

  49. Eng C, Ponder BA. The role of gene mutations in the genesis of familial cancers. FASEB J 1993;7(10):910–919.

    PubMed  CAS  Google Scholar 

  50. Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998;1378(2):F115–F177.

    PubMed  CAS  Google Scholar 

  51. Piccinin S, Doglioni C, Maestro R, et al. p16/CDKN2 and CDK4 gene mutations in sporadic melanoma development and progression. Int J Cancer 1997;74(1):26–30.

    Article  PubMed  CAS  Google Scholar 

  52. Straume O, Smeds J, Kumar R, Hemminki K, Akslen LA. Significant impact of promoter hypermethylation and the 540 C>T polymorphism of CDKN2A in cutaneous melanoma of the vertical growth phase. Am J Pathol 2002;161(1):229–237.

    PubMed  CAS  Google Scholar 

  53. Kumar R, Sauroja I, Punnonen K, Jansen C, Hemminki K. Selective deletion of exon 1 beta of the p19ARF gene in metastatic melanoma cell lines. Genes Chromosomes Cancer 1998;23(3):273–277.

    Article  PubMed  CAS  Google Scholar 

  54. Randerson-Moor JA, Harland M, Williams S, et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 2001;10(1):55–62.

    Article  PubMed  CAS  Google Scholar 

  55. Rizos H, Puig S, Badenas C, et al. A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene 2001;20(39):5543–5547.

    Article  PubMed  CAS  Google Scholar 

  56. Duro D, O Bernard, V Della Valle, R Berger, CJ Larsen. A new type of p16INK4/MTS1 gene transcript expressed in B-cell malignancies. Oncogene 1995;11(1):21–29.

    PubMed  CAS  Google Scholar 

  57. Mao L, Merlo A, Bedi G, et al. A novel p16INK4a transcript. Cancer Res 1995;55:2995–2997.

    PubMed  CAS  Google Scholar 

  58. Stone S, Jiang P, Dayananth P, et al. Complex structure and regulation of the p16(MTS1) locus. Cancer Res 1995;55:2988–2994.

    PubMed  CAS  Google Scholar 

  59. Swafford DS, Middleton SK, Palmisano WA, et al. Frequent aberrant methylation of p16INK4a in primary rat lung tumors. Mol Cell Biol 1997;17(3):1366–1374.

    PubMed  CAS  Google Scholar 

  60. Sherburn TE, Gale JM, Ley RD. Cloning and characterization of the CDKN2A and p19ARF genes from Monodelphis domestica. DNA Cell Biology 1998;17(11):975–981.

    Article  CAS  Google Scholar 

  61. Castresana JS, Rubio MP, Vazquez JJ, et al. Lack of allelic deletion and point mutation as mechanisms of p53 activation in human malignant melanoma. Int J Cancer 1993;55(4):562–565.

    Article  PubMed  CAS  Google Scholar 

  62. Zerp SF, van Elsas A, Peltenburg LT, Schrier PI. p53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanomagenesis. Br J Cancer 1999;79(5–6):921–926.

    Article  PubMed  CAS  Google Scholar 

  63. Maher EA, Furnari FB, Bachoo RM, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev 2001;15(11):1311–1333.

    Article  PubMed  CAS  Google Scholar 

  64. Valverde P, Healy E, Jackson I, Rees JL, Thody AJ. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 1995;11(3):328–330.

    Article  PubMed  CAS  Google Scholar 

  65. Sturm RA. Skin colour and skin cancer-MC1R, the genetic link. Melanoma Res 2002;12(5):405–416.

    Article  PubMed  CAS  Google Scholar 

  66. Box NF, Wyeth JR, O’Gorman LE, Martin NG, Sturm RA. Characterization of melanocyte stimulating hormone receptor variant alleles in twins with red hair. Hum Mol Genet 1997;6(11):1891–1897.

    Article  PubMed  CAS  Google Scholar 

  67. Smith R, Healy E, Siddiqui S, et al. Melanocortin 1 receptor variants in an Irish population. J Invest Dermatol 1998;111(1):119–122.

    Article  PubMed  CAS  Google Scholar 

  68. Flanagan N, Healy E, Ray A, et al. Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation. Hum Mol Genet 2000;9(17):2531–2537.

    Article  PubMed  CAS  Google Scholar 

  69. Palmer JS, Duffy DL, Box NF, et al. Melanocortin-1 receptor polymorphisms and risk of melanoma:is the association explained solely by pigmentation phenotype? Am J Hum Genet 2000;66(1):176–186.

