Skip to main content

The Calcium Economy

  • Chapter
Book cover Calcium in Human Health

Part of the book series: Nutrition and Health ((NH))

Abstract

Calcium is the fifth most abundant element in the biosphere (after iron, aluminum, silicon, and oxygen). It is the stuff of limestone and marble, coral and pearls, seashells and eggshells, antlers and bones. Because calcium salts exhibit intermediate solubility, calcium is found both in solid form (rocks) and in solution. It was probably present in abundance in the watery environment in which life first appeared. Today, seawater contains approx10 mmol calcium per liter (approximately eight times higher than the calcium concentration in the extracellular water of higher vertebrates). Even fresh waters, if they support an abundant biota, typically contain calcium at concentrations of 1–2 mmol (in the range of vertebrate extracellular fluid [ECF] calcium levels). In most soils, calcium exists as an exchangeable cation in the soil colloids. It is taken up by plants, whose parts typically contain from 0.1 to as much as 8% calcium. Generally, calcium concentrations are highest in the leaves, lower in the stems and roots, and lowest in the seeds (a fact that has important consequences for the shift to seed-based foods at the time of the agricultural revolution).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klesges RC, Ward KD, Shelton ML, et al. Changes in bone mineral content in male athletes. JAMA 1996;276:226–230.

    Article  CAS  Google Scholar 

  2. Itoh R, Suyama Y. Sodium excretion in relation to calcium and hydroxyproline excretion in a healthy Japanese population. Am J Clin Nutr 1996;63:735–740.

    CAS  Google Scholar 

  3. Nordin BEC, Need AG, Morris HA, Horowitz M. The nature and significance of the relationship between urinary sodium and urinary calcium in women. J Nutr 1993;123:1615–1622.

    CAS  Google Scholar 

  4. Arnaud CD. Calcium homeostasis: regulatory elements and their integration. Fed Proc 1978;37:2557–2560.

    CAS  Google Scholar 

  5. Heaney RP. Recker RR. Determinants of endogenous fecal calcium in healthy women. J Bone Miner Res 1994;9:1621–1627.

    CAS  Google Scholar 

  6. Davies KM, Rafferty K, Heaney RP. Determinants of endogenous calcium entry into the gut. Am J Clin Nutr 2004;80:919–923.

    CAS  Google Scholar 

  7. Coluccio LM. Identification of the microvillar 110-kDa calmodulin complex (myosin-1) in kidney. Eur J Cell Biol 1991;56:286–294.

    CAS  Google Scholar 

  8. Heaney RP, Recker RR, Ryan RA. Urinary calcium in perimenopausal women: normative values. Osteoporos Int 1999;9:13–18.

    Article  CAS  Google Scholar 

  9. Heaney RP, Recker RR, Stegman MR, Moy AJ. Calcium absorption in women: relationships to calcium intake, estrogen status, and age. J Bone Miner Res 1989;4:469–475.

    CAS  Google Scholar 

  10. Heaney RP, Weaver CM, Fitzsimmons ML. The influence of calcium load on absorption fraction. J Bone Miner Res 1990;11(5):1135–1138.

    Google Scholar 

  11. Heaney RP, Saville PD, Recker RR. Calcium absorption as a function of calcium intake. J Lab Clin Med 1975;85:881–890.

    CAS  Google Scholar 

  12. Heaney RP, Berner B, Louie-Helm J. Dosing regimen for calcium supplementation. J Bone Miner Res 2000;15(11):2291.

    Article  CAS  Google Scholar 

  13. Wastney ME, Martin BR, Peacock M, et al. Changes in calcium kinetics in adolescent girls induced by high calcium intake. J Clin Endocrinol Metab 2000;85:4470–4475.

    Article  CAS  Google Scholar 

  14. Parfitt AM. Misconceptions (3): calcium leaves bone only by resorption and enters only by formation. Bone 2003;33:259–263.

    Article  CAS  Google Scholar 

  15. Heaney RP. A unified concept of osteoporosis. Am J Med 1965;39:877–880.

    Article  CAS  Google Scholar 

  16. Bell NH, Greene A, Epstein S, Oexmann MJ, Shaw S, Shary J. Evidence for alteration of the vitamin D-endocrine system in blacks. J Clin Invest 1985;76:470–473.

    CAS  Google Scholar 

  17. Aloia JF, Mikhail M, Pagan CD, Arunachalam A, Yeh JK, Flaster E. Biochemical and hormonal variables in black and white women matched for age and weight. J Lab Clin Med 1998;132:383–389.

    Article  CAS  Google Scholar 

  18. Cosman F, Shen V, Morgan D, et al. Biochemical responses of bone metabolism to 1,25-dihydroxyvitamin D administration in black and white women. Osteoporos Int 2000;11:271–277.

    Article  CAS  Google Scholar 

  19. Heaney RP. Ethnicity, bone status, and the calcium requirement. Nutr Res 2002;22(1–2):153–178.

    Article  CAS  Google Scholar 

  20. NIH Consensus Conference: Optimal Calcium Intake. J Am Med Assoc 1994;272:1942–1948.

    Google Scholar 

  21. Dietary Reference Intakes for Calcium, Magnesium, Phosphorus, Vitamin D, and Fluoride. Food and Nutrition Board, Institute of Medicine. National Academy Press, Washington, DC: 1997

    Google Scholar 

  22. Matkovic V, Jelic T, Wardlaw GM, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. J Clin Invest 1994;93:799–808.

    CAS  Google Scholar 

  23. Ribot C, Tremollieres F, Pouilles JM, Bonneu M, Germain F, Louvet JP. Obesity and postmenopausal bone loss: the influence of obesity on vertebral density and bone turnover in postmenopausal women. Bone 1988;8:327–331.

    Article  Google Scholar 

  24. Carroll MD, Abraham S, Dresser CM. Dietary intake source data: United States, 1976–80, Vital and Health Statistics. Series 11-No. 231. DHHS Pub. No. (PHS) 83-1681. National Center for Health Statistics, Public Health Service. Washington. U.S. Government Printing Office, 1983.

    Google Scholar 

  25. O’Brien KO, Abrams SA, Liang LK, Ellis KJ, Gagel RF. Increased efficiency of calcium absorption during short periods of inadequate calcium intake in girls. Am J Clin Nutr 1996;63:579–583.

    CAS  Google Scholar 

  26. Nordin BEC, Need AG, Morris HA, Horowitz M. Biochemical variables in pre-and postmenopausal women: reconciling the calcium and estrogen hypotheses. Osteoporos Int 1999;9:351–357.

    Article  CAS  Google Scholar 

  27. McKenna MJ, Freaney R, Meade A, Muldowney FP. Hypovitaminosis D and elevated serum alkaline phosphatase in elderly Irish people. Am J Clin Nutr 1985;41:101–109.

    CAS  Google Scholar 

  28. Francis RM, Peacock M, Storer JH, Davies AEJ, Brown WB, Nordin BEC. Calcium malaborption in the elderly: the effect of treatment with oral 25-hydroxyvitamin D3. European J Clin Invest 1983;13,391–396.

    Article  CAS  Google Scholar 

  29. McKane WR, Khosla S, Egan KS, Robins SP, Burritt MF, Riggs BL. Role of calcium intake in modulating age-related increases in parathyroid function and bone resorption. J Clin Endocrinol Metab 1996;81:1699–1703.

    Article  CAS  Google Scholar 

  30. Gilsanz V, Gibbens DT, Roe TF, et al. Vertebral bone density in children: effect of puberty. Radiology 1988;166:847–850.

    CAS  Google Scholar 

  31. Genant HK, Cann CF, Ettinger B, et al. Quantitative computed tomography for spinal mineral assessment. In: Christiansen, C. et al., eds. Osteoporosis. Glostrup Hospital, Department of Chemistry, Copenhagen, Denmark: 1984; pp. 65–72.

    Google Scholar 

  32. Heaney RP. The bone remodeling transient: implications for the interpretation of clinical studies of bone mass change. J Bone Miner Res 1994;9:1515–1523.

    Article  CAS  Google Scholar 

  33. Nieves JW, Komar L, Cosman F, Lindsay R. Calcium potentiates the effect of estrogen and calcitonin on bone mass: review and analysis. Am J Clin Nutr 1998;67:18–24.

    CAS  Google Scholar 

  34. Dawson-Hughes B, Stem DT, Shipp CC, Rasmussen HM. Effect of lowering dietary calcium intake on fractional whole body calcium retention. J Clin Endocrinol Metab 1988;67:62–68.

    Article  CAS  Google Scholar 

  35. Heaney RP, Barger-Lux MJ, Dowell MS, Chen TC, Holick MF. Calcium absorptive effects of vitamin D and its major metabolites. J Clin Endocrinol Metab 1997;82:4111–4116.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Heaney, R.P. (2006). The Calcium Economy. In: Weaver, C.M., Heaney, R.P. (eds) Calcium in Human Health. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-59259-961-5_10

Download citation

Publish with us

Policies and ethics