Skip to main content

Influence of Lifestyle Choices on Calcium Homeostasis

Smoking, Alcohol, and Hormone Therapies

  • Chapter
Calcium in Human Health

Part of the book series: Nutrition and Health ((NH))

  • 2097 Accesses

Abstract

Much of the research in the area of smoking, alcohol intake, and estrogen/progesterone hormone therapies (HTs) concentrates on bone mineral density (BMD) and osteoporotic risk ather than on calcium homeostasis per se. Heavy smoking and excessive alcohol intake are key risk factors for bone loss and osteoporotic fractures. However, the effect of light smoking on bone is not as clear, whereas very moderate alcohol intake has been shown to either increase BMD or not have adverse effects on bone. Nonetheless, smoking and alcohol intake affect bone turnover and calcium homeostasis, although this primarily has been observed with heavier use. Duration of smoking and alcohol use appear to be important factors in determining their negative effects on bone. Provided smoking and alcohol ingestion have not caused permanent end-organ damage (i.e., lung disease, cancer, cirrhosis, osteoporosis), deleterious effects on calcium homeostasis are apparently reversible. Coexistent lifestyle factors, such as heavy coffee drinking and physical inactivity, may also contribute synergistically to osteopenia in smokers and drinkers. Although estrogen deficiency plays a key role in osteoporosis and other menopauserelated chronic diseases, HT is often accompanied by side effects and increases the risks of breast and uterine cancer. Because of adverse effects as revealed by results from the Women’s Health Initiative (WHI; increased risk of breast cancer, coronary heart disease, stroke, and venous thromboembolism) and the fear of cancer, noncompliance is a major obstacle with HTs. The current thinking is that HT should not be used to prevent or treat osteoporosis, but may be indicated short-term to alleviate vasomotor symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Kelsey JL. Risk factors for osteoporosis and associated fractures. Public Health Rep 1989;104(Suppl):14–20.

    Google Scholar 

  2. Aloia JF, Cohn SH, Vaswani A, Yeh JK, Yuen K, Ellis K. Risk factors for postmenopausal osteoporosis. Am J Med 1985;78:95–100.

    CAS  Google Scholar 

  3. Seeman E, Melton LJ 3rd, O’Fallon WM, Riggs BL. Risk factors for spinal osteoporosis in men. Am J Med 1983;75:977–983.

    CAS  Google Scholar 

  4. Slemenda CW, Hui SL, Longcope C, Johnston CC. Cigarette smoking, obesity, and bone mass. J Bone Miner Res 1989;4:737–741.

    CAS  Google Scholar 

  5. Krall EA, Dawson-Hughes B. Smoking and bone loss among postmenopausal women. J Bone Miner Res 1991;6:331–337.

    CAS  Google Scholar 

  6. Mazess RB, Barden HS. Bone density in premenopausal women: Effects of age, dietary intake, physical activity, smoking, and birth-control pills. Am J Clin Nutr 1991;53:132–142.

    CAS  Google Scholar 

  7. Hollenbach KA, Barrett-Connor E, Edelstein SL, Holbrook T. Cigarette smoking and bone mineral density in older men and women. Am J Public Health 1993;83:1265–1270.

    CAS  Google Scholar 

  8. Garvey AJ, Bosse R, Seltzer CC. Smoking, weight change, and age: A longitudinal analysis. Arch Environ Health 1974;28:327–329.

    CAS  Google Scholar 

  9. Jensen GF. Osteoporosis of the slender smoker revisited by epidemiologic approach. Eur J Clin Invest 1986;16:239–242.

    CAS  Google Scholar 

  10. Kaufman DW, Slone D, Rosenberg L, Meittinen OS, Shapiro S. Cigarette smoking and age at natural menopause. Am J Public Health 1980;70:420–422.

    CAS  Google Scholar 

  11. Hartz AJ, Kelber S, Borkowf H, Wild R, Gillis BL, Rimm AA. The association of smoking with clinical indicators of altered sex steroids-a study of 50,145 women. Public Health Rep 1987;102:254–259.

    CAS  Google Scholar 

  12. Tokuhata G. Smoking in relation to infertility and fetal loss. Arch Environ Health 1968;17:353–359.

    CAS  Google Scholar 

  13. Barbieri RL, McShane RM, Ryan KJ. Constituents of cigarette smoke inhibit human granulosa cell aromatase. Fertil Steril 1986;46:232–236.

    CAS  Google Scholar 

  14. Michnovicz JJ, Hershcopf RJ, Naganuma H, Bradlow HL, Fishman J. Increased 2-hydroxylation of estradiol as a possible mechanism for the anti-estrogenic effect of cigarette smoking. N Engl J Med 1986;315:1305–1309.

    CAS  Google Scholar 

  15. Krall EA, Dawson-Hughes B. Smoking increases bone loss and decreases intestinal calcium absorption. J Bone Miner Res 1999;14:215–220.

    CAS  Google Scholar 

  16. Need AG, Kemp A, Giles N, Morris HA, Horowitz M, Nordin BE. Relationships between intestinal calcium absorption, serum vitamin D metabolites, and smoking in postmenopausal women. Osteopors Int 2002;13:83–88.

    CAS  Google Scholar 

  17. Rapuri P, Gallagher JC, Balhorn KE, Ryschon KL. Alcohol intake and bone metabolism in elderly women. Am J Clin Nutr 2000;72:1206–1213.

    CAS  Google Scholar 

  18. Brot C, Rye JØrgensen N, Helmer SØrensen O. The influence of smoking on vitamin D status and calcium metabolism. Eur J Clin Nutr 1999;53:920–926.

    CAS  Google Scholar 

  19. Law MR, Hackshaw AK. A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: Recognition of a major effect. Br Med J 1997;315:841–846.

    CAS  Google Scholar 

  20. Baron J, Farahmand BY, Weiderpass E, et al. Cigarette smoking, alcohol consumption, and risk of hip fracture in women. Arch Intern Med 2001;161:983–988.

    CAS  Google Scholar 

  21. Nguyen TV, Kelly PJ, Sambrook PN, Gilbert C, Pocock NA, Eisman JA. Lifestyle factors and bone density in the elderly: Implications for osteoporosis prevention. J Bone Miner Res 1994;9:1339–1346.

    CAS  Google Scholar 

  22. McDermott MT, Witte MC. Bone mineral content in smokers. So Med J 1988;81:477–480.

    CAS  Google Scholar 

  23. Daniel M, Martin AD, Drinkwater DT. Cigarette smoking, steroid hormones, and bone mineral density of young women. Calcif Tissue Int 1992;50:300–305.

    CAS  Google Scholar 

  24. Pocock NA, Eisman JA, Kelly PJ, Sambrook PN, Yeates MG. Effects of tobacco use on axial and appendicular bone mineral density. Bone 1989;10:329–331.

    CAS  Google Scholar 

  25. Saville PD. Changes in bone mass with age and alcoholism. J Bone Joint Surg 1965;47:492–299.

    CAS  Google Scholar 

  26. Dalen N, Lamke B. Bone mineral losses in alcoholics. Acta Orthop Scand 1976;47:469–471.

    CAS  Google Scholar 

  27. Spencer H, Rubio N, Rubio E, Indreika M, Seitam A. Chronic alcoholism. Frequently overlooked cause of osteoporosis in men. Am J Med 1986;80:393–397.

    CAS  Google Scholar 

  28. Crilly RG, Anderson C, Hogan D, Delaquerriere-Richardson L. Bone histomorphometry, bone mass, and related parameters in alcoholic males. Calcif Tissue Int 1988;43:269–276.

    CAS  Google Scholar 

  29. Verbanck M, Verbanck J, Brauman J, Mullier JP. Bone histology and 25-OH vitamin D plasma levels in alcoholics without cirrhosis. Calcif Tissue Res 1977;22(Suppl):538–541.

    Google Scholar 

  30. Lalor BC, France MW, Powell D, Adams PH, Counihan TB. Bone and mineral metabolism and chronic alcohol abuse. Q J Med 1986;59:497–511.

    CAS  Google Scholar 

  31. Odvina CV, Safi I, Wojtowicz CH, et al. Effect of heavy alcohol intake in the absence of liver disease on bone mass in black and white men. J Clin Endocrinol Metab 1995;80:2499–2503.

    CAS  Google Scholar 

  32. Laitinen K, Lamberg-Allardt C, Tunninen R, Harkonen M, Välimäki M. Bone mineral density and abstention-induced changes in bone and mineral metabolism in noncirrhotic male alcoholics. Am J Med 1992;93:642–650.

    CAS  Google Scholar 

  33. Laitinen K, Kärkkäinen M, Lalla M, et al. Is alcohol an osteoporosis-inducing agent for young and middle-aged women? Metabolism 1993;42:875–881.

    CAS  Google Scholar 

  34. Lindholm J, Steiniche T, Rasmussen E, et al. Bone disorder in men with chronic alcoholism: A reversible disease? J Clin Endocrinol Metab 1991;73:118–124.

    CAS  Google Scholar 

  35. Bikle DD, Genant HK, Cann C, Recker RR, Halloran BP, Strewler GJ. Bone disease in alcohol abuse. Ann Intern Med 1985;103:42–48.

    CAS  Google Scholar 

  36. Diamond T, Stiel D, Lunzer M, Wilkinson M, Posen S. Ethanol reduces bone formation and may cause osteoporosis. Am J Med 1989;86:282–288.

    CAS  Google Scholar 

  37. Labib M, Abdel-Kader M, Ranganath L, Teale D, Marks V. Bone disease in chronic alcoholism: The value of plasma osteocalcin measurement. Alcohol Alcohol 1989;24:141–144.

    CAS  Google Scholar 

  38. Laitinen K, Lamberg-Allardt C, Tunninen R, et al. Transient hypoparathyroidism during acute alcohol intoxication. N Engl J Med 1991;324:721–727.

    CAS  Google Scholar 

  39. Rico H, Cabranes JA, Cabello J, Gomez-Castresana F, Hernandez ER. Low serum osteocalcin in acute alcohol intoxication: A direct toxic effect of alcohol on osteoblasts. Bone Miner 1987;2:221–225.

    CAS  Google Scholar 

  40. Israel Y, Orrego H, Holt S, MacDonald DW, Meema HE. Identification of alcohol abuse: Thoracic fractures on routine X-rays as indicators of alcoholism. Alcoholism 1980;4:420–422.

    CAS  Google Scholar 

  41. Johnson RD, Davidson S, Saunders JB, Williams R. Fractures on chest radiography as indicators of alcoholism in patients with liver disease. Br Med J 1984;288:365–366.

    CAS  Google Scholar 

  42. Bjørneboe GE, Bjorneboe A, Johnsen J, et al. Calcium status and calcium-regulating hormones in alcoholics. Alcohol Clin Exp Res 1988;12:229–232.

    Google Scholar 

  43. Laitinen K, Välimäki M, Lamberg-Allardt C, Kivisaari et al. Deranged vitamin D metabolism but normal bone mineral density in Finnish noncirrhotic male alcoholics. Alcoholism 1990;14:551–556.

    CAS  Google Scholar 

  44. Gascon-Barré M. Influence of chronic ethanol consumption on the metabolism and action of vitamin D. J Am Coll Nutr 1985;4:565–574.

    Google Scholar 

  45. Persson J, Berg NO, Sjolund K, Stenling R, Magnusson PH. Morphologix changes in the small intestine after chronic alcohol consumption. Scand J Gastroenterol 1990;25:173–184.

    CAS  Google Scholar 

  46. Duane P, Raja KB, Simpson RJ, Peters TJ. Intestinal iron absorption in chronic alcoholics. Alcohol Alcohol 1992;27:539–544.

    CAS  Google Scholar 

  47. Bode C, Bode JC. Effect of alcohol consumption on the gut. Best Pract Res Clin Gastroenterol. 2003;17:575–592.

    CAS  Google Scholar 

  48. Williams GA, Bowser EN, Hargis GK, et al. Effect of ethanol on parathyroid hormone and calcitonin secretion in man. Proc Soc Exp Biol Med 1978;159:187–191.

    CAS  Google Scholar 

  49. Feitelberg S, Epstein S, Ismail F, D’Amanda C. Deranged bone mineral metabolism in chronic alcoholism. Metabolism 1987;36:322–326.

    CAS  Google Scholar 

  50. Bikle DD, Stesin A, Halloran BP, Steinbach L, Recker R. Alcohol-induced bone disease: Relationship to age and parathyroid hormone levels. Alcohol Clin Exp Res 1993;17:690–695.

    CAS  Google Scholar 

  51. Laitinen K, Tahtela R, Luomanmaki K, Välimäki M. Mechanisms of hypocalcemia and markers of bone turnover in alcohol-intoxicated drinkers. Bone Miner 1994;24:171–179.

    CAS  Google Scholar 

  52. Thomas S, Movsowitz C, Epstein S, Jowell P, Ismail F. The response of circulating parameters of bone mineral metabolism to ethanol-and EDTA-induced hypocalcemia in the rat. Bone Miner 1990;8:1–6.

    CAS  Google Scholar 

  53. Jorge-Hernandez JA, Gonzalez-Reimers CE, Torres-Ramirez A, et al. Bone changes in alcoholic liver cirrhosis: A histomorphometrical analysis of 52 cases. Dig Dis Sci 1988;33:1089–1095.

    CAS  Google Scholar 

  54. Inzerillo AM, Zaidi M, Huang CL. Calcitonin: the other thyroid hormone. Thyroid 2002;12:791–798.

    CAS  Google Scholar 

  55. Deftos LJ. Calcitonin. In: Favus MJ, ed. American Society for Bone and Mineral Research’s Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 5th ed. American Society for Bone and Mineral Research, Washington, DC: 2003; pp. 137–141.

    Google Scholar 

  56. May H, Murphy S, Khaw K-T. Alcohol consumption and bone mineral density in older men. Gerontology 1992;41:152–158.

    Google Scholar 

  57. Leino A, Impivaara O, Jarvisalo J, Helenius H. Factors related to risk of osteoporosis in 50-year-old women. Calcif Tissue Int 1991;49(Suppl):S76–S77.

    Google Scholar 

  58. Felson DT, Zhang Y, Hannan MT, Kannel WB, Kiel DP. Alcohol intake and bone mineral density in elderly men and women. The Framingham Study. Am J Epidemiol 1995;142:485–492.

    CAS  Google Scholar 

  59. Ganry O, Baudoin C, Fardellone P. Effect of alcohol intake on bone mineral density in elderly women. The EPIDOS Study. Am J Epidemiol 2000;151:773–780.

    CAS  Google Scholar 

  60. Alekel DL, Peterson CT, Werner RK, Mortillaro E, Ahmed N, Kukreja SC. Frame size, ethnicity, lifestyle, and biologic contributors to areal and volumetric lumbar spine bone mineral density in Indian/Pakistani and American Caucasian premenopausal women. J Clin Densit 2002;5:175–186.

    Google Scholar 

  61. Alekel DL, Mortillaro E, Hussain EA, et al. Lifestyle and biologic contributors to proximal femur bone mineral density and hip axis length in two distinct ethnic groups of premenopausal women. Osteoporos Int 1999;9:327–338.

    CAS  Google Scholar 

  62. Gavaler JS, VanThiel DH. The association between moderate alcoholic beverage consumption and serum estradiol and testosterone levels in normal postmenopausal women: relationship to the literature. Alcohol Clin Exp Res 1992;16:87–92.

    CAS  Google Scholar 

  63. Laitinen K, Lamberg-Allardt C, Tunninen R, Karonen SL, Ylikahri R, Välimäki M. Effects of 3 weeks’ moderate alcohol intake on bone and mineral metabolism in normal men. Bone Miner 1991;13:139–151.

    CAS  Google Scholar 

  64. Hernandez-Avila M, Colditz GA, Stampfer MJ, Rosner B, Speizer FE, Willett WC. Caffeine, moderate alcohol intake, and risk of fractures of the hip and forearm in middle-aged women. Am J Clin Nutr 1991;54:157–163.

    CAS  Google Scholar 

  65. Paganini-Hill A, Ross RK, Gerkins VR, Henderson BE, Arthur M, Mack TM. Menopausal estrogen therapy and hip fractures. Ann Intern Med 1981;95:28–31.

    CAS  Google Scholar 

  66. Laitinen K, Välimäki M. Alcohol and bone. Calcif Tissue Int 1991;49:S70–S73.

    Google Scholar 

  67. Albright F, Smith PH, Richardson AM. Postmenopausal osteoporosis. JAMA 1941;116:2465–2474.

    Google Scholar 

  68. Compston JE. HRT and osteoporosis. Br Med Bull 1992;48:309–344.

    CAS  Google Scholar 

  69. Riggs BL, Melton III LJ. Involutional osteoporosis. N Engl J Med 1986;314:1676–1686.

    CAS  Google Scholar 

  70. Aloia JF, Vaswani A, Ellis K, Yuen K, Cohn SH. A model for involutional bone loss. J Lab Clin Invest 1985;106:630–637.

    CAS  Google Scholar 

  71. Hui SL, Slemenda CW, Johnston CC, Appledorn CR. Effects of age and menopause on vertebral bone density. Bone Miner 1987;2:141–146.

    CAS  Google Scholar 

  72. Nilas L, Christiansen C. Rates of bone loss in normal women: Evidence of accelerated trabecular bone loss after the menopause. Eur J Clin Invest 1988;18:529–534.

    CAS  Google Scholar 

  73. Genant HK, Cann CE, Ettinger B, Gilbert SG. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 1982;97:699–705.

    CAS  Google Scholar 

  74. Sowers MFR, Clark MK, Wallace RB, Jannausch ML, Lemke J. Prospective study of radial bone mineral density in a geographically defined population of postmenopausal Caucasian women. Calcif Tissue Int 1991;48:232–239.

    CAS  Google Scholar 

  75. Riggs BL, Wahner HW, Seeman E, et al. Changes in bone mineral density of the proximal femur and spine with age. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 1982;70:716–723.

    CAS  Google Scholar 

  76. Pun KK, Wong FHW, Loh T. Rapid postmenopausal loss of total body and regional bone mass in normal southern Chinese females in Hong Kong. Osteoporosis Int 1991;1:87–94.

    CAS  Google Scholar 

  77. Riggs BL, Khosla S, Melton LJ III. A unitary model for involutional osteoporosis: Estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 1998;13:763–773.

    CAS  Google Scholar 

  78. Ginsburg J. What determines age at menopause? Br Med J 1991;302:1288–1289.

    Google Scholar 

  79. Khaw K-T. The menopause and hormone replacement therapy. Postgrad Med J 1992;68:615–623.

    CAS  Google Scholar 

  80. Komulainen M, Kroger H, Tuppurainen MT, et al. Prevention of femoral and lumbar bone loss with hormone replacement therapy and vitamin D3 in early postmenopausal women: a population-based 5-year randomized trial. J Clin Endocrinol Metab 1999;84:546–552.

    CAS  Google Scholar 

  81. Cauley JA, Seeley DG, Ensrud K, Ettinger B, Black D, Cummings SR. Estrogen replacement therapy and fractures in older women. Study of Osteoporotic Fractures Research Group. Ann Intern Med 1995;122:9–16.

    CAS  Google Scholar 

  82. Manolagas SC, Jilka RL. Mechanisms of disease: bone marrow, cytokines, and bone remodeling: Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995;332:305–311.

    CAS  Google Scholar 

  83. Collaborative Group on Hormonal Factors in Breast Cancer (CGHFBC). Breast cancer and hormone replacement therapy: Collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 without breast cancer. Lancet 1997;350:1047–1059.

    Google Scholar 

  84. Beresford SAA, Weiss NS, McKnight B. Risk of endometrial cancer in relation to use of oestrogen combined with cyclic progestagen therapy in postmenopausal women. Lancet 1997;349:458–461.

    CAS  Google Scholar 

  85. Scharbo-DeHaan M. Hormone replacement therapy. Nurse Pract 1996;21(12 Pt 2):1–13.

    CAS  Google Scholar 

  86. McNagny SE. Prescribing hormone replacement therapy for menopausal symptoms. Ann Intern Med 1999;131:605–616.

    CAS  Google Scholar 

  87. Bush TL. Preserving cardiovascular benefits of hormone replacement therapy. J Reprod Med 2000;45(Suppl 3):259–273.

    CAS  Google Scholar 

  88. Eastell R. Treatment of postmenopausal osteoporosis. N Engl J Med 1998;338:736–746.

    CAS  Google Scholar 

  89. Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002;288:321–333.

    Google Scholar 

  90. Kessel B. Alternatives to estrogen for menopausal women. Proc Soc Exp Biol Med 1998;217:38–44.

    CAS  Google Scholar 

  91. Cauley JA, Robbins J, Chen Z, et al., Women’s Health Initiative Investigators. Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA. 2003;290:1729–1738.

    CAS  Google Scholar 

  92. Groeneveld FP, Bareman FP, Barentsen R, Dokter HJ, Drogendijk AC, Hoes AW. Duration of hormonal replacement therapy in general practice: a follow-up study. Maturitas 1998;29:125–131.

    CAS  Google Scholar 

  93. Nieves JW, Komar L, Cosman F, Lindsay R. Calcium potentiates the effect of estrogen and calcitonin on bone mass: review and analysis. Am J Clin Nutr 1998;67:18–24.

    CAS  Google Scholar 

  94. Schneider DL, Barrett-Connor EL, Morton DJ. Timing of postmenopausal estrogen for optimal bone mineral density. The Rancho Bernardo Study. JAMA 1997;277:543–547.

    CAS  Google Scholar 

  95. Heaney RP, Recker RR, Saville PD. Menopausal changes in bone remodeling. J Lab Clin Med 1978;92:964–970.

    CAS  Google Scholar 

  96. Heaney RP, Recker RR, Saville PD. Menopausal changes in calcium balance performance. J Lab Clin Med 1978;92:953–963.

    CAS  Google Scholar 

  97. Nordin BE, Need AG, Morris HA, Horowitz M, Robertson WG. Evidence for a renal calcium leak in postmenopausal women. J Clin Endocrinol Metab 1991;72:401–407.

    CAS  Google Scholar 

  98. Riis BJ. Biochemical markers of bone turnover in diagnosis and assessment of therapy. Am J Med 1991;91(Suppl5B):64S–68S.

    CAS  Google Scholar 

  99. Delmas PD. Biochemical markers of bone turnover: methodology and clinical use in osteoporosis. Am J Med 1991;91(5B):59S–63S.

    CAS  Google Scholar 

  100. Aloia JF, Vaswani A, Yeh JK, McGowan DM, Ross P. Biochemical short-term changes produced by hormonal replacement therapy. J Endocrinol Invest 1991;14:927–934.

    CAS  Google Scholar 

  101. El-Hajj Fuleihan G, Brown EM, Curtis K, et al. Effect of sequential and daily continuous hormone replacement therapy on indexes of mineral metabolism. Arch Intern Med 1992;152:1904–1909.

    Google Scholar 

  102. Marshall RW, Selby PL, Chilvers DC, Hodgkinson A. The effect of ethinyl oestradiol on calcium and bone metabolism in peri-and postmenopausal women. Horm Metab Res 1984;16:97–99.

    CAS  Google Scholar 

  103. Itoi H, Minakami H, Sato I. Comparison of the long-term effects of oral estriol with the effects of conjugated estrogen, 1-á-hydroxyvitamin D3 and calcium lactate on vertebral bone loss in early menopausal women. Maturitas 1997;28:11–17.

    CAS  Google Scholar 

  104. Overgaard K, Hansen MA, Jensen SB, Christiansen C. Effect of calcitonin given intranasally on bone mass and fracture rates in established osteoporosis: a dose response study. Br Med J 1992;305:556–561.

    CAS  Google Scholar 

  105. Gur A, Colpan L, Nas K, et al. The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and a new effect of calcitonin. J Bone Miner Metab 2002;20:39–43.

    CAS  Google Scholar 

  106. Thamsborg G. Effect of nasal salmon calcitonin on calcium and bone metabolism. Dan Med Bull 1999;46:118–126.

    CAS  Google Scholar 

  107. Silverman SL. Calcitonin. Rheum Dis Clin North Am 2001;27:187–196.

    CAS  Google Scholar 

  108. Pontiroli AE, Pajetta E, Scaglia L, Rubinacci et al. Analgesic effect of intranasal and intramuscular salmon calcitonin in post-menopausal osteoporosis: a double-blind, double-placebo study. Aging Clin Exp Res 1994;6:459–463.

    CAS  Google Scholar 

  109. Gur A, Denli A, Cevik R, Nas K, Karakoc M, Sarac AJ. The effects of alendronate and calcitonin on cytokines in postmenopausal osteoporosis: a 6-month randomized and controlled study. Yonsei Med J 2003;44:99–109.

    CAS  Google Scholar 

  110. Gowen M, Meikle MC, Reynolds JJ. Stimulation of bone resorption in vitro by a non-prostanoid factor released by human monocytes in culture. Biochim Biophy Acta 1983;762:471–474.

    CAS  Google Scholar 

  111. Gowen M, Mundy GR. Actions of recombinant interleukin 1, interleukin 2, and interferon-ãa on bone resorption in vitro. J Immunol 1986;136:2478–2482.

    CAS  Google Scholar 

  112. Pfeilschifter J, Chen U, Bird A, Mundy GR, Roodman GD. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclast-like cells in vitro. J Bone Miner Res 1989;4:113–118.

    CAS  Google Scholar 

  113. Thomson BM, Saklatvala J, Chambers TJ. Osteoblasts mediate interleukin-1 stimulation of bone resorption by rat osteoclasts. J Exp Med 1986;164:104–112.

    CAS  Google Scholar 

  114. Black K, Mundy GR, Garrett IR. Interleukin-6 causes hypercalcemia in vivo and enhances the bone resorbing potency of interleukin-1 and tumor necrosis factors by two orders of magnitude in vitro. J Bone Miner Res 1990;5(Suppl 2):Abstract 787.

    Google Scholar 

  115. Girasole G, Jilka RL, Passeri G, et al. 17-â estradiol inhibits interleukin-6 production by bone marrowderived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest 1992;89:883–891.

    CAS  Google Scholar 

  116. Nanes MS. Tumor necrosis factor-alpha: Molecular and cellular mechanisms in skeletal pathology. Gene 2003;321:1–15.

    CAS  Google Scholar 

  117. Weisinger JR, Alonzo E, Bellorin-Font E, et al. Possible role of cytokines on the bone mineral loss in idiopathic hypercalciuria. Kidney Int 1996;49:244–250.

    CAS  Google Scholar 

  118. Rogers A, Eastell R. Effects of estrogen therapy of postmenopausal women on cytokines measured in peripheral blood. J Bone Miner Res 1998;13:1577–86.

    CAS  Google Scholar 

  119. Adami S, Gatti D, Bertoldo F, et al. The effects of menopause and estrogen replacement therapy on the renal handling of calcium. Osteoporos Int 1992;2:180–185.

    CAS  Google Scholar 

  120. McKane WR, Khosla S, Burritt MF, et al. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause-a clinical research center study. J Clin Endocrinol Metab 1995;80:3458–3464.

    CAS  Google Scholar 

  121. Orr-Walker BJ, Horne AM, Evans MC, et al. Hormone replacement therapy causes a respiratory alkalosis in normal postmenopausal women. J Clin Endocrinol Metab 1999;84:1997–2001.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Alekel, D.L., Matvienko, O. (2006). Influence of Lifestyle Choices on Calcium Homeostasis. In: Weaver, C.M., Heaney, R.P. (eds) Calcium in Human Health. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-59259-961-5_13

Download citation

Publish with us

Policies and ethics