    Article  PubMed  CAS  Google Scholar 

  70. Bastiaens M, ter Huurne J, Gruis N, et al. The melanocortin-1-receptor gene is the major freckle gene. Hum Mol Genet 2001;10(16):1701–1708.

    Article  PubMed  CAS  Google Scholar 

  71. Box NF, Duffy DL, Chen W, et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet 2001;69(4):765–773.

    Article  PubMed  CAS  Google Scholar 

  72. Healy E, Flannagan N, Ray A, et al. Melanocortin-1-receptor gene and sun sensitivity in individuals without red hair. Lancet 2000;355(9209):1072–1073.

    Article  PubMed  CAS  Google Scholar 

  73. Harsanyi ZP, Post PW, Brinkmann JP, Chedekel MR, Deibel RM. Mutagenicity of melanin from human red hair. Experientia 1980;36(3):291–292.

    Article  PubMed  CAS  Google Scholar 

  74. Scott MC, Wakamatsu K, Ito S, et al. Human melanocortin 1 receptor variants, receptor function and melanocyte response to UV radiation. J Cell Sci 2002;115(Pt 11):2349–2355.

    PubMed  CAS  Google Scholar 

  75. Kennedy C, ter Huurne J, Berkhout M, et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol 2001;117(2):294–300.

    Article  PubMed  CAS  Google Scholar 

  76. van der Velden PA, Sandkuijl LA, Bergman W, et al. Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma. Am J Hum Genet 2001;69(4):774–779.

    Article  PubMed  Google Scholar 

  77. Hayward NK. Genetics of melanoma predisposition. Oncogene 2003;22:3053–3062.

    Article  PubMed  CAS  Google Scholar 

  78. Imokawa G, Yada Y, Miyagishi M. Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J Biochem 1992;267(34):24,675–24,680.

    CAS  Google Scholar 

  79. Gilchrest BA, Park HY, Eller MS, Yaar M. Mechanisms of ultraviolet light-induced pigmentation. Photochem Photobiol 1996;63(1):1–10.

    PubMed  CAS  Google Scholar 

  80. Tada A, Suzuki I, Im S, et al. Endothelin-1 is a paracrine growth factor that modulates melanogenesis of human melanocytes and participates in their responses to ultraviolet radiation. Cell Growth and Differentiation 1998;9(7):575–584.

    PubMed  CAS  Google Scholar 

  81. Nesbit M, Nesbit HK, Bennett J, et al. Basic fibroblast growth factor induces a transformed phenotype in normal human melanocytes. Oncogene 1999;18(47):6469–6476.

    Article  PubMed  CAS  Google Scholar 

  82. Dupin E, Le Douarin NM. Development of melanocyte precursors from the vertebrate neural crest. Oncogene 2003;22:3016–3023.

    Article  PubMed  CAS  Google Scholar 

  83. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001;410(6824):37–40.

    Article  PubMed  CAS  Google Scholar 

  84. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002;298(5600):1911–1912.

    Article  PubMed  CAS  Google Scholar 

  85. Lowes VL, Ip NY, Wong YH. Integration of signals from receptor tyrosine kinases and G proteincoupled receptors. Neurosignals 2002;11(1):5–19.

    Article  PubMed  CAS  Google Scholar 

  86. Busca R, Abbe P, Mantoux F, et al. Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J 2000;19(12):2900–2910.

    Article  PubMed  CAS  Google Scholar 

  87. Crews CM, Alessandrini AA, Erikson RL. Mouse Erk-1 gene product is a serine/threonine protein kinase that has the potential to phosphorylate tyrosine. Proc Natl Acad Sci USA 1991;88(19):8845–8849.

    Article  PubMed  CAS  Google Scholar 

  88. Paumelle R, Tulasne D, Kherrouche Z, et al. Hepatocyte growth factor/scatter factor activates the ETS1 transcription factor by a RAS-RAF-MEK-ERK signaling pathway. Oncogene 2002;21(15):2309–2319.

    Article  PubMed  CAS  Google Scholar 

  89. Maldonado JL, Timmerman L, Fridlyand J, Bastian BC. Mechanisms of cell-cycle arrest in Spitz nevi with constitutive activation of the MAP-kinase pathway. Am J Pathol 2004;164(5):1783–1787.

    PubMed  CAS  Google Scholar 

  90. Jafari M, Papp T, Kirchner S, et al. Analysis of ras mutations in human melanocytic lesions: activation of the ras gene seems to be associated with the nodular type of human malignant melanoma. Journal of Cancer Research and Clinical Oncology 1995;121(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  91. van Elsas A, Zerp SF, van der Flier S, et al. Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. Am J Pathol 1996;149(3):883–893.

    PubMed  Google Scholar 

  92. Papp T, Pemsel H, Zimmermann R, Bastrop R, Weiss DG, Schiffmann D. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi. J Med Genet 1999;36(8):610–614.

    PubMed  CAS  Google Scholar 

  93. Demunter A, Stas M, Degreef H, De Wolf-Peeters C, van den Oord JJ. Analysis of N-and K-ras mutations in the distinctive tumor progression phases of melanoma. J Invest Dermatol 2001;117(6):1483–1489.

    Article  PubMed  CAS  Google Scholar 

  94. Albino AP, Nanus DM, Mentle IR, et al. Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene 1989;4(11):1363–1374.

    PubMed  CAS  Google Scholar 

  95. Papp T, Pemsel H, Rollwitz I, et al. Mutational analysis of N-ras, p53, CDKN2A (p16(INK4a)), p14(ARF), CDK4, and MC1R genes in human dysplastic melanocytic naevi. J Med Genet 2003;40(2):E14.

    Article  PubMed  CAS  Google Scholar 

  96. Bastian BC, M Kashani-Sabet, H Hamm, et al. Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res 2000;60(7):1968–1973.

    PubMed  CAS  Google Scholar 

  97. Powell MB, Hyman P, Bell OD, et al. Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 Ha-ras gene regulated by a mouse tyrosinase promoter. Mol Carcinog 1995;12(2):82–90.

    Article  PubMed  CAS  Google Scholar 

  98. Chin L, Pomerantz J, Polsky D, et al. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 1997;11(21):2822–2834.

    PubMed  CAS  Google Scholar 

  99. Bardeesy N, Bastian BC, Hezel A, Pinkel D, DePinho RA, Chin L. Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol 2001;21(6):2144–2153.

    Article  PubMed  CAS  Google Scholar 

  100. Sharpless NE, Kannan K, Xu J, Bosenberg MW, Chin L. Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene 2003;22(32):5055–5059.

    Article  PubMed  CAS  Google Scholar 

  101. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417(6892):949–954.

    Article  PubMed  CAS  Google Scholar 

  102. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002;418(6901):934.

    Article  PubMed  CAS  Google Scholar 

  103. Pollock PM, Harper UL, Hansen KS, et al. High frequency of BRAF mutations in nevi. Nat Genet 2003;33(1):19–20.

    Article  PubMed  CAS  Google Scholar 

  104. Cohen C, Zavala-Pompa A, Sequeira JH, et al. Mitogen-activated protein kinase activation is an early event in melanoma progression. Clin Cancer Res 2002;8(12):3728–3733.

    PubMed  CAS  Google Scholar 

  105. Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991;251:802–804.

    Article  PubMed  CAS  Google Scholar 

  106. Vande Woude GF, Jeffers M, Cortner J, Alvord G, Tsarfaty I, Resau J. Met-HGF/SF: tumorigenesis, invasion and metastasis. Ciba Found Symp 1997;212:119–130; discussion 130–132, 148–154.

    Google Scholar 

  107. Li G, Schaider H, Satyamoorthy K, Hanakawa Y, Hashimoto K, Herlyn M. Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene. 2001;20(56):8125–8135.

    Article  PubMed  CAS  Google Scholar 

  108. Halaban R, Rubin JS, Funasaka Y, et al. Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells. Oncogene 1992;7:2195–2206.

    PubMed  CAS  Google Scholar 

  109. Natali PG, Nicotra MR, Di Renzo MF, et al. Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br J Cancer 1993;68:746–750.

    PubMed  CAS  Google Scholar 

  110. Wiltshire RN, Duray P, Bittner ML, et al. Direct visualization of the clonal progression of primary cutaneous melanoma: application of tissue microdissection and comparative genomic hybridization. Cancer Res 1995;55(18):3954–3957.

    PubMed  CAS  Google Scholar 

  111. Bastian BC, LeBoit PE, Hamm H, Brocker EB, Pinkel D. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 1998;58:2170–2175.

    PubMed  CAS  Google Scholar 

  112. Rusciano D, Lorenzoni P, Burger MM. Expression of constitutively activated hepatocyte growth factor/scatter factor receptor (c-met) in B16 melanoma cells selected for enhanced liver colonization. Oncogene 1995;11:1979–1987.

    PubMed  CAS  Google Scholar 

  113. Otsuka T, Takayama H, Sharp R, et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res 1998;58(22):5157–5167.

    PubMed  CAS  Google Scholar 

  114. Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene 2003;22:3113–3122.

    Article  PubMed  CAS  Google Scholar 

  115. Stambolic V, Suzuki A, de la Pompa JL, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998;95(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  116. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer [see comments]. Science 1997;275:1943–1947.

    Article  PubMed  CAS  Google Scholar 

  117. Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997;15(4):356–362.

    Article  PubMed  CAS  Google Scholar 

  118. Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 1997;57(11):2124–2129.

    PubMed  CAS  Google Scholar 

  119. Guldberg P, thor Straten P, Birck A, Ahrenkiel V, Kirkin AF, Zeuthen J. Disruption of the MMAC1/ PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 1997;57:3660–3663.

    PubMed  CAS  Google Scholar 

  120. Teng DH, Hu R, Lin H, et al. MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 1997;57(23):5221–5225.

    PubMed  CAS  Google Scholar 

  121. Robertson GP, Furnari FB, Miele ME, et al. In vitro loss of heterozygosity targets the PTEN/MMAC1 gene in melanoma. Proc Natl Acad Sci USA 1998;95(16):9418–9423.

    Article  PubMed  CAS  Google Scholar 

  122. Hwang PH, Yi HK, Kim DS, Nam SY, Kim JS, Lee DY. Suppression of tumorigenicity and metastasis in B16F10 cells by PTEN/MMAC1/TEP1 gene. Cancer Lett 2001;172(1):83–91.

    Article  PubMed  CAS  Google Scholar 

  123. Liaw D, Marsh DJ, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997;16(1):64–67.

    Article  PubMed  CAS  Google Scholar 

  124. Marsh DJ, Dahia PL, Zheng Z, et al. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 1997;16(4):333–334.

    Article  PubMed  CAS  Google Scholar 

  125. Nelen MR, van Staveren WC, Peeters EA, et al. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet 1997;6(8):1383–1387.

    Article  PubMed  CAS  Google Scholar 

  126. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat Genet 1998;19(4):348–355.

    Article  PubMed  Google Scholar 

  127. Podsypanina K, Ellenson LH, Nemes A, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 1999;96(4):1563–1568.

    Article  PubMed  CAS  Google Scholar 

  128. Suzuki A, de la Pompa JL, Stambolic V, et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 1998;8(21):1169–1178.

    Article  PubMed  CAS  Google Scholar 

  129. You MJ, Castrillon DH, Bastian BC, et al. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc Natl Acad Sci USA 2002;99(3):1455–1460.

    Article  PubMed  CAS  Google Scholar 

  130. Schreiber-Agus N, Meng Y, Hoang T, et al. Role of Mxi1 in ageing organ systems and the regulation of normal and neoplastic growth. Nature 1998;393(6684):483–487.

    Article  PubMed  CAS  Google Scholar 

  131. Rowan A, Bataille V, MacKie R, et al. Somatic mutations in the Peutz-Jegners (LKB1/STKII) gene in sporadic malignant melanomas. J Invest Dermatol 1999;112(4):509–511.

    Article  PubMed  CAS  Google Scholar 

  132. Guldberg P, thor Straten P, Ahrenkiel V, Seremet T, Kirkin AF, Zeuthen J. Somatic mutation of the Peutz-Jeghers syndrome gene, LKB1/STK11, in malignant melanoma. Oncogene 1999;18(9):1777–1780.

    Article  PubMed  CAS  Google Scholar 

  133. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA. Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996;85(1):27–37.

    Article  PubMed  CAS  Google Scholar 

  134. Yang FC, Merlino G, Chin L. Genetic dissection of melanoma pathways in the mouse. Semin Cancer Biol 2001;11(3):261–268.

    Article  PubMed  CAS  Google Scholar 

  135. Bradl M, Klein-Szanto A, Porter S, Mintz B. Malignant melanoma in transgenic mice. Proc Natl Acad Sci USA 1991;88(1):164–168.

    Article  PubMed  CAS  Google Scholar 

  136. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 1999;19(1):1–11.

    PubMed  CAS  Google Scholar 

  137. Ross DA, Wilson GD. Expression of c-myc oncoprotein represents a new prognostic marker in cutaneous melanoma. Br J Surg 1998;85(1):46–51.

    Article  PubMed  CAS  Google Scholar 

  138. Kraehn GM, Utikal J, Udart M, et al. Extra c-myc oncogene copies in high risk cutaneous malignant melanoma and melanoma metastases. Br J Cancer 2001;84(1):72–79.

    Article  PubMed  CAS  Google Scholar 

  139. Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR, Lowe SW. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 1999;13(20):2670–2677.

    Article  PubMed  CAS  Google Scholar 

  140. Sharpless NE, Alson S, Chan S, Silver DP, Castrillon DH, DePinho RA. p16INK4a and p53 deficiency cooperate in tumorigenesis. Cancer Res 2002;62:2761–2765.

    PubMed  CAS  Google Scholar 

  141. Holman CD, Armstrong BK. Cutaneous malignant melanoma and indicators of total accumulated exposure to the sun: an analysis separating histogenetic types. J Natl Cancer Inst 1984;73(1):75–82.

    PubMed  CAS  Google Scholar 

  142. Autier P, Dore JF. Influence of sun exposures during childhood and during adulthood on melanoma risk. EPIMEL and EORTC Melanoma Cooperative Group. European Organisation for Research and Treatment of Cancer. Int J Cancer 1998;77(4):533–537.

    Article  PubMed  CAS  Google Scholar 

  143. Whiteman DC, Whiteman CA, Green AC. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control 2001;12(1):69–82.

    Article  PubMed  CAS  Google Scholar 

  144. Atillasoy ES, Seykora JT, Soballe PW, et al. UVB induces atypical melanocytic lesions and melanoma in human skin. Am J Pathol 1998;152(5):1179–1186.

    PubMed  CAS  Google Scholar 

  145. Berking C, Takemoto R, Binder RL, et al. Photocarcinogenesis in human adult skin grafts. Carcinogenesis 2002;23(1):181–187.

    Article  PubMed  CAS  Google Scholar 

  146. Jamal S, Schneider RJ. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells. J Clin Invest 2002;110(4):443–452.

    Article  PubMed  CAS  Google Scholar 

  147. Donawho CK, Kripke ML. Evidence that the local effect of ultraviolet radiation on the growth of murine melanomas is immunologically mediated. Cancer Res 1991;51(16):4176–4181.

    PubMed  CAS  Google Scholar 

  148. Pollock PM, Pearson JV, Hayward NK. Compilation of somatic mutations of the CDKN2 gene in human cancers: non-random distribution of base substitutions. Genes Chromosomes Cancer 1996;15(2):77–88.

    Article  PubMed  CAS  Google Scholar 

  149. Peris K, Chimenti S, Fargnoli MC, Valeri P, Kerl H, Wolf P. UV fingerprint CDKN2a but no p14ARF mutations in sporadic melanomas. J Invest Dermatol 1999;112(5):825–826.

    Article  PubMed  CAS  Google Scholar 

  150. Kyritsis AP, Zhang B, Zhang W, et al. Mutations of the p16 gene in gliomas. Oncogene 1996;12(1):63–67.

    PubMed  CAS  Google Scholar 

  151. de Gruijl FR, van Kranen HJ, Mullenders LH. UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B 2001;63(1-3):19–27.

    Article  PubMed  Google Scholar 

  152. Horiguchi M, Masumura KI, Ikehata H, Ono T, Kanke Y, Nohmi T. Molecular nature of ultraviolet B light-induced deletions in the murine epidermis. Cancer Res 2001;61(10):3913–3918.

    PubMed  CAS  Google Scholar 

  153. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002;3(6):415–428.

    PubMed  CAS  Google Scholar 

  154. Noonan FP, Recio JA, Takayama H, et al. Neonatal sunburn and melanoma in mice. Nature 2001;413(6853):271–272.

    Article  PubMed  CAS  Google Scholar 

  155. Noonan FP, Otsuka T, Bang S, Anver MR, Merlino G. Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res 2000;60(14):3738–3743.

    PubMed  CAS  Google Scholar 

  156. Recio JA, Noonan FP, Takayama H, et al. Ink4a/arf deficiency promotes ultraviolet radiation-induced melanomagenesis. Cancer Res 2002;62(22):6724–6730.

    PubMed  CAS  Google Scholar 

  157. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344(14):1031–1037.

    Article  PubMed  CAS  Google Scholar 

  158. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;347(7):472–480.

    Article  PubMed  CAS  Google Scholar 

  159. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001;293(5531):876–880.

    Article  PubMed  CAS  Google Scholar 

  160. Felsher DW. Cancer revoked: oncogenes as therapeutic targets. Nat Rev Cancer 2003;3(5):375–380.

    Article  PubMed  CAS  Google Scholar 

  161. Chin L, Tam A, Pomerantz J, et al. Essential role for oncogenic Ras in tumour maintenance. Nature 1999;400(6743):468–472.

    Article  PubMed  CAS  Google Scholar 

  162. Rak J, Mitsuhashi Y, Bayko L, et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995;55(20):4575–4580.

    PubMed  CAS  Google Scholar 

  163. Arbiser JL, Moses MA, Fernandez CA, et al. Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 1997;94(3):861–866.

    Article  PubMed  CAS  Google Scholar 

  164. Okada F, Rak JW, Croix BS, et al. Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc Natl Acad Sci USA 1998;95(7):3609–3614.

    Article  PubMed  CAS  Google Scholar 

  165. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992;359(6398):843–845.

    Article  PubMed  CAS  Google Scholar 

  166. Goldberg MA, Schneider TJ. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem. 1994;269(6):4355–4359.

    PubMed  CAS  Google Scholar 

  167. Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 1995;375(6532):577–581.

    Article  PubMed  CAS  Google Scholar 

  168. Mazure NM, Chen EY, Yeh P, Laderoute KR, Giaccia AJ. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res 1996;56(15):3436–3440.

    PubMed  CAS  Google Scholar 

  169. Bennett DC. Genetics, development, and malignancy of melanocytes. Int Rev Cytol 1993;146:191–260.

    Article  PubMed  CAS  Google Scholar 

  170. Jimbow K, Quevedo J, Fitzpatrick T, Szabo G. Biology of melanocytes. In: Austen K, ed. Dermatology in General Medicine. McGraw-Hill, New York, NY: 1993, pp. 261–289.

    Google Scholar 

  171. Hsu MY, Meier F, Herlyn M. Melanoma development and progression: a conspiracy between tumor and host. Differentiation 2002;70(9–10):522–536.

    Article  PubMed  CAS  Google Scholar 

  172. Balch CM, Soong SJ, Gershenwald JE, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 2001;19(16):3622–3634.

    PubMed  CAS  Google Scholar 

  173. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13(12):1501–1512.

    PubMed  CAS  Google Scholar 

  174. DePinho RA. Transcriptional repression: the cancer-chromatin connection. Nature 1998;391:533–536.

    Article  PubMed  CAS  Google Scholar 

  175. Quelle DE, Cheng M, Ashmun RA, Sherr CJ. Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc Natl Acad Sci USA, 1997;94(2):669–673.

    Article  PubMed  CAS  Google Scholar 

  176. de Stanchina E, McCurrach ME, Zindy F, et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 1998;12:2434–2442.

    PubMed  Google Scholar 

  177. Zindy F, Eischen CM, Randle DH, et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 1998;12:2424–2433.

    PubMed  CAS  Google Scholar 

  178. Radfar A, Unnikrishnan I, Lee HW, DePinho RA, Rosenberg N. p19(Arf) induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation. Proc Natl Acad Sci USA 1998;95(22):13,194–13,199.

    Article  PubMed  CAS  Google Scholar 

  179. Wildlund HR, Fisher DE. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 2003;22:3035–3041.

    Article  CAS  Google Scholar 

  180. Busca R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 2000;13(2):60–69.

    Article  PubMed  CAS  Google Scholar 

  181. Bertolotto C, Abbe P, Hemesath TJ, et al. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 1998;142(3):827–835.

    Article  PubMed  CAS  Google Scholar 

  182. Price ER, Horstmann MA, Wells AG, et al. alpha-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J Biol Chem 1998;273(49):33,042–33,047.

    Article  PubMed  CAS  Google Scholar 

  183. Ohtani N, Zebedee Z, Huot TJ, et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 2001;409(6823):1067–1070.

    Article  PubMed  CAS  Google Scholar 

  184. Zhu J, Woods D, McMahon M, Bishop JM. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 1998;12(19):2997–3007.

    PubMed  CAS  Google Scholar 

  185. Hamad NM, Elconin JH, Karnoub AE, et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev 2002;16(16):2045–2057.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, N.J.

About this chapter

Cite this chapter

Sharpless, N.E., Chin, L. (2006). The Biology and Genetics of Melanoma. In: Hearing, V.J., Leong, S.P.L. (eds) From Melanocytes to Melanoma. Humana Press. https://doi.org/10.1007/978-1-59259-994-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-994-3_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-459-3

  • Online ISBN: 978-1-59259-994-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics