Skip to main content

Genomic and Proteomic Analysis of Platelets

Clinical Applications

  • Chapter
  • 1278 Accesses

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The platelet is a circulating anucleate cell particle created from the cytoplasm of megakaryocytes in the bone marrow from whence it derives much of its cytoplasmic content. Deposited at sites of vascular injury, its role in the processes of thrombosis and haemostasis is well defined. Many important insights into the platelets haemostatic role were gained through genetic studies of rare inherited bleeding disorders such as Glanzmann’s thrombesthenia and Bernard-Soulier disease (1,2). It is now clear, however, that its physiological role extends beyond that of thrombosis to include regulation of inflammation, tissue repair, and the immune response, and one could argue that these are its predominant functions (3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nurden AT, Caen JP. An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol 1974;28:253–260.

    PubMed  CAS  Google Scholar 

  2. Hillman A. The platelet surface receptor glycoprotein (GP) Ib-V-IX: variants, structure, mutations and pleiotropy. Clinical Pharmacology. Royal College of Surgeons in Ireland, Dublin, 2002.

    Google Scholar 

  3. Maree A, Fitzgerald D. Glycoprotein IIb/IIIa antagonists in acute coronary syndromes: where are we now? Semin Vasc Med 2003;03:385–390.

    Article  Google Scholar 

  4. Nurden A. Human platelet glycoproteins. In: Bloom AF, ed. Haemostasis and Thrombosis. Churchill Livingstone, New York, 1994, pp. 115–165.

    Google Scholar 

  5. Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998;391:591–594.

    Article  PubMed  CAS  Google Scholar 

  6. Lindmark E, Tenno T, Siegbahn A. Role of platelet P-selectin and CD40 ligand in the induction of monocytic tissue factor expression. Arterioscler Thromb Vasc Biol 2000;20:2322–2328.

    PubMed  CAS  Google Scholar 

  7. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002;105:1135–1143.

    Article  PubMed  CAS  Google Scholar 

  8. Coppinger JA, Cagney G, Toomey S, et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 2004;103:2096–20104.

    Article  PubMed  CAS  Google Scholar 

  9. von Hundelshausen P, Weber KS, Huo Y, et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 2001;103:1772–1777.

    Google Scholar 

  10. Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL, Bahou WF. Transcript profiling of human platelets using microarray and serial analysis of gene expression. Blood 2003;101:2285–2293.

    Article  PubMed  CAS  Google Scholar 

  11. McRedmond JP, Park SD, Reilly DF, et al. Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Mol Cell Proteomics 2004;3:133–144.

    Article  PubMed  CAS  Google Scholar 

  12. Booyse FM, Rafelson ME Jr. Studies on human platelets. I. synthesis of platelet protein in a cell-free system. Biochim Biophys Acta 1968;166:689–697.

    PubMed  CAS  Google Scholar 

  13. Fink L, Holschermann H, Kwapiszewska G, et al. Characterization of platelet-specific mRNA by real-time PCR after laser-assisted microdissection. Thromb Haemost 2003;90:749–756.

    PubMed  CAS  Google Scholar 

  14. Cahill DJ. Protein and antibody arrays and their medical applications. J Immunol Methods 2001;250:81–91.

    Article  PubMed  CAS  Google Scholar 

  15. Harrison PM, Kumar A, Lang N, Snyder M, Gerstein M. A question of size: the eukaryotic proteome and the problems in defining it. Nucleic Acids Res 2002;30:1083–1090.

    Article  PubMed  CAS  Google Scholar 

  16. Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 1997;18:533–537.

    Article  PubMed  CAS  Google Scholar 

  17. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860–921.

    Article  PubMed  CAS  Google Scholar 

  18. Salisbury BA, Pungliya M, Choi JY, Jiang R, Sun XJ, Stephens JC. SNP and haplotype variation in the human genome. Mutat Res 2003;526:53–61.

    PubMed  CAS  Google Scholar 

  19. Chen X, Sullivan PF. Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics J 2003;3:77–96.

    Article  PubMed  CAS  Google Scholar 

  20. Bojesen SE, Juul K, Schnohr P, Tybjaerg-Hansen A, Nordestgaard BG. Platelet glycoprotein IIb/IIIa Pl(A2)/Pl(A2) homozygosity associated with risk of ischemic cardiovascular disease and myocardial infarction in young men: the Copenhagen City Heart Study. J Am Coll Cardiol 2003;42:661–667.

    Article  PubMed  CAS  Google Scholar 

  21. Gruchala M, Ciecwierz D, Ochman K, et al. Association between the Pl(A) platelet glycoprotein GPIIIa polymorphism and extent of coronary artery disease. Int J Cardiol 2003;88:229–237.

    Article  PubMed  Google Scholar 

  22. Bottiger C, Kastrati A, Koch W, et al. HPA-1 and HPA-3 polymorphisms of the platelet fibrinogen receptor and coronary artery disease and myocardial infarction. Thromb Haemost 2000;83:559–562.

    PubMed  CAS  Google Scholar 

  23. Grove EL, Orntoft TF, Lassen JF, Jensen HK, Kristensen SD. The platelet polymorphism PlA2 is a genetic risk factor for myocardial infarction. J Intern Med 2004;255:637–644.

    Article  PubMed  CAS  Google Scholar 

  24. Evans WE. Pharmacogenomics: marshalling the human genome to individualise drug therapy. Gut 2003;52(Suppl 2):ii10–ii18.

    PubMed  CAS  Google Scholar 

  25. O’Connor FF, Shields DC, Fitzgerald A, Cannon CP, Braunwald E, Fitzgerald DJ. Genetic variation in glycoprotein IIb/IIIa (GPIIb/IIIa) as a determinant of the responses to an oral GPIIb/IIIa antagonist in patients with unstable coronary syndromes. Blood 2001;98:3256–3260.

    Article  PubMed  CAS  Google Scholar 

  26. Halushka MK, Walker LP, Halushka PV. Genetic variation in cyclooxygenase 1: effects on response to aspirin. Clin Pharmacol Ther 2003;73:122–130.

    Article  PubMed  CAS  Google Scholar 

  27. Cattaneo M. Inherited platelet-based bleeding disorders. J Thromb Haemost 2003;1:1628–1636.

    Article  PubMed  CAS  Google Scholar 

  28. Nair S, Ghosh K, Kulkarni B, Shetty S, Mohanty D. Glanzmann’s thrombasthenia: updated. Platelets 2002;13:387–393.

    Article  PubMed  CAS  Google Scholar 

  29. D’Andrea G, Colaizzo D, Vecchione G, Grandone E, Di Minno G, Margaglione M. Glanzmann’s thrombasthenia: identification of 19 new mutations in 30 patients. Thromb Haemost 2002;87:1034–1042.

    PubMed  CAS  Google Scholar 

  30. Heidenreich R, Eisman R, Surrey S, et al. Organization of the gene for platelet glycoprotein IIb. Biochemistry 1990;29:1232–1244.

    Article  PubMed  CAS  Google Scholar 

  31. Zimrin AB, Gidwitz S, Lord S, et al. The genomic organization of platelet glycoprotein IIIa. J Biol Chem 1990;265:8590–8595.

    PubMed  CAS  Google Scholar 

  32. Schlegel N, Gayet O, Morel-Kopp MC, et al. The molecular genetic basis of Glanzmann’s thrombasthenia in a gypsy population in France: identification of a new mutation on the alpha IIb gene. Blood 1995;86:977–982.

    PubMed  CAS  Google Scholar 

  33. Simsek S, Heyboer H, de Bruijne-Admiraal LG, Goldschmeding R, Cuijpers HT, von dem Borne AE. Glanzmann’s thrombasthenia caused by homozygosity for a splice defect that leads to deletion of the first coding exon of the glycoprotein IIIa mRNA. Blood 1993;81:2044–2049.

    PubMed  CAS  Google Scholar 

  34. Peretz H, Rosenberg N, Usher S, et al. Glanzmann’s thrombasthenia associated with deletion-insertion and alternative splicing in the glycoprotein IIb gene. Blood 1995;85:414–420.

    PubMed  CAS  Google Scholar 

  35. Burk CD, Newman PJ, Lyman S, Gill J, Coller BS, Poncz M. A deletion in the gene for glycoprotein IIb associated with Glanzmann’s thrombasthenia. J Clin Invest 1991;87:270–276.

    Article  PubMed  CAS  Google Scholar 

  36. Bugert P, Dugrillon A, Gunaydin A, Eichler H, Kluter H. Messenger RNA profiling of human platelets by microarray hybridization. Thromb Haemost 2003;90:738–7348.

    PubMed  CAS  Google Scholar 

  37. Rox JM, Bugert P, Müller J, et al. Gene expression analysis in single donor platelets: evaluation of a PCR-based amplification technique. Clin Chem 2004;50:2271–2278.

    Article  PubMed  CAS  Google Scholar 

  38. Ault KA, Rinder HM, Mitchell J, Carmody MB, Vary CP, Hillman RS. The significance of platelets with increased RNA content (reticulated platelets). A measure of the rate of thrombopoiesis. Am J Clin Pathol 1992;98:637–646.

    PubMed  CAS  Google Scholar 

  39. Balduini CL, Noris P, Spedini P, Belletti S, Zambelli A, Da Prada GA. Relationship between size and thiazole orange fluorescence of platelets in patients undergoing high-dose chemotherapy. Br J Haematol 1999;106:202–207.

    Article  PubMed  CAS  Google Scholar 

  40. Kieffer N, Guichard J, Farcet JP, Vainchenker W, Breton-Gorius J. Biosynthesis of major platelet proteins in human blood platelets. Eur J Biochem 1987;164:189–195.

    Article  PubMed  CAS  Google Scholar 

  41. Wicki AN, Walz A, Gerber-Huber SN, Wenger RH, Vornhagen R, Clemetson KJ. Isolation and characterization of human blood platelet mRNA and construction of a cDNA library in lambda gt11. Confirmation of the platelet derivation by identification of GPIb coding mRNA and cloning of a GPIb coding cDNA insert. Thromb Haemost 1989;61:448–453.

    PubMed  CAS  Google Scholar 

  42. Power CA, Clemetson JM, Clemetson KJ, Wells TN. Chemokine and chemokine receptor mRNA expression in human platelets. Cytokine 1995;7:479–482.

    Article  PubMed  CAS  Google Scholar 

  43. Chang JD, Xu Y, Raychowdhury MK, Ware JA. Molecular cloning and expression of a cDNA encoding a novel isoenzyme of protein kinase C (nPKC). A new member of the nPKC family expressed in skeletal muscle, megakaryoblastic cells, and platelets. J Biol Chem 1993;268:14208–14214.

    PubMed  CAS  Google Scholar 

  44. Vial C, Hechler B, Leon C, Cazenave JP, Gachet C. Presence of P2X1 purinoceptors in human platelets and megakaryoblastic cell lines. Thromb Haemost 1997;78:1500–1504.

    PubMed  CAS  Google Scholar 

  45. Weyrich AS, Dixon DA, Pabla R, et al. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci USA 1998;95:5556–5561.

    Article  PubMed  CAS  Google Scholar 

  46. Pabla R, Weyrich AS, Dixon DA, et al. Integrin-dependent control of translation: engagement of integrin αIIbβ3 regulates synthesis of proteins in activated human platelets. J Cell Biol 1999;144:175–184.

    Article  PubMed  CAS  Google Scholar 

  47. Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 2001;154:485–490.

    Article  PubMed  CAS  Google Scholar 

  48. Lindemann S, Tolley ND, Eyre JR, Kraiss LW, Mahoney TM, Weyrich AS. Integrins regulate the intracellular distribution of eukaryotic initiation factor 4E in platelets. A checkpoint for translational control. J Biol Chem 2001;276:33947–33951.

    Article  PubMed  CAS  Google Scholar 

  49. Wajapeyee N, Somasundaram K. Pharmacogenomics in breast cancer: current trends and future directions. Curr Opin Mol Ther 2004;6:296–301.

    PubMed  CAS  Google Scholar 

  50. Vrana KE, Freeman WM, Aschner M. Use of microarray technologies in toxicology research. Neurotoxicology 2003;24:321–332.

    Article  PubMed  CAS  Google Scholar 

  51. Bryant PA, Venter D, Robins-Browne R, Curtis N. Chips with everything: DNA microarrays in infectious diseases. Lancet Infect Dis 2004;4:100–111.

    Article  PubMed  CAS  Google Scholar 

  52. Kuo WP, Jenssen TK, Butte AJ, Ohno-Machado L, Kohane IS. Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics 2002;18:405–412.

    Article  PubMed  CAS  Google Scholar 

  53. Puskas LG, Zvara A, Hackler L Jr, Van Hummelen P. RNA amplification results in reproducible microarray data with slight ratio bias. Biotechniques 2002;32:1330–1334, 1336, 1338, 1340.

    PubMed  CAS  Google Scholar 

  54. Yamamoto M, Wakatsuki T, Hada A, Ryo A. Use of serial analysis of gene expression (SAGE) technology. J Immunol Methods 2001;250:45–66.

    Article  PubMed  CAS  Google Scholar 

  55. Ye SQ, Lavoie T, Usher DC, Zhang LQ. Microarray, SAGE and their applications to cardiovascular diseases. Cell Res 2002;12:105–115.

    Article  PubMed  Google Scholar 

  56. Righetti PG, Campostrini N, Pascali J, Hamdan M, Astner H. Quantitative proteomics: a review of different methodologies. Eur J Mass Spectrom (Chichester, Eng) 2004;10:335–348.

    Article  CAS  Google Scholar 

  57. O’Donnell CJ, Larson MG, Feng D, et al. Genetic and environmental contributions to platelet aggregation: the Framingham heart study. Circulation 2001;103:3051–3056.

    PubMed  CAS  Google Scholar 

  58. United Kingdom Transient Ischaemic Attack (UK-TIA) aspirin trial: interim results. UK-TIA Study Group. Br Med J (Clin Res Ed) 1988;296:316–320.

    Article  Google Scholar 

  59. Wang L, Fan C, Topol SE, Topol EJ, Wang Q. Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science 2003;302:1578–1581.

    Article  PubMed  CAS  Google Scholar 

  60. Cipollone F, Toniato E, Martinotti S, et al. A polymorphism in the cyclooxygenase 2 gene as an inherited protective factor against myocardial infarction and stroke. JAMA 2004;291:2221–2228.

    Article  PubMed  CAS  Google Scholar 

  61. Panguluri RC, Long LO, Chen W, et al. COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis 2004;25:961–966.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Maree, A., McRedmond, J. (2005). Genomic and Proteomic Analysis of Platelets. In: Quinn, M., Fitzgerald, D. (eds) Platelet Function. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-917-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-917-2_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-244-5

  • Online ISBN: 978-1-59259-917-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics