Skip to main content
  • 792 Accesses

Abstract

Asthma is the most common chronic disease of childhood, affecting an estimated 155 million individuals in the world. The cost of treating the disease in the United States is approx $6 billion dollars per annum (1). More than half of this expense is spent on hospital care and 80% is attributable to the 20% of patients who require the most treatment (1). The market to the pharmaceutical industry for asthma medication is $5.5 billion per annum (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith DH, Malone DC, Lawson KA, Okamoto LJ, Battista C, Saunders WB. A national estimate of the economic costs of asthma. Am J Respir Crit Care Med 1997;156:787–793.

    PubMed  CAS  Google Scholar 

  2. Stuart M. Start-Up 1999;12–20.

    Google Scholar 

  3. Sampson HA. Pathogenesis of eczema. Clin Exp Allergy 1990;20:459–467.

    PubMed  CAS  Google Scholar 

  4. Schultz Larsen F. Atopic dermatitis: a genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol 1993;28:719–723.

    PubMed  CAS  Google Scholar 

  5. Cox HE, Moffatt MF, Faux JA, et al. Association of atopic dermatitis to the beta subunit of the high affinity immunoglobulin E receptor. Br J Dermatol 1998;138:182–187.

    PubMed  CAS  Google Scholar 

  6. Holt PG, Macaubas C, Stumbles PA, Sly PD. The role of allergy in the development of asthma. Nature 1999;402(6760 Suppl):B12–B17.

    PubMed  CAS  Google Scholar 

  7. Bos J. Immunology of atopic dermatitis. Oxford: Blackwell Science, 2000.

    Google Scholar 

  8. Duffy DL, Martin NG, Battistutta D, Hopper JL, Mathews JD. Genetics of asthma and hay fever in Australian twins. Am Rev Respir Dis 1990;142:1351–1358.

    PubMed  CAS  Google Scholar 

  9. Larsen FS, Holm NV, Henningsen K. Atopic dermatitis. Agenetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol 1986;15:487–494.

    PubMed  CAS  Google Scholar 

  10. Boushey HA, Holtzman MJ, Sheller JR, Nadel JA. Bronchial hyperreactivity. Am Rev Respir Dis 1980; 121:389–413.

    PubMed  CAS  Google Scholar 

  11. O’Connor G, Sparrow D, Taylor D, Segal M, Weiss S. Analysis of dose-response curves to methacholine. An approach suitable for population studies. Am Rev Respir Dis 1987;136:1412–1417.

    PubMed  CAS  Google Scholar 

  12. Cookson W, Palmer L. Investigating the asthma phenotype. Clin Exp Allergy 1998;28(Suppl 1): 88–89; discussion 108–110.

    PubMed  Google Scholar 

  13. Risch N, Zhang H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science 1995;268:1584–1589.

    PubMed  CAS  Google Scholar 

  14. O’Connor GT, Weiss ST. Clinical and symptom measures. Am J Respir Crit Care Med 1994;149: S21–S28.

    PubMed  CAS  Google Scholar 

  15. Postma DS, Bleecker ER, Amelung PJ, et al. Genetic susceptibility to asthma-bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl J Med 1995;333:894–900.

    PubMed  CAS  Google Scholar 

  16. Ober C, Cox NJ, Abney M, et al. Genome-wide search for asthma susceptibility loci in a founder population. The collaborative study on the genetics of asthma. Hum Mol Genet 1998;7:1393–1398.

    PubMed  CAS  Google Scholar 

  17. Van Eerdewegh P, Little RD, Dupuis J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002;418:426–430.

    PubMed  Google Scholar 

  18. Peat JK, Salome CM, Bauman A, Toelle BG, Wachinger SL, Woolcock AJ. Repeatability of histamine bronchial challenge and comparability with methacholine bronchial challenge in a population of Australian school children. Am Rev Respir Dis 1991;144:338–343.

    PubMed  CAS  Google Scholar 

  19. Sears MR, Burrows B, Flannery EM, Herbison GP, Hewitt CJ, Holdaway MD. Relation between airway responsiveness and serum IgE in children with asthma and in apparently normal children. N Engl J Med 1991;325: 1067–1071.

    PubMed  CAS  Google Scholar 

  20. Plaschke P, Bake B. Pronounced bronchial hyper-responsiveness and asthma severity. Clin Physiol 1994; 14:197–203.

    PubMed  CAS  Google Scholar 

  21. Cookson WO, Hopkin JM. Dominant inheritance of atopic immunoglobulin-E responsiveness. Lancet 1988; 1:86–88.

    PubMed  CAS  Google Scholar 

  22. Daniels SE, Bhattacharrya S, James A, et al. Agenome-wide search for quantitative trait loci underlying asthma. Nature 1996;383:247–250.

    PubMed  CAS  Google Scholar 

  23. Palmer LJ, Burton PR, Faux JA, James AL, Musk AW, Cookson WO. Independent inheritance of serum immunoglobulin E concentrations and airway responsiveness. Am J Respir Crit Care Med 2000;161:1836–1843.

    PubMed  CAS  Google Scholar 

  24. Cookson WO, Sharp PA, Faux JA, Hopkin JM. Linkage between immunoglobulin E responses underlying asthma and rhinitis and chromosome 11q. Lancet 1989;1:1292–1295.

    PubMed  CAS  Google Scholar 

  25. Goring HH, Terwilliger JD. Linkage analysis in the presence of errors II: marker-locus genotyping errors modeled with hypercomplex recombination fractions. Am J Hum Genet 2000;66:1107–1118.

    PubMed  CAS  Google Scholar 

  26. Abecasis GR, Cherny SS, Cardon LR. The impact of genotyping error on family-based analysis of quantitative traits. Eur J Hum Genet 2001;9:130–134.

    PubMed  CAS  Google Scholar 

  27. Abecasis GR, Cherny SS, Cookson WO, Cardon LR. GRR: graphical representation of relationship errors. Bioinformatics 2001;17:742–743.

    PubMed  CAS  Google Scholar 

  28. Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002;30:97–101.

    PubMed  CAS  Google Scholar 

  29. Moffatt M, Cookson W. The genetics of asthma. Maternal effects in atopic disease. Clin Exp Allergy 1998;28(Suppl 1):56–61; discussion 65, 66.

    PubMed  Google Scholar 

  30. Bennett S, Todd J. Human type 1 diabetes and the insulin gene: principles of mapping polygenes. Annu Rev Genet 1996;30:343–370.

    PubMed  CAS  Google Scholar 

  31. Warram JH, Krolewski AS, Gottlieb MS, Kahn CR. Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. N Engl J Med 1984;311:149–152.

    PubMed  CAS  Google Scholar 

  32. Koumantaki Y, Giziaki E, Linos A, et al. Family history as a risk factor for rheumatoid arthritis: a case-control study. J Rheumatol 1997;24:1522–1526.

    PubMed  CAS  Google Scholar 

  33. Burden A, Javed S, Bailey M, Hodgins M, Connor M, Tillman D. Genetics of psoriasis: paternal inheritance and a locus on chromosome 6p [see comments]. J Invest Dermatol 1998;110:958–960.

    PubMed  CAS  Google Scholar 

  34. Akolkar PN, Gulwani-Akolkar B, Heresbach D, et al. Differences in risk of Crohn’s disease in offspring of mothers and fathers with inflammatory bowel disease. Am J Gastroenterol 1997;92:2241–2244.

    PubMed  CAS  Google Scholar 

  35. Vorechovsky I, Webster AD, Plebani A, Hammarstrom L. Genetic linkage of IgA deficiency to the major histocompatibility complex: evidence for allele segregation distortion, parent-of-origin penetrance differences, and the role of anti-IgA antibodies in disease predisposition. Am J Hum Genet 1999;64:1096–1109.

    PubMed  CAS  Google Scholar 

  36. Abecasis GR, Cardon LR, Cookson WO. A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000;66:279–292.

    PubMed  CAS  Google Scholar 

  37. Hall JG. Genomic imprinting. Arch Dis Child 1990;65:1013–1016.

    PubMed  CAS  Google Scholar 

  38. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001;2: 21–32.

    PubMed  CAS  Google Scholar 

  39. Cookson WO, Young RP, Sandford AJ, et al. Maternal inheritance of atopic IgE responsiveness on chromosome 11q. Lancet 1992;340:381–384.

    PubMed  CAS  Google Scholar 

  40. Cookson WO, Ubhi B, Lawrence R, et al. Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci. Nat Genet 2001;27:372–373.

    PubMed  CAS  Google Scholar 

  41. Xu J, Meyers DA, Ober C, et al. Genomewide screen and identification of gene-gene interactions for asthma-susceptibility loci in three U.S. populations: collaborative study on the genetics of asthma. Am J Hum Genet 2001;68:1437–1446.

    PubMed  CAS  Google Scholar 

  42. Ober C, Tsalenko A, Parry R, Cox NJ. A second-generation genomewide screen for asthma-susceptibility alleles in a founder population. Am J Hum Genet 2000;67:1154–1162.

    PubMed  CAS  Google Scholar 

  43. Wjst M, Fischer G, Immervoll T, et al. A genome-wide search for linkage to asthma. German Asthma Genetics Group. Genomics 1999;58:1–8.

    PubMed  CAS  Google Scholar 

  44. Hizawa N, Freidhoff L, Chiu Y, et al. Genetic regulation of Dermatophagoides pteronyssinus-specific IgE responsiveness: a genome-wide multipoint linkage analysis in families recruited through 2 asthmatic sibs. Collaborative study on the genetics of asthma (CSGA). J Allergy Clin Immunol 1998;102:436–442.

    PubMed  CAS  Google Scholar 

  45. Mathias RA, Freidhoff LR, Blumenthal MN, et al. Genome-wide linkage analyses of total serum IgE using variance components analysis in asthmatic families. Genet Epidemiol 2001;20:340–355.

    PubMed  CAS  Google Scholar 

  46. Dizier MH, Besse-Schmittler C, Guilloud-Bataille M, et al. Genome screen for asthma and related phenotypes in the French EGEA study. Am J Respir Crit Care Med 2000;162:1812–1818.

    PubMed  CAS  Google Scholar 

  47. Laitinen T, Daly MJ, Rioux JD, et al. A susceptibility locus for asthma-related traits on chromosome 7 revealed by genome-wide scan in a founder population. Nat Genet 2001;28:87–91.

    PubMed  CAS  Google Scholar 

  48. Hakonarson H, Bjornsdottir US, Halapi E, et al. A major susceptibility gene for asthma maps to chromosome 14q24. Am J Hum Genet 2002;71:483–491.

    PubMed  CAS  Google Scholar 

  49. Koppelman GH, Stine OC, Xu J, et al. Genome-wide search for atopy susceptibility genes in Dutch families with asthma. J Allergy Clin Immunol 2002;109:498–506.

    PubMed  CAS  Google Scholar 

  50. Haagerup A, Bjerke T, Schiotz PO, Binderup HG, Dahl R, Kruse TA. Asthma and atopy-a total genome scan for susceptibility genes. Allergy 2002;57:680–686.

    PubMed  CAS  Google Scholar 

  51. Moffatt MF, Hill MR, Cornelis F, et al. Genetic linkage of T cell receptor a/d complex to specific IgE responses. Lancet 1994;343:1597–1600.

    PubMed  CAS  Google Scholar 

  52. Marsh DG, Neely JD, Breazeale DR, et al. Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science 1994;264:1152–1156.

    PubMed  CAS  Google Scholar 

  53. Barnes KC, Neely JD, Duffy DL, et al. Linkage of asthma and total serum IgE concentration to markers on chromosome 12q: evidence from Afro-Caribbean and Caucasian populations. Genomics 1996;37:41–50.

    PubMed  CAS  Google Scholar 

  54. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995;11:241–247.

    PubMed  CAS  Google Scholar 

  55. Libert F, Cochaux P, Beckman G, et al. The deltaccr5 mutation conferring protection against HIV-1 in Caucasian populations has a single and recent origin in Northeastern Europe. Hum Mol Genet 1998;7:399–406.

    PubMed  CAS  Google Scholar 

  56. Suarez BK, Hampe CL, Van Eerdewegh P. Problems of replicating linkage claims in psychiatry. In: Gershorn ES, Cloninger CR, eds. Genetic approaches to mental disorders. Washington, DC: American Psychiatric, 1994:23–46.

    Google Scholar 

  57. Levine BB, Stember RH, Fontino M. Ragweed hayfever: genetic control and linkage to HLA haplotyes. Science 1972;178:1201–1203.

    PubMed  CAS  Google Scholar 

  58. Marsh DG, Meyers DA, Bias WB. The epidemiology and genetics of atopic allergy. N Engl J Med 1981; 305:1551–1559.

    PubMed  CAS  Google Scholar 

  59. Young RP, Dekker JW, Wordsworth BP, Cookson WO. HLA-DR and HLA-DP genotypes and immunoglobulin E responses to common major allergens. Clin Exp Allergy 1994;24:431–439.

    PubMed  CAS  Google Scholar 

  60. Moffatt MF, Schou C, Faux JA, et al. Association between quantitative traits underlying asthma and the HLA-DRB1 locus in a family-based population sample. Eur J Hum Genet 2001;9:341–346.

    PubMed  CAS  Google Scholar 

  61. Dekker JW, Nizankowska E, Schmitz-Schumann M, et al. Aspirin-induced asthma and HLA-DRB1 and HLA-DPB1 genotypes. Clin Exp Allergy 1997;27:574–577.

    PubMed  CAS  Google Scholar 

  62. Young RP, Barker RD, Pile KD, Cookson WO, Taylor AJ. The association of HLA-DR3 with specific IgE to inhaled acid anhydrides. Am J Respir Crit Care Med 1995;151:219–221.

    PubMed  CAS  Google Scholar 

  63. Moffatt MF, Schou C, Faux JA, Cookson WO. Germline TCR-A restriction of immunoglobulin E responses to allergen. Immunogenetics 1997;46: 226–230.

    PubMed  CAS  Google Scholar 

  64. Moffatt MF, Cookson WO. Tumour necrosis factor haplotypes and asthma. Hum Mol Genet 1997;6: 551–554.

    PubMed  CAS  Google Scholar 

  65. Albuquerque RV, Hayden CM, Palmer LJ, et al. Association of polymorphisms within the tumour necrosis factor (TNF) genes and childhood asthma. Clin Exp Allergy 1998;28:578–584.

    PubMed  CAS  Google Scholar 

  66. Chagani T, Pare PD, Zhu S, et al. Prevalence of tumor necrosis factor-alpha and angiotensin converting enzyme polymorphisms in mild/moderate and fatal/near-fatal asthma. Am J Respir Crit Care Med 1999;160:278–282.

    PubMed  CAS  Google Scholar 

  67. Li Kam Wa TC, Mansur AH, Britton J, et al. Association between-308 tumour necrosis factor promoter polymorphism and bronchial hyperreactivity in asthma. Clin Exp Allergy 1999;29:1204–1208.

    PubMed  CAS  Google Scholar 

  68. Noguchi E, Yokouchi Y, Shibasaki M, et al. Association between TNFA polymorphism and the development of asthma in the Japanese population. Am J Respir Crit Care Med 2002;166:43–46.

    PubMed  Google Scholar 

  69. Witte JS, Palmer LJ, O’Connor RD, Hopkins PJ, Hall JM. Relation between tumour necrosis factor polymorphism TNFalpha-308 and risk of asthma. Eur J Hum Genet 2002;10:82–85.

    PubMed  CAS  Google Scholar 

  70. Winchester EC, Millwood IY, Rand L, Penny MA, Kessling AM. Association of the TNF-alpha-308 (G→A) polymorphism with self-reported history of childhood asthma. Hum Genet 2000;107:591–596.

    PubMed  CAS  Google Scholar 

  71. Sandford AJ, Shirakawa T, Moffatt MF, et al. Localisation of atopy and beta subunit of high-affinity IgE receptor (Fc epsilon RI) on chromosome 11q. Lancet 1993;341:332–334.

    PubMed  CAS  Google Scholar 

  72. Shirakawa T, Mao XQ, Sasaki S, et al. Association between atopic asthma and a coding variant of Fc epsilon RI beta in a Japanese population. Hum Mol Genet 1996;5:1129, 1130.

    PubMed  Google Scholar 

  73. Hill MR, James AL, Faux JA, et al. Fc epsilon RI-beta polymorphism and risk of atopy in a general population sample. Br Med J 1995;311:776–779.

    CAS  Google Scholar 

  74. van Herwerden L, Harrap SB, Wong ZY, et al. Linkage of high-affinity IgE receptor gene with bronchial hyperreactivity, even in absence of atopy. Lancet 1995;346:1262–1265.

    PubMed  Google Scholar 

  75. Lin S, Cicala C, Scharenberg A, Kinet J. The Fc(epsilon)RIbeta subunit functions as an amplifier of Fc(epsilon)RIgamma-mediated cell activation signals. Cell 1996;85:985–995.

    PubMed  CAS  Google Scholar 

  76. Turner H, Kinet JP. Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 1999; 402(6760 Suppl):B24–B30.

    PubMed  CAS  Google Scholar 

  77. Donnadieu E, Cookson WO, Jouvin MH, Kinet JP. Allergy-associated polymorphisms of the FcɛaRIβ subunit do not impact its two amplification functions. J Immunol 2000;165:3917–3922.

    PubMed  CAS  Google Scholar 

  78. Eiberg H, Lind P, Mohr J, Nielsen LS. Linkage relationship between the human immunoglobulin E polymorphism and marker systems. Cytogenet Cell Genet 1985;40:622.

    Google Scholar 

  79. Wiltshire S, Bhattacharyya S, Faux JA, et al. A genome scan for loci influencing total serum immunoglobulin levels: possible linkage of IgA to the chromosome 13 atopy locus. Hum Mol Genet 1998;7:27–31.

    PubMed  CAS  Google Scholar 

  80. Anderson GG, Leaves NI, Bhattacharyya S, et al. Positive association to IgE levels and a physical map of the 13q14 atopy locus. Eur J Hum Genet 2002;10:266–270.

    PubMed  CAS  Google Scholar 

  81. Oscier DG. Cytogenetic and molecular abnormalities in chronic lymphocytic leukaemia. Blood Rev 1994; 8:88–97.

    PubMed  CAS  Google Scholar 

  82. Kalachikov S, Migliazza A, Cayanis E, et al. Cloning and gene mapping of the chromosome 13q14 region deleted in chronic lymphocytic leukemia. Genomics 1997;42:369–377.

    PubMed  CAS  Google Scholar 

  83. Mabuchi H, Fujii H, Calin G, et al. Cloning and characterization of CLLD6, CLLD7, and CLLD8, novel candidate genes for leukemogenesis at chromosome 13q14, a region commonly deleted in B-cell chronic lymphocytic leukemia. Cancer Res 2001;61:2870–2877.

    PubMed  CAS  Google Scholar 

  84. Rosenwasser L, Klemm D, Dresback J, et al. Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy. Clin Exp Allergy 1995;25(Suppl 2): 74–78; discussion 95, 96.

    PubMed  Google Scholar 

  85. Graves PE, Kabesch M, Halonen M, et al. Acluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J Allergy Clin Immunol 2000; 105:506–513.

    PubMed  CAS  Google Scholar 

  86. Leung T, Tang N, Chan I, Li A, Ha G, Lam C. A polymorphism in the coding region of interleukin-13 gene is associated with atopy but not asthma in Chinese children. Clin Exp Allergy 2001;31: 1515–1521.

    PubMed  CAS  Google Scholar 

  87. Noguchi E, Nukaga-Nishio Y, Jian Z, et al. Haplotypes of the 5% region of the IL-4 gene and SNPs in the intergene sequence between the IL-4 and IL-13 genes are associated with atopic asthma. Hum Immunol 2001;62: 1251–1257.

    PubMed  CAS  Google Scholar 

  88. Howard T, Whittaker P, Zaiman A, et al. Identification and association of polymorphisms in the interleukin-13 gene with asthma and atopy in a Dutch population. Am J Respir Cell Mol Biol 2001;25:377–384.

    PubMed  CAS  Google Scholar 

  89. van der Pouw Kraan TC, van Veen A, Boeije LC, et al. An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes Immun 1999;1:61–65.

    PubMed  Google Scholar 

  90. Rioux J, Stone V, Daly M, et al. Familial eosinophilia maps to the cytokine gene cluster on human chromosomal region 5q31-q33. Am J Hum Genet 1998;63:1086–1094.

    PubMed  CAS  Google Scholar 

  91. Chavanas S, Garner C, Bodemer C, et al. Localization of the Netherton syndrome gene to chromosome 5q32, by linkage analysis and homozygosity mapping. Am J Hum Genet 2000;66:914–921.

    PubMed  CAS  Google Scholar 

  92. Chavanas S, Bodemer C, Rochat A, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 2000;25:141–142.

    PubMed  CAS  Google Scholar 

  93. Mägert HJ, Standker L, Kreutzmann P, et al. LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J Biol Chem 1999;274:21,499–21,502.

    PubMed  Google Scholar 

  94. Walley AJ, Chavanas S, Moffatt MF, et al. Gene polymorphism in Netherton and common atopic disease. Nat Genet 2001;29:175–178.

    PubMed  CAS  Google Scholar 

  95. Kruse S, Japha T, Tedner M, et al. The polymorphisms S503P and Q576R in the interleukin-4 receptor alpha gene are associated with atopy and influence the signal transduction. Immunology 1999;96:365–371.

    PubMed  CAS  Google Scholar 

  96. Ober C, Leavitt SA, Tsalenko A, et al. Variation in the interleukin 4-receptor alpha gene confers susceptibility to asthma and atopy in ethnically diverse populations. Am J Hum Genet 2000;66:517–526.

    PubMed  CAS  Google Scholar 

  97. Kauppi P, Lindblad-Toh K, Sevon P, et al. A second-generation association study of the 5q31 cytokine gene cluster and the interleukin-4 receptor in asthma. Genomics 2001;77:35–42.

    PubMed  CAS  Google Scholar 

  98. Risma KA, Wang N, Andrews RP, et al. V75R576 IL-4 receptor alpha is associated with allergic asthma and enhanced IL-4 receptor function. J Immunol 2002;169:1604–1610.

    PubMed  CAS  Google Scholar 

  99. Weskamp G, Kratzschmar J, Reid MS, Blobel CP. MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains. J Cell Biol 1996;132:717–726.

    PubMed  CAS  Google Scholar 

  100. Millichip MI, Dallas DJ, Wu E, Dale S, McKie N. The metallo-disintegrin ADAM10 (MADM) from bovine kidney has type IV collagenase activity in vitro. Biochem Biophys Res Commun 1998;245:594–598.

    PubMed  CAS  Google Scholar 

  101. Becker K, Simon R, Bailey-Wilson J, et al. Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci USA 1998;95:9979–9984.

    PubMed  CAS  Google Scholar 

  102. Laval SH, Timms A, Edwards S, et al. Whole-genome screening in ankylosing spondylitis: evidence of non-MHC genetic-susceptibility loci. Am J Hum Genet 2001;68:918–926.

    PubMed  CAS  Google Scholar 

  103. Mein CA, Esposito L, Dunn MG, et al. A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nat Genet 1998;19:297–300.

    PubMed  CAS  Google Scholar 

  104. Lindgren CM, Widen E, Tuomi T, et al. Contribution of known and unknown susceptibility genes to early-onset diabetes in scandinavia: evidence for heterogeneity. Diabetes 2002;51:1609–1617.

    PubMed  CAS  Google Scholar 

  105. Hardwick L, Walsh S, Butcher S, et al. Genetic mapping of susceptibility loci in the genes involved in rheumatoid arthritis. J Rheumatol 1997;24:197–198.

    PubMed  CAS  Google Scholar 

  106. Cox A, Camp NJ, Cannings C, et al. Combined sib-TDT and TDT provide evidence for linkage of the interleukin-1 gene cluster to erosive rheumatoid arthritis. Hum Mol Genet 1999;8:1707–1713.

    PubMed  CAS  Google Scholar 

  107. Mansfield J, Holden H, Tarlow J, et al. Novel genetic association between ulcerative colitis and the anti-inflammatory cytokine interleukin-1 receptor antagonist. Gastroenterol 1994;106:637–642.

    CAS  Google Scholar 

  108. Satsangi J, Parkes M, Louis E, et al. Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet 1996;14:199–202.

    PubMed  CAS  Google Scholar 

  109. Duerr RH, Barmada MM, Zhang L, et al. Linkage and association between inflammatory bowel disease and a locus on chromosome 12. Am J Hum Genet 1998;63:95–100.

    PubMed  CAS  Google Scholar 

  110. Haines JL, Bradford Y, Garcia ME, et al. Multiple susceptibility loci for multiple sclerosis. Hum Mol Genet 2002;11:2251–2256.

    PubMed  CAS  Google Scholar 

  111. Duerr RH, Barmada MM, Zhang L, Pfutzer R, Weeks DE. High-density genome scan in Crohn disease shows confirmed linkage to chromosome 14q11-12. Am J Hum Genet 2000;66:1857–1862.

    PubMed  CAS  Google Scholar 

  112. Cox NJ, Wapelhorst B, Morrison VA, et al. Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. Am J Hum Genet 2001;69:820–830.

    PubMed  CAS  Google Scholar 

  113. Lee YA, Wahn U, Kehrt R, et al. A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet 2000;26:470–473.

    PubMed  CAS  Google Scholar 

  114. Bradley M, Soderhall C, Luthman H, Wahlgren CF, Kockum I, Nordenskjold M. Susceptibility loci for atopic dermatitis on chromosomes 3, 13, 15, 17 and 18 in a Swedish population. Hum Mol Genet 2002;11:1539–1548.

    PubMed  CAS  Google Scholar 

  115. Beyer KWU, Freidhoff L, Nickel R, et al. Evidence for linkage of chromosome 5q31-q33 and 13q12-q14 markers to atopic dermatitis. J Allergy Clin Immunol 1998;101:152.

    Google Scholar 

  116. Camp R. Psoriasis. In: Champion R, Burton J, Burns D, Breathnach S, eds. Textbook of dermatology. Oxford: Blackwell Science, 1998:1589–1649.

    Google Scholar 

  117. Capon F, Novelli G, Semprini S, et al. Searching for psoriasis susceptibility genes in Italy: genome scan and evidence for a new locus on chromosome 1. J Invest Dermatol 1999;112:32–35.

    PubMed  CAS  Google Scholar 

  118. Tomfohrde J, Silverman A, Barnes R, et al. Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 1994;264:1141–1145.

    PubMed  CAS  Google Scholar 

  119. Trembath R, Clough R, Rosbotham J, et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet 1997; 6:813–820.

    PubMed  CAS  Google Scholar 

  120. Enlund F, Samuelsson L, Enerback C, et al. Psoriasis susceptibility locus in chromosome region 3q21 identified in patients from southwest Sweden. Eur J Hum Genet 1999;7:783–790.

    PubMed  CAS  Google Scholar 

  121. Farber E, Nall M, Watson W. Natural history of psoriasis in 61 twin pairs. Arch Dermatol 1974; 109:207–211.

    PubMed  CAS  Google Scholar 

  122. Brandrup F, Hauge M, Henningsen K, Eriksen B. Psoriasis in an unselected series of twins. Arch Dermatol 1978;114:874–878.

    PubMed  CAS  Google Scholar 

  123. De Sanctis GT, Merchant M, Beier DR, et al. Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nat Genet 1995;11:150–154.

    PubMed  Google Scholar 

  124. Meyers DA, Postma DS, Panhuysen CI, et al. Evidence for a locus regulating total serum IgE levels mapping to chromosome 5. Genomics 1994;23:464–470.

    PubMed  CAS  Google Scholar 

  125. Doull IJ, Lawrence S, Watson M, et al. Allelic association of gene markers on chromosomes 5q and 11q with atopy and bronchial hyperresponsiveness. Am J Respir Crit Care Med 1996;153:1280–1284.

    PubMed  CAS  Google Scholar 

  126. Walley AJ, Wiltshire S, Ellis CM, Cookson WO. Linkage and allelic association of chromosome 5 cytokine cluster genetic markers with atopy and asthma associated traits. Genomics 2001;72:15–20.

    PubMed  CAS  Google Scholar 

  127. Zhang Y, Lefort J, Kearsey V, Lapa e Silva JR, Cookson WO, Vargaftig BB. A genome-wide screen for asthma-associated quantitative trait loci in a mouse model of allergic asthma. Hum Mol Genet 1999;8: 601–605.

    PubMed  CAS  Google Scholar 

  128. Nickel R, Wahn U, Hizawa N, et al. Evidence for linkage of chromosome 12q15-q24.1 markers to high total serum IgE concentrations in children of the German multicenter allergy study. Genomics 1997;46:159–162.

    PubMed  CAS  Google Scholar 

  129. A genome-wide search for asthma susceptibility loci in ethnically diverse populations. The collaborative study on the genetics of asthma (CSGA). Nat Genet 1997;15:p389–p392.

    Google Scholar 

  130. Prows DR, Shertzer HG, Daly MJ, Sidman CL, Leikauf GD. Genetic analysis of ozone-induced acute lung injury in sensitive and resistant strains of mice. Nat Genet 1997;17:471–474.

    PubMed  CAS  Google Scholar 

  131. Kleeberger SR, Levitt RC, Zhang LY, et al. Linkage analysis of susceptibility to ozone-induced lung inflammation in inbred mice. Nat Genet 1997;17:475–478.

    PubMed  CAS  Google Scholar 

  132. Kermarrec N, Dubay C, De Gouyon B, et al. Serum IgE concentration and other immune manifestations of treatment with gold salts are linked to the MHC and IL4 regions in the rat. Genomics 1996;31:111–114.

    PubMed  CAS  Google Scholar 

  133. Ewart SL, Kuperman D, Schadt E, et al. Quantitative trait loci controlling allergen-induced airway hyperresponsiveness in inbred mice. Am J Respir Cell Mol Biol 2000;23:537–545.

    PubMed  CAS  Google Scholar 

  134. Laitinen T, Ollikainen V, Lazaro C, et al. Association study of the chromosomal region containing the FCER2 gene suggests it has a regulatory role in atopic disorders. Am J Respir Crit Care Med 2000;161:700–706.

    PubMed  CAS  Google Scholar 

  135. Matsuda H, Watanabe N, Geba GP, et al. Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int Immunol 1997;9:461–466.

    PubMed  CAS  Google Scholar 

  136. Iwasaki T, Tanaka A, Itakura A, et al. Atopic NC/Nga mice as a model for allergic asthma: severe allergic responses by single intranasal challenge with protein antigen. J Vet Med Sci 2001;63:413–419.

    PubMed  CAS  Google Scholar 

  137. Kohara Y, Tanabe K, Matsuoka K, et al. A major determinant quantitative-trait locus responsible for atopic dermatitis-like skin lesions in NC/Nga mice is located on chromosome 9. Immunogenetics 2001;53:15–21.

    PubMed  CAS  Google Scholar 

  138. Kurz T, Strauch K, Heinzmann A, et al. A European study on the genetics of mite sensitization. J Allergy Clin Immunol 2000;106:925–932.

    PubMed  CAS  Google Scholar 

  139. Natori K, Tamari M, Watanabe O, et al. Mapping of a gene responsible for dermatitis in NOA (Naruto Research Institute Otsuka Atrichia) mice, an animal model of allergic dermatitis. J Hum Genet 1999;44:372–376.

    PubMed  CAS  Google Scholar 

  140. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273(5281):1516, 1517.

    PubMed  Google Scholar 

  141. Lander ES. The new genomics: global views of biology [see comments]. Science 1996;274:536–539.

    PubMed  CAS  Google Scholar 

  142. Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation. Science 1997;278(5343):1580, 1581.

    PubMed  Google Scholar 

  143. Lai E, Riley J, Purvis I, Roses A. A 4-Mb high-density single nucleotide polymorphism-based map around human APOE. Genomics 1998;54:31–38.

    PubMed  CAS  Google Scholar 

  144. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 1999;22:139–144.

    PubMed  CAS  Google Scholar 

  145. Collins A, Lonjou C, Morton NE. Genetic epidemiology of single-nucleotide polymorphisms. Proc Natl Acad Sci USA 1999;96:15,173–15,177.

    PubMed  CAS  Google Scholar 

  146. Huttley GA, Smith MW, Carrington M, O’Brien SJ. A scan for linkage disequilibrium across the human genome. Genetics 1999;152:1711–1722.

    PubMed  CAS  Google Scholar 

  147. Kidd JR, Pakstis AJ, Zhao H, et al. Haplotypes and linkage disequilibrium at the phenylalanine hydroxylase locus, PAH, in a global representation of populations. Am J Hum Genet 2000;66:1882–1899.

    PubMed  CAS  Google Scholar 

  148. Goddard KA, Hopkins PJ, Hall JM, Witte JS. Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. Am J Hum Genet 2000;66:216–234.

    PubMed  CAS  Google Scholar 

  149. Jorde LB, Watkins WS, Carlson M, et al. Linkage disequilibrium predicts physical distance in the adenomatous polyposis coli region [see comments]. Am J Hum Genet 1994;54:884–898.

    PubMed  CAS  Google Scholar 

  150. Clark AG, Weiss KM, Nickerson DA, et al. Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase. Am J Hum Genet 1998;63:595–612.

    PubMed  CAS  Google Scholar 

  151. Rieder MJ, Taylor SL, Clark AG, Nickerson DA. Sequence variation in the human angiotensin converting enzyme. Nat Genet 1999;22:59–62.

    PubMed  CAS  Google Scholar 

  152. Moffatt MF, Traherne JA, Abecasis GR, Cookson WO. Single nucleotide polymorphism and linkage disequilibrium within the TCR alpha/delta locus. Hum Mol Genet 2000;9:1011–1019.

    PubMed  CAS  Google Scholar 

  153. Templeton AR, Clark AG, Weiss KM, Nickerson DA, Boerwinkle E, Sing CF. Recombinational and mutational hotspots within the human lipoprotein lipase gene. Am J Hum Genet 2000;66:69–83.

    PubMed  CAS  Google Scholar 

  154. Abecasis GR, Noguchi E, Heinzmann A, et al. Extent and Distribution of Linkage disequilibrium in three genomic regions. Am J Hum Genet 2001;68: 191–197.

    PubMed  CAS  Google Scholar 

  155. Hedrick PW. Gametic disequilibrium measures: proceed with caution. Genetics 1987;117:331–341.

    PubMed  CAS  Google Scholar 

  156. Devlin B, Risch N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 1995;29:311–322.

    PubMed  CAS  Google Scholar 

  157. Abecasis GR, Cookson WO, Cardon LR. The power to detect linkage disequilibrium with quantitative traits in selected samples. Am J Hum Genet 2001;68:1463–1474.

    PubMed  CAS  Google Scholar 

  158. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nat Genet 2001;29: 229–232.

    PubMed  CAS  Google Scholar 

  159. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002;296:2225–2229.

    PubMed  CAS  Google Scholar 

  160. Muller-Myhsok B, Abel L. Genetic analysis of complex diseases [letter; comment]. Science 1997;275: 1328, 1329; discussion 1329, 1330.

    PubMed  Google Scholar 

  161. Tu IP, Whittemore AS. Power of association and linkage tests when the disease alleles are unobserved. Am J Hum Genet 1999;64:641–649.

    PubMed  CAS  Google Scholar 

  162. Weissenbach J, Gypay G, Dib C, et al. A second generation linkage map of the human genome. Nature 1992;359:794–801.

    PubMed  CAS  Google Scholar 

  163. George VT, Elston RC. Testing the association between polymorphic markers and quantitative traits in pedigrees. Genet Epidemiol 1987;4:193–201.

    PubMed  CAS  Google Scholar 

  164. Terwilliger JD, Ott J. A haplotype-based ‘haplotype relative risk’ approach to detecting allelic associations. Hum Hered 1992;42:337–346.

    PubMed  CAS  Google Scholar 

  165. Chakravarti A. Population genetics-making sense out of sequence. Nat Genet 1999;21(1 Suppl): 56–60.

    PubMed  CAS  Google Scholar 

  166. Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet 2001;17:502–510.

    PubMed  CAS  Google Scholar 

  167. Kruglyak L, Nickerson DA. Variation is the spice of life. Nat Genet 2001;27:234–246.

    PubMed  CAS  Google Scholar 

  168. Farrall M, Keavney B, McKenzie C, Delepine M, Matsuda F, Lathrop GM. Fine-mapping of an ancestral recombination breakpoint in DCP1 [Letter]. Nat Genet 1999;23:270, 271.

    PubMed  Google Scholar 

  169. Morris RW, Kaplan NL. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet Epidemiol 2002;23:221–233.

    PubMed  Google Scholar 

  170. Sobel E, Lange K. Descent graphs in pedigree analysis: applications to haplotyping location scores, and marker-sharing statistics. Am J Hum Genet 1996;58:1323–1337.

    PubMed  CAS  Google Scholar 

  171. Abecasis GR, Cookson WO. GOLD-graphical overview of linkage disequilibrium. Bioinformatics 2000; 16(2):182, 183.

    PubMed  Google Scholar 

  172. Larsen F, Gundersen G, Lopez R, Prydz H. CpG islands as gene markers in the human genome. Genomics 1992;13:1095–1107.

    PubMed  CAS  Google Scholar 

  173. Prestridge DS. Predicting Pol II promoter sequences using transcription factor binding sites. J Mol Biol 1995;249:923–932.

    PubMed  CAS  Google Scholar 

  174. Xu Y, Mural RJ, Uberbacher EC. Constructing gene models from accurately predicted exons: an application of dynamic programming. Comput Appl Biosci 1994;10:613–623.

    PubMed  CAS  Google Scholar 

  175. Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol 1997; 268:78–94.

    PubMed  CAS  Google Scholar 

  176. Snyder EE, Stormo GD. Identification of coding regions in genomic DNA sequences: an application of dynamic programming and neural networks. Nucleic Acids Res 1993;21:607–613.

    PubMed  CAS  Google Scholar 

  177. Zhang MQ. Identification of protein coding regions in the human genome by quadratic discriminant analysis. Proc Natl Acad Sci USA 1997;94: 565–568.

    PubMed  CAS  Google Scholar 

  178. Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402.

    PubMed  CAS  Google Scholar 

  179. Schultz J, Copley RR, Doerks T, Ponting CP, Bork P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 2000;28:231–234.

    PubMed  CAS  Google Scholar 

  180. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001;411:599–603.

    PubMed  CAS  Google Scholar 

  181. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001;411:603–606.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Cookson, W. (2005). Asthma Genetics. In: Peltz, G. (eds) Computational Genetics and Genomics. Humana Press. https://doi.org/10.1007/978-1-59259-930-1_11

Download citation

Publish with us

Policies and ethics