Skip to main content

Cortical Cholinergic Deafferentation Induces Aβ Deposition

Toward a Physiological Animal Model of Alzheimer’s Disease

  • Chapter
Molecular Neurosurgery With Targeted Toxins

Abstract

There are 4 million Americans with Alzheimer’s disease (AD), and the cost of the disease to the United States is estimated at $100 billion annually (Alzheimer’s Association). Finding a cure or prevention for AD is therefore an important goal. To do this, however, the cause(s) of AD must first be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neve RL, Robakis NK. Alzheimer’s disease: a re-examination of the amyloid hypothesis. Trends Neurosci 1998;21:15–19.

    Article  PubMed  CAS  Google Scholar 

  2. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297:353–356.

    Article  PubMed  CAS  Google Scholar 

  3. Sommer B. Alzheimer’s disease and the amyloid cascade hypothesis: 10 years on. Curr Opin Pharmacol 2002;2:87–92.

    Article  PubMed  CAS  Google Scholar 

  4. Younkin SG. The role of A beta 42 in Alzheimer’s disease. J Physiol Paris 1998;92:289–292.

    Article  PubMed  CAS  Google Scholar 

  5. Cummings BJ, Satou T, Head E, et al. Diffuse plaques contain C-terminal A beta 42 and not A beta 40: evidence from cats and dogs. Neurobiol Aging 1996;17:653–659.

    PubMed  CAS  Google Scholar 

  6. Geula C, Nagykery N, Wu CK. Amyloid-beta deposits in the cerebral cortex of the aged common marmoset (Callithrix jacchus): incidence and chemical composition. Acta Neuropathol (Berl) 2002;103:48–58.

    Article  CAS  Google Scholar 

  7. Maclean CJ, Baker HF, Ridley RM, Mori H. Naturally occurring and experimentally induced beta-amyloid deposits in the brains of marmosets (Callithrix jacchus). J Neural Transm 2000;107:799–814.

    Article  PubMed  CAS  Google Scholar 

  8. Head E, McCleary R, Hahn FF, Milgram NW, Cotman CW. Region-specific age at onset of beta-amyloid in dogs. Neurobiol Aging 2000;21:89–96.

    Article  PubMed  CAS  Google Scholar 

  9. Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC. Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science 1987;235:873–877.

    Article  PubMed  CAS  Google Scholar 

  10. Price DL, Martin LJ, Sisodia SS, et al. Aged non-human primates: an animal model of age-associated neurodegenerative disease. Brain Pathol 1991;1:287–296.

    PubMed  CAS  Google Scholar 

  11. Gearing M, Rebeck GW, Hyman BT, Tigges J, Mirra SS. Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer disease. Proc Natl Acad Sci USA 1994;91:9382–9386.

    Article  PubMed  CAS  Google Scholar 

  12. McDowell I. Alzheimer’s disease: insights from epidemiology. Aging (Milano) 2001;13:143–162.

    CAS  Google Scholar 

  13. Delaere P, He Y, Fayet G, Duyckaerts C, Hauw JJ. Beta A4 deposits are constant in the brain of the oldest old: an immunocytochemical study of 20 French centenarians. Neurobiol Aging 1993;14:191–194.

    Article  PubMed  CAS  Google Scholar 

  14. Bouras C, Hof PR, Giannakopoulos P, Michel JP, Morrison JH. Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients: a quantitative evaluation of a 1-year autopsy population from a geriatric hospital. Cereb Cortex 1994;4:138–150.

    Article  PubMed  CAS  Google Scholar 

  15. Beach TG, Potter PE, Kuo YM, et al. Cholinergic deafferentation of the rabbit cortex: a new animal model of Aβ deposition. Neurosci Lett 2000;283:9–12.

    Article  PubMed  CAS  Google Scholar 

  16. Roher AE, Kuo YM, Potter PE, et al. Cortical cholinergic denervation elicits vascular A beta deposition. Ann NY Acad Sci 2000;903:366–373.

    Article  PubMed  CAS  Google Scholar 

  17. Mann DM, Yates PO, Marcyniuk B. Monoaminergic neurotransmitter systems in presenile Alzheimer’s disease and in senile dementia of Alzheimer type. Clin Neuropathol 1984;3:199–205.

    PubMed  CAS  Google Scholar 

  18. Mann DM, Yates PO, Marcyniuk B. Changes in nerve cells of the nucleus basalis of Meynert in Alzheimer’s disease and their relationship to ageing and to the accumulation of lipofuscin pigment. Mech Ageing Dev 1984;25:189–204.

    Article  PubMed  CAS  Google Scholar 

  19. Mann DM, Yates PO, Marcyniuk B. Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol 1984;10:185–207.

    PubMed  CAS  Google Scholar 

  20. McGeer PL, McGeer EG, Suzuki J, Dolman CE, Nagai T. Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain. Neurology 1984;34:741–745.

    PubMed  CAS  Google Scholar 

  21. Mountjoy CQ, Rossor MN, Iversen LL, Roth M. Correlation of cortical cholinergic and GABA deficits with quantitative neuropathological findings in senile dementia. Brain 1984;107(pt 2):507–518.

    Article  PubMed  Google Scholar 

  22. Rossor MN, Iversen LL, Johnson AJ, Mountjoy CQ, Roth M. Cholinergic deficit in frontal cerebral cortex in Alzheimer’s disease is age dependent. Lancet 1981;2:1422.

    Article  PubMed  CAS  Google Scholar 

  23. Lowes-Hummel P, Gertz HJ, Ferszt R, Cervos-Navarro J. The basal nucleus of Meynert revised: the nerve cell number decreases with age. Arch Gerontol Geriatr 1989;8:21–27.

    Article  PubMed  CAS  Google Scholar 

  24. Perry EK, Blessed G, Tomlinson BE, et al. Neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes. Neurobiol Aging 1981;2:251–256.

    Article  PubMed  CAS  Google Scholar 

  25. Perry EK, Johnson M, Kerwin JM, et al. Convergent cholinergic activities in aging and Alzheimer’s disease, Neurobiol Aging 1992;13:393–400.

    Article  PubMed  CAS  Google Scholar 

  26. Bird TD, Stranahan S, Sumi SM, Raskind M. Alzheimer’s disease: choline acetyltransferase activity in brain tissue from clinical and pathological subgroups. Ann Neurol 1983;14:284–293.

    Article  PubMed  CAS  Google Scholar 

  27. Beach TG, Honer WG, and Hughes LH, Cholinergic fibre loss associated with diffuse plaques in the non-demented elderly: the preclinical stage of Alzheimer’s disease? Acta Neuropathol (Berl) 1997;93:146–153.

    Article  CAS  Google Scholar 

  28. Wenk GL, Pierce DJ, Struble RG, Price DL, Cork LC. Age-related changes in multiple neurotransmitter systems in the monkey brain. Neurobiol Aging 1989;10:11–19.

    Article  PubMed  CAS  Google Scholar 

  29. Beal MF, Walker LC, Storey E, Segar L, Price DL, Cork LC. Neurotransmitters in neocortex of aged rhesus monkeys. Neurobiol Aging 1991;12:407–412.

    Article  PubMed  CAS  Google Scholar 

  30. Smith DE, Roberts J, Gage FH, Tuszynski MH. Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc Natl Acad Sci USA 1999;96:10,893–10,898.

    Article  PubMed  CAS  Google Scholar 

  31. Funato H, Yoshimura M, Kusui K, et al. Quantitation of amyloid beta-protein (A beta) in the cortex during aging and in Alzheimer’s disease. Am J Pathol 1998;152:1633–1640.

    PubMed  CAS  Google Scholar 

  32. Davies L, Wolska B, Hilbich C, et al. A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology 1988;38:1688–1693.

    PubMed  CAS  Google Scholar 

  33. Beach TG, Kuo YM, Spiegel K, et al. The cholinergic deficit coincides with Aβ deposition at the earliest histopathologic stages of Alzheimer disease. J Neuropathol Exp Neurol 2000;59:308–313.

    PubMed  CAS  Google Scholar 

  34. Katzman R, Terry R, DeTeresa R, et al. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 1988;23:138–144.

    Article  PubMed  CAS  Google Scholar 

  35. Buxbaum JD, Oishi M, Chen HI, et al. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sci USA 1992;89:10,075–10,078.

    Article  PubMed  CAS  Google Scholar 

  36. Nitsch RM, Slack BE, Wurtman RJ, Growdon JH. Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 1992;258:304–307.

    Article  PubMed  CAS  Google Scholar 

  37. Bymaster FP, Wong DT, Mitch CH, et al. Neurochemical effects of the M1 muscarinic agonist xanomeline (LY246708/NNC11-0232). J Pharmacol Exp Ther 1994;269:282–289.

    PubMed  CAS  Google Scholar 

  38. Bymaster FP, Carter PA, Peters SC, et al. Xanomeline compared to other muscarinic agents on stimulation of phosphoinositide hydrolysis in vivo and other cholinomimetic effects. Brain Res 1998;795:179–190.

    Article  PubMed  CAS  Google Scholar 

  39. Nitsch RM, Growdon JH. Role of neurotransmission in the regulation of amyloid beta-protein precursor processing. Biochem Pharmacol 1994;47:1275–1284.

    Article  PubMed  CAS  Google Scholar 

  40. Nitsch RM. From acetylcholine to amyloid: neurotransmitters and the pathology of Alzheimer’s disease. Neurodegeneration 1996;5:477–482.

    Article  PubMed  CAS  Google Scholar 

  41. Nitsch RM, Wurtman RJ, Growdon JH. Regulation of APP processing. Potential for the therapeutical reduction of brain amyloid burden. Ann NY Acad Sci 1996;777:175–182.

    Article  PubMed  CAS  Google Scholar 

  42. Haring R, Gurwitz D, Barg J, et al. Amyloid precursor protein secretion via muscarinic receptors: reduced desensitization using the M1-selective agonist AF102B. Biochem Biophys Res Commun 1994;203:652–658.

    Article  PubMed  CAS  Google Scholar 

  43. Haring R, Gurwitz D, Barg J, et al. NGF promotes amyloid precursor protein secretion via muscarinic receptor activation. Biochem Biophys Res Commun 1995;213:15–23.

    Article  PubMed  CAS  Google Scholar 

  44. Eckols K, Bymaster FP, Mitch CH, Shannon HE, Ward JS, DeLapp NW. The muscarinic M1 agonist xanomeline increases soluble amyloid precursor protein release from Chinese hamster ovary-m1 cells. Life Sci 1995;57:1183–1190.

    Article  PubMed  CAS  Google Scholar 

  45. Wolf BA, Wertkin AM, Jolly YC, et al. Muscarinic regulation of Alzheimer’s disease amyloid precursor protein secretion and amyloid beta-protein production in human neuronal NT2N cells. J Biol Chem 1995;270:4916–4922.

    Article  PubMed  CAS  Google Scholar 

  46. Hung AY, Haass C, Nitsch RM, et al. Activation of protein kinase C inhibits cellular production of the amyloid beta-protein. J Biol Chem 1993;268:22,959–22,962.

    PubMed  CAS  Google Scholar 

  47. Pittel Z, Heldman E, Barg J, Haring R, Fisher A. Muscarinic control of amyloid precursor protein secretion in rat cerebral cortex and cerebellum. Brain Res 1996;742:299–304.

    Article  PubMed  CAS  Google Scholar 

  48. Muller D, Wiegmann H, Langer U, Moltzen-Lenz S, Nitsch RM. Lu 25-109, a combined m1 agonist and m2 antagonist, modulates regulated processing of the amyloid precursor protein of Alzheimer’s disease. J Neural Transm 1998;105:1029–1043.

    Article  PubMed  CAS  Google Scholar 

  49. Muller DM, Mendla K, Farber SA, Nitsch RM. Muscarinic M1 receptor agonists increase the secretion of the amyloid precursor protein ectodomain. Life Sci 1997;60:985–991.

    Article  PubMed  CAS  Google Scholar 

  50. Farber SA, Nitsch RM, Schulz JG, Wurtman RJ. Regulated secretion of betaamyloid precursor protein in rat brain. J Neurosci 1995;15:7442–7451.

    PubMed  CAS  Google Scholar 

  51. Beach TG, Kuo Y, Schwab C, Walker DG, Roher AE. Reduction of cortical amyloid beta levels in guinea pig brain after systemic administration of physostigmine. Neurosci Lett 2001;310:21–24.

    Article  PubMed  CAS  Google Scholar 

  52. Beach TG, Walker DG, Potter PE, Sue LI, Fisher A. Reduction of cerebrospinal fluid amyloid beta after systemic administration of M1 muscarinic agonists. Brain Res 2001;905:220–223.

    Article  PubMed  CAS  Google Scholar 

  53. Lin L, Georgievska B, Mattsson A, Isacson O. Cognitive changes and modified processing of amyloid precursor protein in the cortical and hippocampal system after cholinergic synapse loss and muscarinic receptor activation. Proc Natl Acad Sci USA 1999;96:12,108–12,113.

    Article  PubMed  CAS  Google Scholar 

  54. Hock C, Maddalena A, Heuser I, et al. Treatment with the selective muscarinic agonist talsaclidine decreases cerebrospinal fluid levels of total amyloid beta-peptide in patients with Alzheimer’s disease. Ann NY Acad Sci 2000;920:285–291.

    Article  PubMed  CAS  Google Scholar 

  55. Nitsch RM, Deng M, Tennis M, Schoenfeld D, Growdon JH. The selective muscarinic M1 agonist AF102B decreases levels of total Abeta in cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 2000;48:913–918.

    Article  PubMed  CAS  Google Scholar 

  56. Wallace W, Ahlers ST, Gotlib J, et al. Amyloid precursor protein in the cerebral cortex is rapidly and persistently induced by loss of subcortical innervation. Proc Natl Acad Sci USA 1993;90:8712–8716.

    Article  PubMed  CAS  Google Scholar 

  57. Wallace WC, Bragin V, Robakis NK, et al. Increased biosynthesis of Alzheimer amyloid precursor protein in the cerebral cortex of rats with lesions of the nucleus basalis of Meynert. Brain Res Mol Brain Res 1991;10:173–178.

    Article  PubMed  CAS  Google Scholar 

  58. Wallace WC, Lieberburg I, Schenk D, Vigo-Pelfrey C, Davis KL, Haroutunian V. Chronic elevation of secreted amyloid precursor protein in subcortically lesioned rats, and its exacerbation in aged rats. J Neurosci 1995;15:4896–4905.

    PubMed  CAS  Google Scholar 

  59. Beeson JG, Shelton ER, Chan HW, Gage FH. Age and damage induced changes in amyloid protein precursor immunohistochemistry in the rat brain. J Comp Neurol 1994;342:69–77.

    Article  PubMed  CAS  Google Scholar 

  60. Leanza G. Chronic elevation of amyloid precursor protein expression in the neocortex and hippocampus of rats with selective cholinergic lesions. Neurosci Lett 1998;257:53–56.

    Article  PubMed  CAS  Google Scholar 

  61. Lin L, LeBlanc CJ, Deacon TW, Isacson O. Chronic cognitive deficits and amyloid precursor protein elevation after selective immunotoxin lesions of the basal forebrain cholinergic system. Neuroreport 1998;9:547–552.

    Article  PubMed  CAS  Google Scholar 

  62. Rossner S, Ueberham U, Yu J, et al. In vivo regulation of amyloid precursor protein secretion in rat neocortex by cholinergic activity. Eur J Neurosci 1997;9:2125–2134.

    Article  PubMed  CAS  Google Scholar 

  63. Geula C, Zhan SS. Altered processing of amyloid precursor protein following specific cholinergic denervation of rat cortex. Soc Neurosci Abstr 1997;23:820.

    Google Scholar 

  64. Beach TG, Walker DG, Cynader MS, Hughes LH. Increased beta-amyloid precursor protein mRNA in the rat cerebral cortex and hippocampus after chronic systemic atropine treatment. Neurosci Lett 1996;210:13–16.

    Article  PubMed  CAS  Google Scholar 

  65. Struble RG, Cork LC, Whitehouse PJ, Price DL. Cholinergic innervation in neuritic plaques. Science 1982;216:413–415.

    Article  PubMed  CAS  Google Scholar 

  66. Arendt T, Bigl V, Tennstedt A, Arendt A. Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience 1985;14:1–14.

    Article  PubMed  CAS  Google Scholar 

  67. Beach TG, McGeer EG. Senile plaques, amyloid beta-protein, and acetylcholinesterase fibres: laminar distributions in Alzheimer’s disease striate cortex. Acta Neuropathol (Berl) 1992;83:292–299.

    Article  CAS  Google Scholar 

  68. Arendash GW, Millard WJ, Dunn AJ, Meyer EM. Long-term neuropathological and neurochemical effects of nucleus basalis lesions in the rat. Science 1987;238:952–956.

    Article  PubMed  CAS  Google Scholar 

  69. Fuentes C, Roch G, Konig N. Light and electron microscopical observations in the nucleus basalis of Meynert and in hippocampus of the rat after injection of a cholinotoxin: degeneration and reorganization. Z Mikrosk Anat Forsch 1987;101:451–460.

    PubMed  CAS  Google Scholar 

  70. Thal LJ, Mandel RJ, Terry RD, Buzsaki G, Gage FH. Nucleus basalis lesions fail to induce senile plaques in the rat. Exp Neurol 1990;108:88–90.

    Article  PubMed  CAS  Google Scholar 

  71. DeStrooper B, Simons M, Multhaup G, Van Leuven F, Beyreuther K, Dotti CG. Production of intracellular amyloid-containing fragments in hippocampal neurons expressing human amyloid precursor protein and protection against amyloidogenesis by subtle amino acid substitutions in the rodent sequence. EMBO J 1995;14:4932–4938.

    CAS  Google Scholar 

  72. Otvos L Jr, Szendrei GI, Lee VM, Mantsch HH. Human and rodent Alzheimer beta-amyloid peptides acquire distinct conformations in membrane-mimicking solvents. Eur J Biochem 1993;211:249–257.

    Article  PubMed  CAS  Google Scholar 

  73. Reaume AG, Howland DS, Trusko SP, et al. Enhanced amyloidogenic processing of the beta-amyloid precursor protein in gene-targeted mice bearing the Swedish familial Alzheimer’s disease mutations and a “humanized” Abeta sequence. J Biol Chem 1996;271:23,380–23,388.

    Article  PubMed  CAS  Google Scholar 

  74. Davidson JS, West RL, Kotikalapudi P, Maroun LE. Sequence and methylation in the beta/A4 region of the rabbit amyloid precursor protein gene. Biochem Biophys Res Commun 1992;188:905–911.

    Article  PubMed  CAS  Google Scholar 

  75. Johnstone EM, Chaney MO, Norris FH, Pascual R, Little SP. Conservation of the sequence of the Alzheimer’s disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Brain Res Mol Brain Res 1991;10:299–305.

    Article  PubMed  CAS  Google Scholar 

  76. Johnston MV, McKinney M, Coyle JT. Evidence for a cholinergic projection to neocortex from neurons in basal forebrain. Proc Natl Acad Sci USA 1979;76:5392–5396.

    Article  PubMed  CAS  Google Scholar 

  77. Mantione CR, Fisher A, Hanin I. The AF64a-treated mouse: possible model for central cholinergic hypofunction. Science 1981;213:579–580.

    Article  PubMed  CAS  Google Scholar 

  78. Muir JL, Page KJ, Sirinathsinghji DJ, Robbins TW, Everitt BJ. Excitotoxic lesions of basal forebrain cholinergic neurons: effects on learning, memory and attention. Behav Brain Res 1993;57:123–131.

    Article  PubMed  CAS  Google Scholar 

  79. Lindefors N, Boatell ML, Mahy N, Persson H. Widespread neuronal degeneration after ibotenic acid lesioning of cholinergic neurons in the nucleus basalis revealed by in situ hybridization. Neurosci Lett 1992;135:262–264.

    Article  PubMed  CAS  Google Scholar 

  80. Book AA, Wiley RG, Schweitzer JB. Specificity of 192 IgG-saporin for NGF receptor-positive cholinergic basal forebrain neurons in the rat. Brain Res 1992;590:350–355.

    Article  PubMed  CAS  Google Scholar 

  81. Book AA, Wiley RG, Schweitzer JB. 192 IgG-saporin: I. Specific lethality for cholinergic neurons in the basal forebrain of the rat. J. Neuropathol Exp Neurol 1994;53:95–102.

    PubMed  CAS  Google Scholar 

  82. Heckers S, Ohtake T, Wiley RG, Lappi DA, Geula C, Mesulam MM. Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. J Neurosci 1994;14:1271–1289.

    PubMed  CAS  Google Scholar 

  83. Walsh TJ, Kelly RM, Dougherty KD, Stackman RW, Wiley RG, Kutscher CL. Behavioral and neurobiological alterations induced by the immunotoxin 192-IgG-saporin: cholinergic and non-cholinergic effects following icv injection. Brain Res 1995;702:233–245.

    Article  PubMed  CAS  Google Scholar 

  84. Wenk GL, Stoehr JD, Quintana G, Mobley S, Wiley RG. Behavioral, biochemical, histological, and electrophysiological effects of 192 IgG-saporin injections into the basal forebrain of rats. J Neurosci 1994;14:5986–5995.

    PubMed  CAS  Google Scholar 

  85. Wiley RG, Oeltmann TN, Lappi DA. Immunolesioning: selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Res 1991;562:149–153.

    Article  PubMed  CAS  Google Scholar 

  86. Fine A, Hoyle C, Maclean CJ, Levatte TL, Baker HF, Ridley RM. Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of Meynert in monkeys. Neuroscience 1997;81:331–343.

    Article  PubMed  CAS  Google Scholar 

  87. Fuller SJ, Storey E, Li QX, Smith AI, Beyreuther K, Masters CL. Intracellular production of beta A4 amyloid of Alzheimer’s disease: modulation by phosphoramidon and lack of coupling to the secretion of the amyloid precursor protein. Biochemistry 1995;34:8091–8098.

    Article  PubMed  CAS  Google Scholar 

  88. Petanceska SS, Nagy V, Frail D, Gandy S. Ovariectomy and 17beta-estradiol modulate the levels of Alzheimer’s amyloid beta peptides in brain. Exp Gerontol 2000;35:1317–1325.

    Article  PubMed  CAS  Google Scholar 

  89. Savage MJ, Trusko SP, Howland DS, et al. Turnover of amyloid beta-protein in mouse brain and acute reduction of its level by phorbol ester. J Neurosci 1998;18:1743–1752.

    PubMed  CAS  Google Scholar 

  90. Vincent B, Smith JD. Effect of estradiol on neuronal Swedish-mutated betaamyloid precursor protein metabolism: reversal by astrocytic cells. Biochem Biophys Res Commun 2000;271:82–85.

    Article  PubMed  CAS  Google Scholar 

  91. Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE. Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 1998;153:725–733.

    PubMed  CAS  Google Scholar 

  92. Weller RO, Massey A, Kuo YM, Roher AE. Cerebral amyloid angiopathy: accumulation of A beta in interstitial fluid drainage pathways in Alzheimer’s disease. Ann NY Acad Sci 2000;903:110–117.

    Article  PubMed  CAS  Google Scholar 

  93. Bowen DM, Benton JS, Spillane JA, Smith CC, Allen SJ. Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J Neurol Sci 1982;57:191–202.

    Article  PubMed  CAS  Google Scholar 

  94. Bowen DM, Allen SJ, Benton JS, et al. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem 1983;41:266–272.

    Article  PubMed  CAS  Google Scholar 

  95. Francis PT, Palmer AM, Sims NR, et al. Neurochemical studies of earlyonset Alzheimer’s disease. Possible influence on treatment. N Engl J Med 1985;313:7–11.

    Article  PubMed  CAS  Google Scholar 

  96. Francis PT, Webster MT, Chessell IP, et al. Neurotransmitters and second messengers in aging and Alzheimer’s disease. Ann NY Acad Sci 1993;695:19–26.

    Article  PubMed  CAS  Google Scholar 

  97. Lowe SL, Francis PT, Procter AW, Palmer AM, Davison AN, Bowen DM. Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease. Brain 1988;111:785–799.

    Article  PubMed  Google Scholar 

  98. Perry EK, Perry RH. A review of neuropathological and neurochemical correlates of Alzheimer’s disease. Dan Med Bull 1985;32(suppl 32):27–34.

    PubMed  CAS  Google Scholar 

  99. Palmer AM, Gershon S. Is the neuronal basis of Alzheimer’s disease cholinergic or glutamatergic? FASEB J 1990;4:2745–2752.

    PubMed  CAS  Google Scholar 

  100. Palmer AM. Neurochemical studies of Alzheimer’s disease. Neurodegeneration 1996;5:381–391.

    Article  PubMed  CAS  Google Scholar 

  101. Procter AW, Lowe SL, Palmer AM, et al. Topographical distribution of neurochemical changes in Alzheimer’s disease. J Neurol Sci 1988;84:125–140.

    Article  PubMed  CAS  Google Scholar 

  102. Procter AW. Neurochemical correlates of dementia. Neurodegeneration 1996;5:403–407.

    Article  PubMed  CAS  Google Scholar 

  103. Davis KL, Mohs RC, Marin D, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 1999;281:1401–1406.

    Article  PubMed  CAS  Google Scholar 

  104. DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002;51:145–155.

    Article  PubMed  CAS  Google Scholar 

  105. Gilmor ML, Erickson JD, Varoqui H, et al. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 1999;411:693–704.

    Article  PubMed  CAS  Google Scholar 

  106. Tiraboschi P, Hansen LA, Alford M, Masliah E, Thal LJ, Corey-Bloom J. The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease. Neurology 2000;55:1278–1283.

    PubMed  CAS  Google Scholar 

  107. Pearson RC, Powell TP. Anterograde vs retrograde degeneration of the nucleus basalis medialis in Alzheimer’s disease. J Neural Transm 1987;24:139–146.

    CAS  Google Scholar 

  108. Beach TG, Sue LI, Scott S, Sparks DL. Neurofibrillary tangles are constant in aging human nucleus basalis. Alzheimer’s Rep 1998;1:375–380.

    Google Scholar 

  109. Sassin I, Schultz C, Thal DR, et al. Evolution of Alzheimer’s disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathol (Berl) 2000;100:259–269.

    Article  CAS  Google Scholar 

  110. Minger SL, and Davies P. Persistent innervation of the rat neocortex by basal forebrain cholinergic neurons despite the massive reduction of cortical target neurons. I. Morphometric analysis. Exp Neurol 1992;117:124–138.

    Article  PubMed  CAS  Google Scholar 

  111. Gau JT, Steinhilb ML, Kao TC, et al. Stable beta-secretase activity and presynaptic cholinergic markers during progressive central nervous system amyloidogenesis in Tg2576 mice. Am J Pathol 2002;160:731–738.

    PubMed  CAS  Google Scholar 

  112. Jaffar S, Counts SE, Ma SY, et al. Neuropathology of mice carrying mutant APP(swe) and/or PS1 (M146L) transgenes: alterations in the p75 (NTR) cholinergic basal forebrain septohippocampal pathway. Exp Neurol 2001;170:227–243.

    Article  PubMed  CAS  Google Scholar 

  113. Bronfman FC, Moechars D, Van Leuven F. Acetylcholinesterase-positive fiber deafferentation and cell shrinkage in the septohippocampal pathway of aged amyloid precursor protein London mutant transgenic mice. Neurobiol Dis 2000;7:152–168.

    Article  PubMed  CAS  Google Scholar 

  114. Hernandez D, Sugaya K, Qu T, McGowan E, Duff K, McKinney M. Survival and plasticity of basal forebrain cholinergic systems in mice transgenic for presenilin-1 and amyloid precursor protein mutant genes. Neuroreport 2001;12:1377–1384.

    Article  PubMed  CAS  Google Scholar 

  115. Wong TP, Debeir T, Duff K, Cuello AC. Reorganization of cholinergic terminals in the cerebral cortex and hippocampus in transgenic mice carrying mutated presenilin-1 and amyloid precursor protein transgenes. J Neurosci 1999;19:2706–2716.

    PubMed  CAS  Google Scholar 

  116. Boncristiano S, Calhoun ME, Kelly PH, et al. Cholinergic changes in the APP23 transgenic mouse model of cerebral amyloidosis. J Neurosci 2002;22:3234–3243.

    PubMed  CAS  Google Scholar 

  117. Beach TG, Tago H, Nagai T, Kimura H, McGeer PL, McGeer EG. Perfusionfixation of the human brain for immunohistochemistry: comparison with immersion-fixation. J Neurosci Methods 1987;19:183–192.

    Article  PubMed  CAS  Google Scholar 

  118. Tago H, Kimura H, Maeda T. Visualization of detailed acetylcholinesterase fiber and neuron staining in rat brain by a sensitive histochemical procedure. J Histochem Cytochem 1986;34:1431–1438.

    PubMed  CAS  Google Scholar 

  119. Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1991;1:213–216.

    PubMed  CAS  Google Scholar 

  120. Beach TG, McGeer EG. Cholinergic fiber loss occurs in the absence of synaptophysin depletion in Alzheimer’s disease primary visual cortex. Neurosci Lett 1992;142:253–256.

    Article  PubMed  CAS  Google Scholar 

  121. Geula C, Mesulam MM. Cortical cholinergic fibers in aging and Alzheimer’s disease: a morphometric study. Neuroscience 1989;33:469–481.

    Article  PubMed  CAS  Google Scholar 

  122. Fonnum F. Radiochemical micro assays for the determination of choline acetyltransferase and acetylcholinesterase activities. Biochem J 1969;115:465–472.

    PubMed  CAS  Google Scholar 

  123. Kuo YM, Crawford F, Mullan M, et al. Elevated A beta and apolipoprotein E in A betaPP transgenic mice and its relationship to amyloid accumulation in Alzheimer’s disease. Mol Med 2000;6:430–439.

    PubMed  CAS  Google Scholar 

  124. Johnson-Wood K, Lee M, Motter R, et al. Amyloid precursor protein processing and A β42 deposition in a transgenic mouse model of Alzheimer disease. Proc Natl Acad Sci USA 1997;94:1550–1555.

    Article  PubMed  CAS  Google Scholar 

  125. Mehta PD, Dalton AJ, Mehta SP, Kim KS, Sersen EA, Wisniewski HM. Increased plasma amyloid beta protein 1-42 levels in Down syndrome. Neurosci Lett 1998;241:13–16.

    Article  PubMed  CAS  Google Scholar 

  126. Mehta PD, Pirttila T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM. Plasma and cerebrospinal fluid levels of amyloid beta proteins 1-40 and 1-42 in Alzheimer disease. Arch Neurol 2000;57:100–105.

    Article  PubMed  CAS  Google Scholar 

  127. Woodruff-Pak DS, Trojanowski JQ. The older rabbit as an animal model: implications for Alzheimer’s disease. Neurobiol Aging 1996;17:283–290.

    Article  PubMed  CAS  Google Scholar 

  128. Ramirez MJ, Heslop KE, Francis PT, Rattray M. Expression of amyloid precursor protein, tau and presenilin RNAs in rat hippocampus following deafferentation lesions. Brain Res 2001;907:222–232.

    Article  PubMed  CAS  Google Scholar 

  129. Apelt J, Schliebs R, Beck M, Rossner S, Bigl V. Expression of amyloid precursor protein mRNA isoforms in rat brain is differentially regulated during postnatal maturation and by cholinergic activity. Int J Dev Neurosci 1997;15:95–112.

    Article  PubMed  CAS  Google Scholar 

  130. Borchelt DR, Ratovitski T, van Lare J, et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 1997;19:939–945.

    Article  PubMed  CAS  Google Scholar 

  131. Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K. Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzheimer’s disease. J Mol Biol 1991;218:149–163.

    Article  PubMed  CAS  Google Scholar 

  132. Jarrett JT, Berger EP, Lansbury PTJ. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 1993;32:4693–4697.

    Article  PubMed  CAS  Google Scholar 

  133. Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ. Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 1996;3:16–32.

    Article  PubMed  CAS  Google Scholar 

  134. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of A beta 42 (43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42 (43). Neuron 1994;13:45–53.

    Article  PubMed  CAS  Google Scholar 

  135. Iwatsubo T, Mann DM, Odaka A, Suzuki N, Ihara Y. Amyloid beta protein (A beta) deposition: A beta 42 (43) precedes A beta 40 in Down syndrome. Ann Neurol 1995;37:294–299.

    Article  PubMed  CAS  Google Scholar 

  136. Duff K. Alzheimer transgenic mouse models come of age. Trends Neurosci 1997;20:279–280.

    Article  PubMed  CAS  Google Scholar 

  137. Revesz T, Holton JL, Lashley T, et al. Sporadic and familial cerebral amyloid angiopathies. Brain Pathol 2002;12:343–357.

    Article  PubMed  Google Scholar 

  138. Sturchler-Pierrat C, Abramowski D, Duke M, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci USA 1997;94:13,287–13,292.

    Article  PubMed  CAS  Google Scholar 

  139. Sturchler-Pierrat C, Staufenbiel M. Pathogenic mechanisms of Alzheimer’s disease analyzed in the APP23 transgenic mouse model. Ann NY Acad Sci 2000;920:134–139.

    Article  PubMed  CAS  Google Scholar 

  140. Van Dorpe J, Smeijers L, Dewachter I, et al. Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the London mutant of human APP in neurons. Am J Pathol 2000;157:1283–1298.

    PubMed  CAS  Google Scholar 

  141. Burgermeister P, Calhoun ME, Winkler DT, Jucker M. Mechanisms of cerebrovascular amyloid deposition. Lessons from mouse models. Ann NY Acad Sci 2000;903:307–316.

    Article  PubMed  CAS  Google Scholar 

  142. Hohmann GF, Wenk GL, Lowenstein P, Brown ME, Coyle JT. Age-related recurrence of basal forebrain lesion-induced cholinergic deficits. Neurosci Lett 1987;82:253–259.

    Article  PubMed  CAS  Google Scholar 

  143. Casamenti F, Di Patre PL, Bartolini L, Pepeu G. Unilateral and bilateral nucleus basalis lesions: differences in neurochemical and behavioural recovery. Neuroscience 1988;24:209–215.

    Article  PubMed  CAS  Google Scholar 

  144. Nakamura S, Kawamoto Y, Nakano S, Akiguchi I, Kimura J. p35nck5a and cyclin-dependent kinase 5 colocalize in Lewy bodies of brains with Parkinson’s disease. Acta Neuropathol (Berl) 1997;94:153–157.

    Article  CAS  Google Scholar 

  145. Cossette P, Umbriaco D, Zamar N, Hamel E, Descarries L. Recovery of choline acetyltransferase activity without sprouting of the residual acetylcholine innervation in adult rat cerebral cortex after lesion of the nucleus basalis. Brain Res 1993;630:195–206.

    Article  PubMed  CAS  Google Scholar 

  146. Zhang Z-J, Lappi DA, Wrenn CC, Milner TA, Wiley RG. Selective lesion of the cholinergic basal forebrain causes a loss of cortical neuropeptide Y and somatostatin neurons. Brain Res 1998;800:198–206.

    Article  PubMed  CAS  Google Scholar 

  147. Bartus RT, Flicker C, Dean RL, Pontecorvo M, Figueiredo JC, Fisher SK. Selective memory loss following nucleus basalis lesions: long term behavioral recovery despite persistent cholinergic deficiencies. Pharmacol Biochem Behav 1985;23:125–135.

    Article  PubMed  CAS  Google Scholar 

  148. Bartus RT, Pontecorvo MJ, Flicker C, Dean RL, Figueiredo JC. Behavioral recovery following bilateral lesions of the nucleus basalis does not occur spontaneously. Pharmacol Biochem Behav 1986;24:1287–1292.

    Article  PubMed  CAS  Google Scholar 

  149. Ojima H, Sakurai T, Yamasaki T. Changes in choline acetyltransferase immunoreactivity and the number of immunoreactive fibers remaining after lesions to the magnocellular basal nucleus of rats. Neurosci Lett 1988;95:31–36.

    Article  PubMed  CAS  Google Scholar 

  150. Gomeza J, Aragon C, Gimenez C. High-affinity transport of choline and amino acid neurotransmitters in synaptosomes from brain regions after lesioning the nucleus basalis magnocellularis of young and aged rats. Neurochem Res 1992;17:345–350.

    Article  PubMed  CAS  Google Scholar 

  151. Connor DJ, Thal LJ, Mandel RJ, Langlais PJ, Masliah E. Independent effects of age and nucleus basalis magnocellularis lesion: maze learning, cortical neurochemistry, and morphometry. Behav Neurosci 1992;106:776–788.

    Article  PubMed  CAS  Google Scholar 

  152. Nakamura S, Ishihara T. Task-dependent memory loss and recovery following unilateral nucleus basalis lesion: behavioral and neurochemical correlation. Behav Brain Res 1990;39:113–122.

    Article  PubMed  CAS  Google Scholar 

  153. Games D, Adams D, Alessandrini R, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 1995;373:523–527.

    Article  PubMed  CAS  Google Scholar 

  154. Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996;274:99–102.

    Article  PubMed  CAS  Google Scholar 

  155. Roberts GW, Allsop D, Bruton C. The occult aftermath of boxing. J Neurol Neurosurg Psychiatry 1990;53:373–378.

    Article  PubMed  CAS  Google Scholar 

  156. Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1994;57:419–425.

    PubMed  CAS  Google Scholar 

  157. Gentleman SM, Greenberg BD, Savage MJ, et al. A beta 42 is the predominant form of amyloid beta-protein in the brains of short-term survivors of head injury. Neuroreport 1997;8:1519–1522.

    Article  PubMed  CAS  Google Scholar 

  158. Graham DI, Gentleman SM, Lynch A, Roberts GW. Distribution of betaamyloid protein in the brain following severe head injury. Neuropathol Appl Neurobiol 1995;21:27–34.

    Article  PubMed  CAS  Google Scholar 

  159. Emmerling MR, Morganti-Kossmann MC, Kossmann T, et al. Traumatic brain injury elevates the Alzheimer’s amyloid peptide A beta 42 in human CSF. A possible role for nerve cell injury. Ann NY Acad Sci 2000;903:118–122.

    Article  PubMed  CAS  Google Scholar 

  160. Raby CA, Morganti-Kossmann MC, Kossmann T, et al. Traumatic brain injury increases beta-amyloid peptide 1-42 in cerebrospinal fluid. J Neurochem 1998;71:2505–2509.

    Article  PubMed  CAS  Google Scholar 

  161. Nakagawa Y, Reed L, Nakamura M, et al. Brain trauma in aged transgenic mice induces regression of established abeta deposits. Exp Neurol 2000;163:244–252.

    Article  PubMed  CAS  Google Scholar 

  162. Wrenn CC, Picklo MJ, Lappi DA, Robertson D, Wiley RG. Central noradrenergic lesioning using anti-DBH-saporin: anatomical findings. Brain Res 1996;740:175–184.

    Article  PubMed  CAS  Google Scholar 

  163. Fisher A. Therapeutic strategies in Alzheimer’s disease: M1 muscarinic agonists. Jpn J Pharmacol 2000;84:101–112.

    Article  PubMed  CAS  Google Scholar 

  164. Czepita D. Influence of alpha and beta-adrenergic stimulators and blockers on the electroretinogram and visually evoked potentials of the rabbit. Biomed Biochim Acta 1990;49:509–513.

    PubMed  CAS  Google Scholar 

  165. Liu L, Ikonen S, Heikkinen T, Tapiola T, van Groen T, Tanila H. The effects of long-term treatment with metrifonate, a cholinesterase inhibitor, on cholinergic activity, amyloid pathology, and cognitive function in APP and PS1 doubly transgenic mice. Exp Neurol 2002;173:196–204.

    Article  PubMed  CAS  Google Scholar 

  166. Nordberg A, Hellstrom-Lindahl E, Lee M, et al. Chronic nicotine treatment reduces beta-amyloidosis in the brain of a mouse model of Alzheimer’s disease (APPsw). J Neurochem 2002;81:655–658.

    Article  PubMed  CAS  Google Scholar 

  167. Basun H, Nilsberth C, Eckman C, Lannfelt L, Younkin S. Plasma Levels of Abeta42 and Abeta40 in Alzheimer patients during treatment with the acetylcholinesterase inhibitor tacrine. Dement Geriatr Cogn Disord 2002;14:156–160.

    Article  PubMed  CAS  Google Scholar 

  168. Darreh-Shori T, Almkvist O, Guan ZZ, et al. Sustained cholinesterase inhibition in AD patients receiving rivastigmine for 12 months. Neurology 2002;59:563–572.

    PubMed  CAS  Google Scholar 

  169. Rakonczay Z, Papp H. Effects of chronic metrifonate treatment on cholinergic enzymes and the blood-brain barrier. Neurochem Int 2001;39:19–24.

    Article  PubMed  CAS  Google Scholar 

  170. Racchi M, Sironi M, Caprera A, Konig G, Govoni S. Short-and long-term effect of acetylcholinesterase inhibition on the expression and metabolism of the amyloid precursor protein. Mol Psychiatry 2001;6:520–528.

    Article  PubMed  CAS  Google Scholar 

  171. Lahiri DK, Farlow MR, Hintz N, Utsuki T, Greig NH. Cholinesterase inhibitors, beta-amyloid precursor protein and amyloid beta-peptides in Alzheimer’s disease. Acta Neurol Scand 2000;176:60–67.

    Article  CAS  Google Scholar 

  172. Tomidokoro Y, Ishiguro K, Harigaya Y, et al. Abeta amyloidosis induces the initial stage of tau accumulation in APP(Sw) mice. Neurosci Lett 2001;299:169–172.

    Article  PubMed  CAS  Google Scholar 

  173. Tomidokoro Y, Harigaya Y, Matsubara E, et al. Brain Abeta amyloidosis in APPsw mice induces accumulation of presenilin-1 and tau. J Pathol 2001;194:500–506.

    Article  PubMed  CAS  Google Scholar 

  174. Masliah E, Sisk A, Mallory M, Games D. Neurofibrillary pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. J Neuropathol Exp Neurol 2001;60:357–368.

    PubMed  CAS  Google Scholar 

  175. Mucke L, Masliah E, Yu GQ, et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 2000;20:4050–4058.

    PubMed  CAS  Google Scholar 

  176. Rockenstein E, Mallory M, Mante M, Sisk A, Masliaha E. Early formation of mature amyloid-beta protein deposits in a mutant APP transgenic model depends on levels of Aβ(1-42). J Neurosci Res 2001;66:573–582.

    Article  PubMed  CAS  Google Scholar 

  177. Bondolfi L, Calhoun M, Ermini F, et al. Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. J Neurosci 2002;22:515–522.

    PubMed  CAS  Google Scholar 

  178. Moran PM, Higgins LS, Cordell B, Moser PC. Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human betaamyloid precursor protein. Proc Natl Acad Sci USA 1995;92:5341–5345.

    Article  PubMed  CAS  Google Scholar 

  179. Holcomb L, Gordon MN, McGowan E, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 1998;4:97–100.

    Article  PubMed  CAS  Google Scholar 

  180. Dewachter I, Van Dorpe J, Spittaels K, et al. Modeling Alzheimer’s disease in transgenic mice: effect of age and of presenilin1 on amyloid biochemistry and pathology in APP/London mice. Exp Gerontol 2000;35:831–841.

    Article  PubMed  CAS  Google Scholar 

  181. Xu G, Gonzales V, Borchelt DR. Abeta deposition does not cause the aggregation of endogenous tau in transgenic mice. Alzheimer Dis Assoc Disord 2002;16:196–201.

    Article  PubMed  CAS  Google Scholar 

  182. Richardson JA, Burns DK. Mouse models of Alzheimer’s disease: a quest for plaques and tangles. ILAR J 2002;43:89–99.

    PubMed  CAS  Google Scholar 

  183. Streit WJ. An improved staining method for rat microglial cells using the lectin from Griffonia simplicifolia (GSA I-B4). J Histochem Cytochem 1990;38:1683–1686.

    PubMed  CAS  Google Scholar 

  184. Honer WG, Dickson DW, Gleeson J, Davies P. Regional synaptic pathology in Alzheimer’s disease. Neurobiol Aging 1992;13:375–382.

    Article  PubMed  CAS  Google Scholar 

  185. Honer WG, Falkai P, Young C, et al. Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 1997;78:99–110.

    Article  PubMed  CAS  Google Scholar 

  186. Richardson PJ. Quantitation of cholinergic synaptosomes from guinea pig brain. J Neurochem 1981;37:258–260.

    Article  PubMed  CAS  Google Scholar 

  187. Irizarry MC, Soriano F, McNamara M, et al. Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 1997;17:7053–7059.

    PubMed  CAS  Google Scholar 

  188. Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 1997;56:965–973.

    PubMed  CAS  Google Scholar 

  189. Mucke L, Yu GQ, McConlogue L, et al. Astroglial expression of human alpha(1)-antichymotrypsin enhances Alzheimer-like pathology in amyloid protein precursor transgenic mice. Am J Pathol 2000;157:2003–2010.

    PubMed  CAS  Google Scholar 

  190. Oster-Granite ML, McPhie DL, Greenan J, Neve RL. Age-dependent neuronal and synaptic degeneration in mice transgenic for the C terminus of the amyloid precursor protein. J Neurosci 1996;16:6732–6741.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Beach, T.G. et al. (2005). Cortical Cholinergic Deafferentation Induces Aβ Deposition. In: Wiley, R.G., Lappi, D.A. (eds) Molecular Neurosurgery With Targeted Toxins. Humana Press. https://doi.org/10.1007/978-1-59259-896-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-896-0_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-199-8

  • Online ISBN: 978-1-59259-896-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics