Skip to main content

Part of the book series: Nutrition and Health ((NH))

  • 1513 Accesses

Abstract

Age-related cataract is the leading cause of blindness worldwide, accounting for about 42% of all blindness (1). An estimated 25 million individuals worldwide were blind as a result of cataract in 2000 (2). Given a large aging population, by 2020, it is estimated that there will be 54 million blind persons among those 60 yr of age and older, and the vast majority of cases of blindness will be due to cataract (1). Both the incidence and prevalence of cataract are higher in developing countries compared with developed countries. More than 90% of the cases of blindness will be in developing countries, where the “backlog” of individuals with untreated cataract has been steadily increasing because of a shortage of trained personnel and resources. Any potential interventions that could delay the progression of cataracts, such as dietary modification or nutritional supplementation, would have a significant impact on the prevalence of blindness. More than 1 million cataract operations are performed each year in the United States at a cost of about $3.4 billion to Medicare alone (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thylefors B, Négrel AD, Pararajasegaram R, Dadzie KY. Global data on blindness. Bull World Health Organ 1995;73:115–121.

    CAS  Google Scholar 

  2. Johnson GJ, Foster A. Prevalence, incidence and distribution of visual impairment. In: Johnson GJ, Minassian DC, Weale RA, West SK (eds). The epidemiology of eye disease. Second edition. London, Arnold: 2003; pp. 3–28.

    Google Scholar 

  3. Steinberg EP, Javitt JC, Sharkey PD, et al. The content and cost of cataract surgery. Arch Ophthalmol 1993;11:1041–1049.

    Google Scholar 

  4. Salmon WD, Hays IM, Guerrant NB. Etiology of dermatitis of experimental pellagra in rats. J Infect Dis 1928;43:426–441.

    Google Scholar 

  5. Day PL, Darby WJ. The inverse relationship between growth and incidence of cataract in rats given graded amounts of vitamin G-containing foods. J Nutr 1936;12:387–394.

    CAS  Google Scholar 

  6. Day PL, Darby WJ, Cosgrove KW. The arrest of nutritional cataract by the use of riboflavin. J Nutr 1938;15:83–90.

    CAS  Google Scholar 

  7. Day PL, Darby WJ, Langston WC. The identity of flavin with the cataract-preventive factor. J Nutr 1937;13:389–399.

    CAS  Google Scholar 

  8. Miller ER, Johnston RL, Hoefer JA, Luecke RW. The riboflavin requirement of the baby pig. J Nutr 1954;52:405–413.

    CAS  Google Scholar 

  9. Halver JE. Nutrition of salmonoid fishes. III. Water-soluble vitamin requirements of the chinook salmon. J Nutr 1957;62:225–243.

    CAS  Google Scholar 

  10. Poston HA, Riis RC, Rumsey GL, Ketola HG. The effect of supplemental dietary amino acids, minerals and vitamins on salmonids fed cataractogenic diets. Cornell Vet 1977;67:473–509.

    Google Scholar 

  11. Gershoff SN, Andrus SB, Hegsted DM. The effect of the carbohydrate and fat content of the diet upon the riboflavin requirement of the cat. J Nutr 1959;68:75–88.

    CAS  Google Scholar 

  12. McLaren DL. Malnutrition and the eye. New York, Academic, 1963.

    Google Scholar 

  13. Hiller R, Sperduto RD, Ederer F. Epidemiologic associations with nuclear, cortical, and posterior subcapsular cataracts. Am J Epidemiol 1986;124:916–925.

    CAS  Google Scholar 

  14. Vrensen GFJM. Aging of the human eye lens—a morphological point of view. Comp Biochem Physiol A Physiol 1995;111:519–532.

    CAS  Google Scholar 

  15. Hockwin O, Lerman S, Laser H, Dragomirescu V. Image analysis of Scheimpflug photos of the lens by multiple linear microdensitometry. Lens Res 1985;2:337–350.

    Google Scholar 

  16. Brown MAP, Bron AJ, Sparrow JM. Methods for evaluation of lens changes. Int Ophthalmol 1988;12:229–235.

    CAS  Google Scholar 

  17. Brown NAP, Bron AJ, Ayliffe W, Sparrow J, Hill AR. The objective assessment of cataract. Eye 1987;1:234–246.

    Google Scholar 

  18. Mehra V, Minassian DC. A rapid method of grading cataract in epidemiological studies and eye surveys. Br J Ophthalmol 1988;72:801–803.

    CAS  Google Scholar 

  19. Chylack LT Jr, Leske MC, Sperduto R, Khu P, McCarthy D. Lens opacities classification system. Arch Ophthalmol 1988;106:330–334.

    Google Scholar 

  20. Sasaki K, Shibata T, Kojima M, Zainuddin D, Sakamoto Y. Experience introducing photographic documentation into epidemiological studies on cataracts. Lens Res 1988;5:163–174.

    Google Scholar 

  21. West SK, Rosenthal F, Newland HS, Taylor HR. Use of photographic techniques to grade nuclear cataracts. Invest Ophthalmol Vis Sci 1988;29:73–77.

    CAS  Google Scholar 

  22. Chylack LT Jr, Leske MC, McCarthy D, Khu P, Kashiwagi T, Sperduto R. Lens Opacities Classification System II (LOCS II). Arch Ophthalmol 1989;107:991–997.

    Google Scholar 

  23. Taylor HR, West SK. The clinical grading of lens opacities. Aust N Z J Ophthalmol 1989;17:81–86.

    CAS  Google Scholar 

  24. Klein BEK, Klein R, Linton KLP, Magli YL, Neider MW. Assessment of cataracts from photographs in the Beaver Dam Eye Study. Ophthalmology 1990;97:1428–1433.

    CAS  Google Scholar 

  25. Adamsons I, Taylor KI, Enger C, Taylor HR. A new method for documenting lens opacities. Am J Ophthalmol 1991;111:65–70.

    CAS  Google Scholar 

  26. Bailey IL, Bullimore MA, Raasch TW, Taylor HR. Clinical grading and the effects of scaling. Invest Ophthalmol Vis Sci 1991;32:422–432.

    CAS  Google Scholar 

  27. Sasaki F, Fujisawa K, Sakamoto Y. Quantitative evaluation of nuclear cataract using image analysis. Ophthalmic Res 1992;24(suppl 1):26–31.

    Google Scholar 

  28. Chylack LT Jr, Wolfe JK, Singer DM, et al. The Lens Opacities Classification System III. Arch Ophthalmol 1993;111;831–836.

    Google Scholar 

  29. Robman LD, McCarty CA, Garrett SKM, et al. Variability in the assessment of cortical and posterior subcapsular cataract. Ophthalmic Res 1999;31:110–118.

    CAS  Google Scholar 

  30. Mohan M, Sperduto RD, Angra SK, et al. India-US case-control study of age-related cataracts. Arch Ophthalmol 1989;107:670–677.

    CAS  Google Scholar 

  31. The Italian-American Cataract Study Group. Risk factors for age-related cortical, nuclear, and posterior subcapsular cataracts. Am J Epidemiol 1991;133:541–553.

    Google Scholar 

  32. Leske MC, Chylack LT Jr, Wu SY. The lens opacities case-control study: risk factors for cataract. Arch Ophthalmol 1991;109:244–251.

    CAS  Google Scholar 

  33. Thylefors B, Chylack LT Jr, Konyama K, et al. A simplified cataract grading system. Ophthalmic Epidemiol 2002;9:83–95.

    CAS  Google Scholar 

  34. Kahn HA, Moorhead HB. Statistics on Blindness in the Model Reporting Area, 1969–1970. PHS Publication No. (NIH) 73-427. Washington, D.C., US DHEW, 1973.

    Google Scholar 

  35. Klein BE, Klein R. Cataracts and macular degeneration in older Americans. Arch Ophthalmol 1982;100:571–573.

    CAS  Google Scholar 

  36. Klein BEK, Klein R, Linton KLP. Prevalence of age-related lens opacities in a population: the Beaver Dam Eye Study. Ophthalmology 1992;99:546–552.

    CAS  Google Scholar 

  37. Sperduto RD, Hiller R. The prevalence of nuclear, cortical, and posterior subcapsular lens opacities in a general population sample. Ophthalmology 1984;91:815–818.

    CAS  Google Scholar 

  38. Mitchell P, Cumming RG, Attebo K, Panchapakesan J. Prevalence of cataract in Australia: the Blue Mountains Eye Study. Ophthalmology 1997;104:581–588.

    CAS  Google Scholar 

  39. Seah SKL, Wong TY, Foster PJ, Ng TP, Johnson GJ. Prevalence of lens opacity in Chinese residents of Singapore: the Tanjong Pagar Survey. Ophthalmology 2002;109:2058–2064.

    Google Scholar 

  40. Klein BEK, Klein R, Lee KE. Incident cataract after a five-year interval and lifestyle factors: the Beaver Dam Eye Study. Ophthalmic Epidemiol 1999;6:247–255.

    CAS  Google Scholar 

  41. Klein BEK, Klein R, Lee KE. Incidence of age-related cataract over a 10-year interval. The Beaver Dam Eye Study. Ophthalmology 2002;109:2052–2057.

    Google Scholar 

  42. Leske MC, Chylack LT Jr, He Q, et al. Incidence and progression of cortical and posterior subcapsular opacticies: the Longitudinal Study of Cataract. Ophthalmology 1997;104:1987–1993.

    CAS  Google Scholar 

  43. Leske MC, Chylack LT Jr, Wu SY, et al. Incidence and progression of nuclear opacities in the Longitudinal Study of Cataract. Ophthalmology 1996;103:705–712.

    CAS  Google Scholar 

  44. Hu TS, Zhen Q, Sperduto RD, et al. Age-related cataract in the Tibet Eye Study. Arch Ophthalmol 1989;107:666–669.

    CAS  Google Scholar 

  45. Chatterjee A, Milton RC, Thyle S. Prevalence and aetiology of cataract in Punjab. Br J Ophthalmol 1982;66:35–42.

    CAS  Google Scholar 

  46. Minassian DC, Mehra V. 3.8 million blinded by cataract each year: projections from the first epidemiological study of incidence of cataract blindness in India. Br J Ophthalmol 1990;74:341–343.

    CAS  Google Scholar 

  47. Seddon JM, Christen WG, Manson JE, et al. The use of vitamin supplements and the risk of cataract among US male physicians. Am J Pub Health 1994;84:788–792.

    CAS  Google Scholar 

  48. Mares-Perlman JA, Klein BEK, Klein R, Ritter LL. Relation between lens opacities and vitamin and mineral supplement use. Ophthalmology 1994;101:315–325.

    CAS  Google Scholar 

  49. Leske MC, Chylack LT, He Q, et al. Antioxidant vitamins and nuclear opacities. The Longitudinal Study of Cataract. Ophthalmology 1998;105:831–836.

    CAS  Google Scholar 

  50. Mares-Perlman JA, Lyle BJ, Klein R, et al. Vitamin supplement use and incident cataracts in a population-based study. Arch Ophthalmol 2000;118:1556–1563.

    CAS  Google Scholar 

  51. Kuzniarz M, Mitchell P, Cumming RG, Flood VM. Use of vitamin supplements and cataract: the Blue Mountains Eye Study. Am J Ophthalmol 2001;132:19–26.

    CAS  Google Scholar 

  52. Jacques PF, Chylack LT Jr, Hankinson SE, et al. Long-term nutrient intake and early age-related nuclear lens opacities. Arch Ophthalmol 2001;119:1009–1019.

    CAS  Google Scholar 

  53. Leske MC, Wu SY, Connell AMS, Hyman L, Schachat AP, Barbados Eye Study Group. Lens opacities, demographic factors and nutritional supplements in the Barbados Eye Study. Int J Epidemiol 1997;26:1314–1322.

    CAS  Google Scholar 

  54. Taylor A, Jacques PF, Chylack LT Jr, et al. Long-term intake of vitamins and carotenoids and odds of early age-related cortical and posterior subcapsular lens opacities. Am J Clin Nutr 2002;75:540–549.

    CAS  Google Scholar 

  55. Mares-Perlman J, Brady WE, Klein BEK, et al. Diet and nuclear lens opacities. Am J Epidemiol 1995b;141:322–334.

    CAS  Google Scholar 

  56. Cumming RG, Mitchell P, Smith W. Diet and cataract: the Blue Mountains Eye Study. Ophthalmology 2000;107:450–456.

    CAS  Google Scholar 

  57. Vitale S, West S, Hallfrisch J, et al. Plasma antioxidants and risk of cortical and nuclear cataract. Ophthalmology 1993;100:1437–1443.

    Google Scholar 

  58. Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington, D.C., National Academy Press, 2000.

    Google Scholar 

  59. Mares-Perlman JA, Brady WE, Klein BEK, et al. Serum carotenoids and tocopherols and severity of nuclear and cortical opacities. Invest Ophthalmol Vis Sci 1995a;36:276–288.

    CAS  Google Scholar 

  60. Lyle BJ, Mares-Perlman JA, Klein BEK, Klein R, Greger JL. Antioxidant intake and risk of incident age-related nuclear cataracts in the Beaver Dam Eye Study. Am J Epidemiol 1999;149:801–809.

    CAS  Google Scholar 

  61. Gale CR, Hall NF, Phillips DIW, Martyn CN. Plasma antioxidant vitamins and carotenoids and agerelated cataracts. Ophthalmology 2001;108:1992–1998.

    CAS  Google Scholar 

  62. Yeum KJ, Taylor A, Tang G, Russell RM. Measurement of carotenoids, retinoids, and tocopherols in human lenses. Invest Ophthalmol Vis Sci 1995;36:2756–2761.

    CAS  Google Scholar 

  63. Moeller SM, Taylor A, Tucker KL, et al. Overall adherence to the Dietary Guidelines for Americans is associated with reduced prevalence of early age-related nuclear lens opacities in women. J Nutr 2004;134:1812–1819.

    CAS  Google Scholar 

  64. Leske MC, Wu SY, Hyman L, et al. Biochemical factors in the lens opacities case-control study. Arch Ophthalmol 1995;113:1113–1119.

    CAS  Google Scholar 

  65. Rouhiainen P, Rouhiainen H, Salonen JT. Association between low plasma vitamin E concentration and progression of early cortical opacities. Am J Epidemiol 1996;144:496–500.

    CAS  Google Scholar 

  66. Nadalin G, Robman LD, McCarty CA, Garrett SKM, McNeil JJ, Taylor HR. The role of past intake of vitamin E in early cataract changes. Ophthal Epidemiol 1999;6:105–112.

    CAS  Google Scholar 

  67. McCarty CA, Mukesh BN, Fu CL, Taylor HR. The epidemiology of cataract in Australia. Am J Ophthalmol 1999;128:446–465.

    CAS  Google Scholar 

  68. Knekt P, Heliövaara M, Rissanen A, Aromaa A, Aaran RK. Serum antioxidant vitamins and risk of cataract. BMJ 1992;305:1392–1394.

    CAS  Google Scholar 

  69. Ohta Y, Niwa T, Yamasaki T. Effect of prolonged marginal ascorbic acid deficiency on lenticular levels of antioxidants and lipid peroxide in guinea pigs. Int J Vitam Nutr Res 2001;71:103–109.

    CAS  Google Scholar 

  70. Jacques PF, Taylor A, Moeller S, et al. Long-term nutrient intake and 5-year change in nuclear lens opacities. Arch Ophthalmol 2005;123:517–526.

    Google Scholar 

  71. Jacques PF, Chylack LT Jr, McGandy RB, Hartz SC. Antioxidant status in persons with and without senile cataract. Arch Ophthalmol 1988;106:337–340.

    CAS  Google Scholar 

  72. Christen WG, Liu S, Schaumberg D, Buring JE. Fruit and vegetable intake and the risk of cataract in women. Am J Clin Nutr 2005;81:1417–1422.

    CAS  Google Scholar 

  73. Lu M, Taylor A, Chylack LT Jr, et al. Dietary fat intake and early age-related lens opacities. Am J Clin Nutr 2005;81:773–779.

    CAS  Google Scholar 

  74. Schaumberg DA, Liu S, Seddon JM, Willett WC, Hankinson SE. Dietary glycemic load and risk of age-related cataract. Am J Clin Nutr 2004;80:489–495.

    CAS  Google Scholar 

  75. Hankinson SE, Seddon JM, Colditz GA, et al. A prospective study of aspirin use and cataract extraction in women. Arch Ophthalmol 1993;111:503–508.

    CAS  Google Scholar 

  76. Glynn RJ, Christen WG, Manson JE, Bernheimer J, Hennekens CH. Body mass index: an independent predictor of cataract. Arch Ophthalmol 1995;113:1131–1137.

    CAS  Google Scholar 

  77. Tavani A, Negri E, LaVecchia C. Selected diseases and risk of cataract in women. A case-control study from northern Italy. Ann Epidemiol 1995;5:234–238.

    CAS  Google Scholar 

  78. Hiller R, Podger MJ, Sperduto RD, et al. A longitudinal study of body mass index and lens opacities: the Framingham studies. Ophthalmology 1998;105:1244–1250.

    CAS  Google Scholar 

  79. Schaumberg DA, Glynn RJ, Christen WG, Hankinson SE, Hennekens CH. Relations of body fat distribution and height with cataract in men. Am J Clin Nutr 2000;72:1495–1502.

    CAS  Google Scholar 

  80. Klein BEK, Klein R, Moss SE. Incident cataract surgery: the Beaver Dam Eye Study. Ophthalmology 1997;104:573–580.

    CAS  Google Scholar 

  81. Younan C, Mitchell P, Cumming R, Rochtchina E, Panchapakesan J, Tumuluri K. Cardiovascular disease, vascular risk factors and the incidence of cataract and cataract surgery: the Blue Mountains Eye Study. Ophthalmic Epidemiol 2003;10:227–240.

    Google Scholar 

  82. Schaumberg DA, Ridker PM, Glynn RJ, Christen WG, Dana MR, Hennekens CH. High levels of plasma C-reactive protein and future risk of age-related cataract. Ann Epidemiol 1999;9:166–171.

    CAS  Google Scholar 

  83. Karasik A, Modan M, Halkin H, Treister G, Fuchs Z, Lusky A. Senile cataract and glucose intolerance: the Israel Study of Glucose Intolerance Obesity and Hypertension (The Israel GOH Study). Diabetes Care 1984;7:52–56.

    CAS  Google Scholar 

  84. Clayton RM, Cuthbert J, Duffy J, et al. Some risk factors associated with cataract in S. E. Scotland: a pilot study. Trans Ophthalmol Soc UK 1982;102:331–336.

    Google Scholar 

  85. Cottam DR, Mattar SG, Barinas-Mitchell E, et al. The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes Surg 2004;14:589–600.

    Google Scholar 

  86. Leske MC, Sperduto RD. The epidemiology of senile cataracts: a review. Am J Epidemiol 1983;118:152–165.

    CAS  Google Scholar 

  87. West SK, Valmadrid CT. Epidemiology of risk factors for age-related cataract. Surv Ophthalmol 1995;39:323–334.

    CAS  Google Scholar 

  88. Hodge WG, Whitcher JP, Satariano W. Risk factors for age-related cataracts. Epidemiol Rev 1995;17:336–345.

    CAS  Google Scholar 

  89. Hiller R, Sperduto RD, Ederer F. Epidemiologic associations with cataract in the 1971–1972 National Health and Nutrition Examination Survey. Am J Epidemiol 1983;118:239–249.

    CAS  Google Scholar 

  90. Leske MC, Connell AM, Wu SY, Hyman L, Schachat A. Prevalence of lens opacities in the Barbados Eye Study. Arch Ophthalmol 1997;115:105–111.

    CAS  Google Scholar 

  91. West SK, Muñoz B, Schein OD, Duncan DD, Rubin GS. Racial differences in lens opacities: the Salisbury Eye Evaluation (SEE) project. Am J Epidemiol 1998;148:1033–1039.

    CAS  Google Scholar 

  92. Cruickshanks KJ, Klein BEK, Klein R. Ultraviolet light exposure and lens opacities: the Beaver Dam Eye Study. Am J Pub Health 1992;82:1658–1647.

    CAS  Google Scholar 

  93. Burton M, Fergusson E, Hart A, Knight K, Lary D, Liu C. The prevalence of cataract in two villages of northern Pakistan with different levels of ultraviolet radiation. Eye 1997;11:95–101.

    Google Scholar 

  94. Minassian DC, Mehra V, Reidy A. Childbearing and risk of cataract in young women: an epidemiologic study in central India. Br J Ophthalmol 2002;86:548–550.

    CAS  Google Scholar 

  95. Harding JJ, van Heyningen R. Drugs, including alcohol, that act as risk factors for cataract, and possible protection against cataract by aspirin-like analgesics and cyclopenthiazide. Br J Ophthalmol 1988;72:809–814.

    CAS  Google Scholar 

  96. Flaye DE, Sullivan KN, Cullinan TR, Silver JH, Whitelocke RAF. Cataracts and cigarette smoking. The City Eye Study. Eye 1989;3:379–384.

    Google Scholar 

  97. West S, Muñoz B, Emmett EA, Taylor HR. Cigarette smoking and risk of nuclear cataracts. Arch Ophthalmol 1989;107:1166–1169.

    CAS  Google Scholar 

  98. Hankinson SE, Willett WC, Colditz GA, et al. A prospective study of cigarette smoking and risk of cataract surgery in women. JAMA 1992;268:994–998.

    CAS  Google Scholar 

  99. Klein BEK, Klein R, Linton KLP, Franke T. Cigarette smoking and lens opacities: the Beaver Dam Eye Study. Am J Prev Med 1993;9:27–30.

    CAS  Google Scholar 

  100. Cumming RG, Mitchell P. Alcohol, smoking, and cataracts: the Blue Mountains Eye Study. Arch Ophthalmol 1997;115:1296–1303.

    CAS  Google Scholar 

  101. Ederer F, Hiller R, Taylor HR. Senile lens changes and diabetes in two population studies. Am J Ophthalmol 1981;91:381–395.

    CAS  Google Scholar 

  102. Kinoshita JH. A thirty year journey in the polyol pathway. Exp Eye Res 1990;50:567–573.

    CAS  Google Scholar 

  103. Varma SD, Mizuno A, Kinoshita JH. Diabetic cataracts and flavonoids. Science 1977;195:205–206.

    CAS  Google Scholar 

  104. Brilliant LB, Grasset NC, Pokhrel RP, et al. Associations among cataract prevalence, sunlight hours, and altitude in the Himalayas. Am J Epidemiol 1983;118:250–264.

    CAS  Google Scholar 

  105. Taylor HR, West SK, Rosenthal FS, et al. Effect of ultraviolet radiation on cataract formation. N Engl J Med 1988;319:1429–1433.

    CAS  Google Scholar 

  106. Bochow TW, West SK, Azar A, Muñoz B, Sommer A, Taylor HR. Ultraviolet light exposure and risk of posterior subcapsular cataracts. Arch Ophthalmol 1989;107:369–372.

    CAS  Google Scholar 

  107. West SK, Duncan DD, Muñoz B, et al. Sunlight exposure and risk of lens opacities in a populationbased study: the Salisbury Eye Evaluation project. JAMA 1998;280:714–718.

    CAS  Google Scholar 

  108. Minassian DC, Mehra V, Jones BR. Dehydration crises from severe diarrhoea or heatstroke and risk of cataract. Lancet 1984;1:751–753.

    CAS  Google Scholar 

  109. Minassian DC, Mehra V, Verry JD. Dehydrational crises: a major risk factor in blinding cataract. Br J Ophthalmol 1989;73:100–105.

    CAS  Google Scholar 

  110. Zodpey SP, Ughade SN, Khanolkar VA, Shrikhande SN. Dehydrational crisis from severe diarrhoea and risk of age-related cataract. J Indian Med Assoc 1999;97:13–15, 24.

    CAS  Google Scholar 

  111. Van Heyningen R, Harding JJ. A case-control study of cataract in Oxfordshire: some risk factors. Br J Ophthalmol 1988;72:804–808.

    Google Scholar 

  112. Bhatnagar R, West KP Jr, Vitale S, Sommer A, Joshi S, Venkataswamy G. Risk of cataract and history of severe diarrheal disease in southern India. Arch Ophthalmol 1991;109:696–699.

    CAS  Google Scholar 

  113. Kahn MU, Kahn MR, Sheikh AK. Dehydrating diarrhoea & cataract in rural Bangladesh. Indian J Med Res 1987;85:311–315.

    Google Scholar 

  114. Muñoz B, Tajchman U, Bochow T, West S. Alcohol use and risk of posterior subcapsular opacities. Arch Ophthalmol 1993;111:110–112.

    Google Scholar 

  115. Ritter LL, Klein BEK, Klein R, Mares-Perlman JA. Alcohol use and lens opacities in the Beaver Dam Eye Study. Arch Ophthalmol 1993;111:113–117.

    CAS  Google Scholar 

  116. Phillips CI, Clayton RM, Cuthbert J, Qian W, Donnelly CA, Prescott RJ. Human cataract risk factors: significance of abstention from, and high consumption of, ethanol (U-curve) and non-significance of smoking. Ophthalmic Res 1996;28:237–247.

    CAS  Google Scholar 

  117. Black RL, Oglesby RB, von Sallmann L, Bunim JJ. Posterior subcapsular cataracts induced by corticosteroids in patients with rheumatoid arthritis. JAMA 1960;174:166–171.

    CAS  Google Scholar 

  118. Cumming RG, Mitchell P, Leeder SR. Use of inhaled corticosteroids and the risk of cataracts. N Engl J Med 1997;337:8–14.

    CAS  Google Scholar 

  119. Garbe E, Suissa S, LeLorier J. Association of inhaled corticosteroid use with cataract extraction in elderly patients. JAMA 1998;280:539–543.

    CAS  Google Scholar 

  120. Schaumberg DA, Mendes F, Balaram M, Dana MR, Sparrow D, Hu H. Accumulated lead exposure and risk of age-related cataract in men. JAMA 2004;292:2750–2754.

    CAS  Google Scholar 

  121. Semba RD, Blaum C, Guralnik JM, Totin D, Ricks MO, Fried LP. Low carotenoid and vitamin E status are associated with indicators of sarcopenia among older women living in the community. Aging Clin Exp Res 2003;15:482–487.

    CAS  Google Scholar 

  122. Delcourt C, Dupuy AM, Carriere I, Lacroux A, Cristol JP, and POLA Study Group. Albumin and transthyretin as risk factors for cataract: the POLA study. Arch Ophthalmol 2005;123:225–232.

    Google Scholar 

  123. Hirsch RP, Schwartz B. Increased mortality among elderly patients undergoing cataract extraction. Arch Ophthalmol 1983;101:1034–1037.

    CAS  Google Scholar 

  124. Podgor MJ, Cassel GH, Kannel WB. Lens changes and survival in a population-based study. N Engl J Med 1985;313:1438–1444.

    CAS  Google Scholar 

  125. Thompson Jr, Sparrow JM, Gibson JM, Rosenthal AR. Cataract and survival in an elderly nondiabetic population. Arch Ophthalmol 1993;111:675–679.

    CAS  Google Scholar 

  126. Ninn-Pedersen K, Stenevi U. Cataract patients in a defined Swedish population 1986–90: VII Inpatient and outpatient standardised mortality ratios. Br J Ophthalmol 1995;79:1115–1119.

    CAS  Google Scholar 

  127. Wang JJ, Mitchell P, Simpson JM, Cumming RG, Smith W. Visual impairment, age-related cataract, and mortality. Arch Ophthalmol 2001;119:1186–1190.

    CAS  Google Scholar 

  128. Williams SL, Ferrigno L, Mora P, Rosmini F, Maraini G. Baseline cataract type and 10-year mortality in the Italian-American Case-Control Study of age-related cataract. Am J Epidemiol 2002;156:127–131.

    Google Scholar 

  129. Street DA, Javitt JC. National five-year mortality after inpatient cataract extraction. Am J Ophthalmol 1992;113:263–268.

    CAS  Google Scholar 

  130. Klein R, Klein BEK, Moss SE. Age-related eye disease and survival. The Beaver Dam Eye Study. Arch Ophthalmol 1995;113:333–339.

    CAS  Google Scholar 

  131. Cvetković D, Radovanović Z, Hentova-Senčanić P, Velimirović A. Lebenserwartung nach Altersstaroperation. Fortschr Ophthalmol 1985;82:231–234.

    Google Scholar 

  132. Winkler BS, Riley MV. Relative contributions of epithelial cells and fibers to rabbit lens ATP content and glycolysis. Invest Ophthalmol Vis Sci 1991;32:2593–2598.

    CAS  Google Scholar 

  133. Spector A. Oxidative stress-induced cataract: mechanism of action. FASEB J 1995;9:1173–1182.

    CAS  Google Scholar 

  134. Reddy VN. Glutathione and its function in the lens—an overview. Exp Eye Res 1990;50:771–778.

    CAS  Google Scholar 

  135. Rose RC, Bode AM. Ocular ascorbate transport and metabolism. Comp Biochem Physiol 1991;100A:273–285.

    CAS  Google Scholar 

  136. Tsukaguchi H, Tokui T, Mackenzie B, et al. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 1999;399:70–75.

    CAS  Google Scholar 

  137. Varma SD, Kumar S, Richards RD. Light-induced damage to ocular lens cation pump: prevention by vitamin C. Proc Natl Acad Sci USA 1979;76:3504–3506.

    CAS  Google Scholar 

  138. Giblin FJ, Reddan Jr, Schrimscher L, Dziedzic DC, Reddy VN. The relative roles of the glutathione redox cycle and catalase in the detoxification of H2O2 by cultured rabbit lens epithelial cells. Exp Eye Res 1990;50:795–804.

    CAS  Google Scholar 

  139. McGahan MC, Fleisher LN. Inflammation-induced changes in the iron concentration and total iron-binding capacity of the intraocular fluids of rabbits. Graefes Arch Clin Exp Ophthalmol 1988;226:27–30.

    CAS  Google Scholar 

  140. Delaye M, Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. Nature 1983;302:415–417.

    CAS  Google Scholar 

  141. Tanaka T, Benedek GB. Observation of protein diffusivity in intact human and bovine lenses with application to cataract. Invest Ophthalmol 1975;14:449–456.

    CAS  Google Scholar 

  142. Takemoto LJ, Azari P. Isolation and characterization of covalently linked, high molecular weight proteins from human cataractous lens. Exp Eye Res 1977;24:63–70.

    CAS  Google Scholar 

  143. Truscott RJW, Augusteyn RC. Oxidative changes in human lens proteins during senile nuclear cataract formation. Biochim Biophys Acta 1977;492:43–52.

    CAS  Google Scholar 

  144. Bova LM, Sweeney MHJ, Jamie JF, Truscott RJW. Major changes in human ocular UV protection with age. Invest Ophthalmol Vis Sci 2001;42:200–205.

    CAS  Google Scholar 

  145. Sweeney MHJ, Truscott RJW. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract. Exp Eye Res 1998;67:587–595.

    CAS  Google Scholar 

  146. Truscott RJW. Age-related nuclear cataract: a lens transport problem. Ophthalmic Res 2000;32:185–194.

    CAS  Google Scholar 

  147. Velasco PT, Lukas TJ, Murthy SNP, Duglas-Tabor Y, Garland DL, Lorand L. Hierarchy of lens proteins requiring protection against heat-induced precipitation by the α crystallin chaperone. Exp Eye Res 1997;65:497–505.

    CAS  Google Scholar 

  148. Fu S, Dean R, Southan M, Truscott R. The hydroxyl radical in lens nuclear cataractogenesis. J Biol Chem 1998;273:28603–28609.

    CAS  Google Scholar 

  149. Palmquist BM, Philipson B, Barr PO. Nuclear cataract and myopia during hyperbaric oxygen therapy. Br J Ophthalmol 1984;68:113–117.

    CAS  Google Scholar 

  150. Brown NP, Harris ML, Shun-Shin GA, Vrensen GFJM, Willekens B, Bron AJ. Is cortical spoke cataract due to lens fibre breaks? The relationship between fibre folds, fibre breaks, waterclefts and spoke cataract. Eye 1993;7:672–679.

    Google Scholar 

  151. Merriam JC. The concentration of light in the human lens. Trans Am Ophthalmol Soc 1996;94:803–918.

    CAS  Google Scholar 

  152. Duindam JJ, Vrensen GFJM, Otto C, Greve J. Cholesterol, phospholipid, and protein changes in focal opacities in the human eye lens. Invest Ophthalmol Vis Sci 1998;39:94–103.

    CAS  Google Scholar 

  153. Dillon J, Ortwerth BJ, Chignell CF, Reszka KJ. Electron paramagnetic resonance and spin trapping investigations of the photoreactivity of human lens proteins. Photochem Photobiol 1999;69:259–264.

    CAS  Google Scholar 

  154. Dillon J, Zheng L, Merriam JC, Gaillard ER. The optical properties of the anterior segment of the eye: implications for cortical cataract. Exp Eye Res 1999;68:785–795.

    CAS  Google Scholar 

  155. McCarty CA, Taylor HR. Recent developments in vision research: light damage in cataract. Invest Ophthalmol Vis Sci 1996;37:1720–1723.

    CAS  Google Scholar 

  156. Streeten BW, Eshaghian J. Human posterior subcapsular cataract: a gross and flat preparation study. Arch Ophthalmol 1978;96:1653–1658.

    CAS  Google Scholar 

  157. Palva M, Palkama A. Ultrastructural changes in x-ray induced cataract of the rat. Acta Ophthalmol 1978;56:587–598.

    CAS  Google Scholar 

  158. Sperduto RD, Hu TS, Milton RC, et al. The Linxian cataract studies. Two nutrition intervention trials. Arch Ophthalmol 1993;111:1246–1253.

    CAS  Google Scholar 

  159. Chylack LT, Brown NP, Bron A, et al. The Roche European American Cataract Trial (REACT): a randomized clinical trial to investigate the efficacy of an oral antioxidant micronutrient mixture to slow progression of age-related cataract. Ophthalmic Epidemiol 2002;9:49–80.

    Google Scholar 

  160. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss. AREDS Report No. 9. Arch Ophthalmol 2001;119:1439–1452.

    Google Scholar 

  161. Teikari JM, Rautalahti M, Haukka P, et al. Incidence of cataract operations in Finnish male smokers unaffected by α tocopherol or β carotene supplements. J Epidemiol Community Health 1998;52:468–472.

    CAS  Google Scholar 

  162. Christen WG, Manson JE, Glynn RJ, et al. A randomized trial of beta carotene and age-related cataract in US physicians. Arch Ophthalmol 2003;121:372–378.

    CAS  Google Scholar 

  163. McNeil JJ, Robman L, Tikellis G, Sinclair MI, McCarty CA, Taylor HR. Vitamin E supplementation and cataract: randomized controlled trial. Ophthalmology 2004;111:75–84.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

(2007). Cataract. In: Handbook of Nutrition and Ophthalmology. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-59259-979-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-979-0_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-196-7

  • Online ISBN: 978-1-59259-979-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics