Skip to main content

Development of Oncolytic Adenoviruses

From the Lab Bench to the Bedside

  • Chapter
Cancer Gene Therapy

Part of the book series: Contemporary Cancer Research ((CCR))

  • 1034 Accesses

Abstract

Understanding of the molecular basis of oncogenesis has increased dramatically over the past 30 years, partly because of key discoveries about the biology of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) tumor viruses, enabled in turn by development of modern molecular biology. Despite great advances in basic research, progress in treatment has been limited, and cancer remains the second leading cause of death in the United States. Current drug therapy continues to be dominated by highly toxic drugs that increase susceptibility to severe infections and to long-term genetic damage that can result in secondary malignancies. These toxicities are primarily attributable to lack of specificity for tumor cells and consequent destruction of rapidly dividing normal cells in the bone marrow and GI tract. New agents with novel mechanisms of action and improved therapeutic indexes are therefore required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swisher, S. G., Roth, J. A., and Carbone, D. P. (2002) Genetic and immunologic therapies for lung cancer. Semin. Oncol. 29, 95–101.

    Article  PubMed  CAS  Google Scholar 

  2. Smith, R. R., Huebner, R. J., Rowe, W. P., Schatten, W. F., and Thomas, L. B. (1956) Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 9, 1211–1218.

    Article  PubMed  Google Scholar 

  3. Bischoff, J. R., Kirn, D. H., Williams, A., et al. (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376.

    Article  PubMed  CAS  Google Scholar 

  4. Rodriguez, R., Schuur, E. R., Lim, H. Y., Henderson, G. A., Simons, J. W., and Henderson, D. R. (1997) Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563.

    PubMed  CAS  Google Scholar 

  5. Prives, C. and Hall, P. A. (1999) The p53 pathway. J. Pathol. 187, 112–126.

    Article  PubMed  CAS  Google Scholar 

  6. Sherr, C. J. and Weber, J. D. (2000) The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99.

    Article  PubMed  CAS  Google Scholar 

  7. Nahle, Z., Polakoff, J., Davuluri, R. V., et al. (2002) Direct coupling of the cell cycle and cell death machinery by E2F. Nat. Cell Biol. 4, 859–864.

    Article  PubMed  CAS  Google Scholar 

  8. Dyson, N. (1998) The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262.

    PubMed  CAS  Google Scholar 

  9. de Stanchina, E., McCurrach, M. E., Zindy, F., et al. (1998) E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12, 2434–2442.

    PubMed  Google Scholar 

  10. Yew, P. R. and Berk, A. J. (1992) Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357, 82–85.

    Article  PubMed  CAS  Google Scholar 

  11. Somasundaram, K. and El-Deiry, W. S. (1997) Inhibition of p53-mediated transactivation and cell cycle arrest by E1A through its p300/CBP-interacting region. Oncogene 14, 1047–1057.

    Article  PubMed  CAS  Google Scholar 

  12. Chakravarti, D., Ogryzko, V., Kao, H. Y., et al. (1999) A viral mechanism for inhibition of p300-and PCAF acetyl-transferase activity. Cell 96, 393–403.

    Article  PubMed  CAS  Google Scholar 

  13. Barker, D. D. and Berk, A. J. (1987) Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156, 107–121.

    Article  PubMed  CAS  Google Scholar 

  14. Babiss, L. E. and Ginsberg, H. S. (1984) Adenovirus type 5 early region 1b gene product is required for efficient shutoff of host protein synthesis. J. Virol. 50, 202–212.

    PubMed  CAS  Google Scholar 

  15. Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D. D., and Kirn, D. H. (1997) ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med. 3, 639–645.

    Article  PubMed  CAS  Google Scholar 

  16. Alemany, R., Balague, C., and Curiel, D. T. (2000) Replicative adenoviruses for cancer therapy. Nat. Biotechnol. 18, 723–727.

    Article  PubMed  CAS  Google Scholar 

  17. Goodrum, F. D. and Ornelles, D. A. (1998) p53-status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J. Virol. 72, 9479–9490.

    PubMed  CAS  Google Scholar 

  18. Pilder, S., Moore, M., Logan, J., and Shenk, T. (1986) The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol. Cell. Biol. 6, 470–476.

    PubMed  CAS  Google Scholar 

  19. Harada, J. N. and Berk, A. J. (1999) p53-Independent and-dependent requirements for E1B-55K in adenovirus type 5 replication. J. Virol. 73, 5333–5344.

    PubMed  CAS  Google Scholar 

  20. Shen, Y., Kitzes, G., Nye, J. A., Fattaey, A., and Hermiston, T. (2001) Analyses of single-amino-acid substitution mutants of adenovirus type 5 E1B-55K protein. J. Virol. 75, 4297–4307.

    Article  PubMed  CAS  Google Scholar 

  21. Fueyo, J., Gomez-Manzano, C., Alemany, R., et al. (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19, 2–12.

    Article  PubMed  CAS  Google Scholar 

  22. Heise, C., Hermiston, T., Johnson, L., et al. (2000) An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat. Med. 6, 1134–1139.

    Article  PubMed  CAS  Google Scholar 

  23. Balague, C., Noya, F., Alemany, R., Chow, L. T., and Curiel, D. T. (2001) Human papillomavirus E6E7-mediated adenovirus cell killing: selectivity of mutant adenovirus replication in organotypic cultures of human keratinocytes. J. Virol. 75, 7602–7611.

    Article  PubMed  CAS  Google Scholar 

  24. Wang, H. G., Draetta, G., and Moran, E. (1991) E1A induces phosphorylation of the retinoblastoma protein independently of direct physical association between the E1A and retinoblastoma products. Mol. Cell Biol. 11, 4253–4265.

    PubMed  CAS  Google Scholar 

  25. O’Connor, R. J. and Hearing, P. (2000) The E4-6/7 protein functionally compensates for the loss of E1A expression in adenovirus infection. J. Virol. 74, 5819–5824.

    Article  PubMed  CAS  Google Scholar 

  26. Howe, J., Demers, G. W., Johnson, D. E., et al. (2000) Evaluation of E1-mutant adenoviruses as conditionally replicating agents for cancer therapy. Mol. Ther. 2, 485–495.

    Article  PubMed  CAS  Google Scholar 

  27. Doronin, K., Toth, K., Kuppuswamy, M., Ward, P., Tollefson, A. E., and Wold, W. S. (2000) Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J. Virol. 74, 6147–6155.

    Article  PubMed  CAS  Google Scholar 

  28. DeWeese, T. L., van der Poel, H., Li, S., et al. (2001) A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res. 61, 7464–7472.

    PubMed  CAS  Google Scholar 

  29. Yu, D. C., Chen, Y., Seng, M., Dilley, J., and Henderson, D. R. (1999) The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res. 59, 4200–4203.

    PubMed  CAS  Google Scholar 

  30. Hallenbeck, P. L., Chang, Y. N., Hay, C., et al. (1999) A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum. Gene Ther. 10, 1721–1733.

    Article  PubMed  CAS  Google Scholar 

  31. Kim, J., Lee, B., Kim, J. S., et al. (2002) Antitumoral effects of recombinant adenovirus YKL-1001, conditionally replicating in alpha-fetoprotein-producing human liver cancer cells. Cancer Lett. 180, 23–32.

    Article  PubMed  CAS  Google Scholar 

  32. Takahashi, M., Sato, T., Sagawa, T., et al. (2002) E1B-55K-deleted adenovirus expressing E1A-13S by AFP-enhancer/promoter is capable of highly specific replication in AFP-producing hepatocellular carcinoma and eradication of established tumor. Mol. Ther. 5, 627–634.

    Article  PubMed  CAS  Google Scholar 

  33. Khuri, F. R., Nemunaitis, J., Ganly, I., et al. (2000) A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat. Med. 6, 879–885.

    Article  PubMed  CAS  Google Scholar 

  34. Hernandez-Alcoceba, R., Pihalja, M., Wicha, M. S., and Clarke, M. F. (2000) A novel, conditionally replicative adenovirus for the treatment of breast cancer that allows controlled replication of E1a-deleted adenoviral vectors. Hum. Gene Ther. 11, 2009–2024.

    Article  PubMed  CAS  Google Scholar 

  35. Brunori, M., Malerba, M., Kashiwazaki, H., and Iggo, R. (2001) Replicating adenoviruses that target tumors with constitutive activation of the wnt signaling pathway. J. Virol. 75, 2857–2865.

    Article  PubMed  CAS  Google Scholar 

  36. Fuerer, C. and Iggo, R. (2002) Adenoviruses with Tcf binding sites in multiple early promoters show enhanced selectivity for tumour cells with constitutive activation of the wnt signalling pathway. Gene Ther. 9, 270–281.

    Article  PubMed  CAS  Google Scholar 

  37. Tsukuda, K., Wiewrodt, R., Molnar-Kimber, K., Jovanovic, V. P., and Amin, K. M. (2002) An E2F-responsive replication-selective adenovirus targeted to the defective cell cycle in cancer cells: potent antitumoral efficacy but no toxicity to normal cell. Cancer Res. 62, 3438–3447.

    PubMed  CAS  Google Scholar 

  38. Johnson, L., Shen, A., Boyle, L., et al. (2002) Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell 1, 325–337.

    Article  PubMed  CAS  Google Scholar 

  39. Savontaus, M. J., Sauter, B. V., Huang, T. G., and Woo, S. L. (2002) Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells. Gene Ther. 9, 972–979.

    Article  PubMed  CAS  Google Scholar 

  40. Ramachandra, M., Rahman, A., Zou, A., et al. (2001) Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat. Biotechnol. 19, 1035–1041.

    Article  PubMed  CAS  Google Scholar 

  41. Antelman, D., Gregory, R. J., and Wills, K. N. (2000) Retinoblastoma fusion polypeptides. In US Patent and Trademark Office. Canji, San Diego, CA, patent number 6,074,850.

    Google Scholar 

  42. White, E., Faha, B., and Stillman, B. (1986) Regulation of adenovirus gene expression in human WI38 cells by an E1B-encoded tumor antigen. Mol. Cell. Biol. 6, 3763–3773.

    PubMed  CAS  Google Scholar 

  43. Tollefson, A. E., Ryerse, J. S., Scaria, A., Hermiston, T. W., and Wold, W. S. (1996) The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants. Virology 220, 152–162.

    Article  PubMed  CAS  Google Scholar 

  44. Tollefson, A. E., Scaria, A., Hermiston, T. W., Ryerse, J. S., Wold, L. J., and Wold, W. S. (1996) The adenovirus death protein (E3-11.6K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J. Virol. 70, 2296–2306.

    PubMed  CAS  Google Scholar 

  45. Lavoie, J. N., Nguyen, M., Marcellus, R. C., Branton, P. E., and Shore, G. C. (1998) E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J. Cell Biol. 140, 637–645.

    Article  PubMed  CAS  Google Scholar 

  46. Marcellus, R. C., Chan, H., Paquette, D., Thirlwell, S., Boivin, D., and Branton, P. E. (2000) Induction of p53-independent apoptosis by the adenovirus E4orf4 protein requires binding to the Balpha subunit of protein phosphatase 2A. J. Virol. 74, 7869–7877.

    Article  PubMed  CAS  Google Scholar 

  47. Marcellus, R. C., Lavoie, J. N., Boivin, D., Shore, G. C., Ketner, G., and Branton, P. E. (1998) The early region 4 orf4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J. Virol. 72, 7144–7153.

    PubMed  CAS  Google Scholar 

  48. Duque, P. M., Alonoso, C., Sanchez-Prieto, R., et al. (1999) Adenovirus lacking the 19-kDa and 55-kDa E1B genes exerts a marked cytotoxic effect in human malignant cells. Cancer Gene Ther. 6, 554–563.

    Article  PubMed  CAS  Google Scholar 

  49. Harrison, D., Sauthoff, H., Heitner, S., Jagirdar, J., Rom, W. N., and Hay, J. G. (2001) Wild-type adenovirus decreases tumor xenograft growth, but despite viral persistence complete tumor responses are rarely achieved—deletion of the viral E1b-19-kD gene increases the viral oncolytic effect. Hum. Gene Ther. 12, 1323–1332.

    Article  PubMed  CAS  Google Scholar 

  50. Sauthoff, H., Heitner, S., Rom, W. N., and Hay, J. G. (2000) Deletion of the adenoviral E1b-19kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum. Gene Ther. 11, 379–388.

    Article  PubMed  CAS  Google Scholar 

  51. Tollefson, A. E., Scaria, A., Saha, S. K., and Wold, W. S. (1992) The 11,600-MW protein encoded by region E3-of adenovirus is expressed early but is greatly amplified at late stages of infection. J. Virol. 66, 3633–3642.

    PubMed  CAS  Google Scholar 

  52. You, L., Yang, C. T., and Jablons, D. M. (2000) ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients. Cancer Res. 60, 1009–1013.

    PubMed  CAS  Google Scholar 

  53. Li, Y., Yu, D. C., Chen, Y., et al. (2001) A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res. 61, 6428–6436.

    PubMed  CAS  Google Scholar 

  54. Yu, D. C., Chen, Y., Dilley, J., et al. (2001) Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res. 61, 517–525.

    PubMed  CAS  Google Scholar 

  55. Zhou, Z., Jia, S. F., Hung, M. C., and Kleinerman, E. S. (2001) E1A sensitizes HER2/neu-overexpressing Ewing’s sarcoma cells to topoisomerase II-targeting anticancer drugs. Cancer Res. 61, 3394–3398.

    PubMed  CAS  Google Scholar 

  56. Ueno, N. T., Yu, D., and Hung, M. C. (1997) Chemosensitization of HER-2/neu-overexpressing human breast cancer cells to paclitaxel (Taxol) by adenovirus type 5 E1A. Oncogene 15, 953–960.

    Article  PubMed  CAS  Google Scholar 

  57. Sanchez-Prieto, R., Quintanilla, M., Cano, A., et al. (1996) Carcinoma cell lines become sensitive to DNA-damaging agents by the expression of the adenovirus E1A gene. Oncogene 13, 1083–1092.

    PubMed  Google Scholar 

  58. Samuelson, A. V. and Lowe, S. W. (1997) Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to bind the RB-related proteins. Proc. Natl. Acad. Sci. USA 94, 12,094–12,099.

    Article  PubMed  CAS  Google Scholar 

  59. Lowe, S. W., Ruley, H. E., Jacks, T., and Housman, D. E. (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967.

    Article  PubMed  CAS  Google Scholar 

  60. James, M. C. and Peters, G. (2000) Alternative product of the p16/CKDN2A locus connects the Rb and p53 tumor suppressors. Prog. Cell Cycle Res. 4, 71–81.

    PubMed  CAS  Google Scholar 

  61. Krosnick, J. A., Mule, J. J., McIntosh, J. K., and Rosenberg, S. A. (1989) Augmentation of antitumor efficacy by the combination of recombinant tumor necrosis factor and chemotherapeutic agents in vivo. Cancer Res. 49, 3729–3233.

    PubMed  CAS  Google Scholar 

  62. Metcalf, J. P. (1996) Adenovirus E1A 13S gene product upregulates tumor necrosis factor gene. Am. J. Physiol. 270, L535–L540.

    PubMed  CAS  Google Scholar 

  63. Rhoades, K. L., Golub, S. H., and Economou, J. S. (1996) The adenoviral transcription factor, E1A 13S, transactivates the human tumor necrosis factor-alpha promoter. Virus Res. 40, 65–74.

    Article  PubMed  CAS  Google Scholar 

  64. Lieber, A., He, C. Y., Meuse, L., et al. (1997) The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J. Virol. 71, 8798–8807.

    PubMed  CAS  Google Scholar 

  65. Nielsen, L. L., Lipari, P., Dell, J., Gurnani, M., and Hajian, G. (1998) Adenovirus-mediated p53 gene therapy and paclitaxel have synergistic efficacy in models of human head and neck, ovarian, prostate, and breast cancer. Clin. Cancer Res. 4, 835–846.

    PubMed  CAS  Google Scholar 

  66. Bernt, K. M., Steinwaerder, D. S., Ni, S., Li, Z. Y., Roffler, S. R., and Lieber, A. (2002) Enzyme-activated prodrug therapy enhances tumor-specific replication of adenovirus vectors. Cancer Res. 62, 6089–6098.

    PubMed  CAS  Google Scholar 

  67. Rogulski, K. R., Freytag, S. O., Zhang, K., et al. (2000) In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res. 60, 1193–1196.

    PubMed  CAS  Google Scholar 

  68. Chen, Y., DeWeese, T., Dilley, J., et al. (2001) CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Res. 61, 5453–5460.

    PubMed  CAS  Google Scholar 

  69. Lamfers, M. L., Grill, J., Dirven, C. M., et al. (2002) Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res. 62, 5736–5742.

    PubMed  CAS  Google Scholar 

  70. Hawkins, L. K. and Hermiston, T. (2001) Gene delivery from the E3 region of replicating human adenovirus: evaluation of the E3B region. Gene Ther. 8, 1142–1148.

    Article  PubMed  CAS  Google Scholar 

  71. Hawkins, L. K. and Hermiston, T. W. (2001) Gene delivery from the E3 region of replicating human adenovirus: evaluation of the ADP region. Gene Ther. 8, 1132–1141.

    Article  PubMed  CAS  Google Scholar 

  72. Sauthoff, H., Pipiya, T., Heitner, S., et al. (2002) Late expression of p53 from a replicating adenovirus improves tumor cell killing and is more tumor cell specific than expression of the adenoviral death protein. Hum. Gene Ther. 13, 1859–1871.

    Article  PubMed  CAS  Google Scholar 

  73. van Beusechem, V. W., van den Doel, P. B., Grill, J., Pinedo, H. M., and Gerritsen, W. R. (2002) Conditionally replicative adenovirus expressing p53 exhibits enhanced oncolytic potency. Cancer Res. 62, 6165–6171.

    PubMed  Google Scholar 

  74. Zhang, J. F., Hu, C., Geng, Y., et al. (1996) Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therapy. Proc. Natl. Acad. Sci. USA 93, 4513–4518.

    Article  PubMed  CAS  Google Scholar 

  75. Freytag, S. O., Rogulski, K. R., Paielli, D. L., Gilbert, J. D., and Kim, J. H. (1998) A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum. Gene Ther. 9, 1323–1333.

    PubMed  CAS  Google Scholar 

  76. Wildner, O., Blaese, R. M., and Morris, J. C. (1999) Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res. 59, 410–413.

    PubMed  CAS  Google Scholar 

  77. Wildner, O., Morris, J. C., Vahanian, N. N., Ford, H. Jr., Ramsey, W. J., and Blaese, R. M. (1999) Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Ther. 6, 57–62.

    Article  PubMed  CAS  Google Scholar 

  78. Lambright, E. S., Amin, K., Wiewrodt, R., et al. (2001) Inclusion of the herpes simplex thymidine kinase gene in a replicating adenovirus does not augment antitumor efficacy. Gene Ther. 8, 946–953.

    Article  PubMed  CAS  Google Scholar 

  79. Nemunaitis, J., Cunningham, C., Buchanan, A., et al. (2001) Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther. 8, 746–759.

    Article  PubMed  CAS  Google Scholar 

  80. Freytag, S. O., Khil, M., Stricker, H., et al. (2002) Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 62, 4968–4976.

    PubMed  CAS  Google Scholar 

  81. Kirn, D. (2001) Clinical research results with dl1520 (ONYX-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther. 8, 89–98.

    Article  PubMed  CAS  Google Scholar 

  82. Pazdur, R. (2000) Response rates, survival, and chemotherapy trials. J. Natl. Cancer Inst. 92, 1552–1553.

    Article  PubMed  CAS  Google Scholar 

  83. Ganly, I., Kirn, D., Eckhardt, S. G., et al. (2000) A phase I study of ONYX-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin. Cancer Res. 6, 798–806.

    PubMed  CAS  Google Scholar 

  84. Nemunaitis, J., Ganly, I., Khuri, F., et al. (2000) Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 60, 6359–6366.

    PubMed  CAS  Google Scholar 

  85. Mulvihill, S., Warren, R., Venook, A., et al. (2001) Safety and feasibility of injection with an E1B-55 kDa genedeleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial. Gene Ther. 8, 308–315.

    Article  PubMed  CAS  Google Scholar 

  86. Habib, N., Salama, H., Abd El Latif Abu Median, A., et al. (2002) Clinical trial of E1B-deleted adenovirus (dl1520) gene therapy for hepatocellular carcinoma. Cancer Gene Ther. 9, 254–259.

    Article  PubMed  CAS  Google Scholar 

  87. Vasey, P. A., Shulman, L. N., Campos, S., et al. (2002) Phase I trial of intraperitoneal injection of the E1B-55-kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J. Clin. Oncol. 20, 1562–1569.

    Article  PubMed  CAS  Google Scholar 

  88. Reid, T., Galanis, E., Abbruzzese, J., et al. (2001) Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther. 8, 1618–1626.

    Article  PubMed  CAS  Google Scholar 

  89. Reid, T., Galanis, E., Abbruzzese, J., et al. (2002) Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res. 62, 6070–6079.

    PubMed  CAS  Google Scholar 

  90. Wildner, O. and Morris, J. C. (2000) Therapy of peritoneal carcinomatosis from colon cancer with oncolytic adenoviruses. J. Gene Med. 2, 353–360.

    Article  PubMed  CAS  Google Scholar 

  91. Kurihara, T., Brough, D. E., Kovesdi, I., and Kufe, D. W. (2000) Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J. Clin. Invest. 106, 763–771.

    Article  PubMed  CAS  Google Scholar 

  92. Lee, Y. J., Galoforo, S. S., Battle, P., Lee, H., Corry, P. M., and Jessup, J. M. (2001) Replicating adenoviral vector-mediated transfer of a heat-inducible double suicide gene for gene therapy. Cancer Gene Ther. 8, 397–404.

    Article  PubMed  CAS  Google Scholar 

  93. Yu, D. C., Sakamoto, G. T., and Henderson, D. R. (1999) Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res. 59, 1498–1504.

    PubMed  CAS  Google Scholar 

  94. Matsubara, S., Wada, Y., Gardner, T. A., et al. (2001) A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Cancer Res. 61, 6012–6019.

    PubMed  CAS  Google Scholar 

  95. Alemany, R., Lai, S., Lou, Y. C., Jan, H. Y., Fang, X., and Zhang, W. W. (1999) Complementary adenoviral vectors for oncolysis. Cancer Gene Ther. 6, 21–25.

    Article  PubMed  CAS  Google Scholar 

  96. Adachi, Y., Reynolds, P. N., Yamamoto, M., et al. (2001) A midkine promoter-based conditionally replicative adenovirus for treatment of pediatric solid tumors and bone marrow tumor purging. Cancer Res. 61, 7882–7888.

    PubMed  CAS  Google Scholar 

  97. Hernandez-Alcoceba, R., Pihalja, M., Qian, D., and Clarke, M. F. (2002) New oncolytic adenoviruses with hypoxia-and estrogen receptor-regulated replication. Hum. Gene Ther. 13, 1737–1750.

    Article  PubMed  CAS  Google Scholar 

  98. Zhang, L., Akbulut, H., Tang, Y., et al. (2002) Adenoviral vectors with E1A regulated by tumor-specific promoters are selectively cytolytic for breast cancer and melanoma. Mol. Ther. 6, 386–393.

    Article  PubMed  CAS  Google Scholar 

  99. Nettelbeck, D. M., Rivera, A. A., Balague, C., Alemany, R., and Curiel, D. T. (2002) Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res. 62, 4663–4670.

    PubMed  CAS  Google Scholar 

  100. Zhang, J., Ramesh, N., Chen, Y., et al. (2002) Identification of human uroplakin II promoter and its use in the construction of CG8840, a urothelium-specific adenovirus variant that eliminates established bladder tumors in combination with docetaxel. Cancer Res. 62, 3743–3750.

    PubMed  CAS  Google Scholar 

  101. Howe, J. A., Mymryk, J. S., Egan, C., Branton, P. E., and Bayley, S. T. (1990) Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proc. Natl. Acad. Sci. USA 87, 5883–5887.

    Article  PubMed  CAS  Google Scholar 

  102. Lill, N. L., Grossman, S. R., Ginsberg, D., DeCaprio, J., and Livingston, D. M. (1997) Binding and modulation of p53 by p300/CBP coactivators. Nature 387, 823–827.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Howe, J.A., Ralston, R., Ramachandra, M. (2005). Development of Oncolytic Adenoviruses. In: Curiel, D.T., Douglas, J.T. (eds) Cancer Gene Therapy. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59259-785-7_14

Download citation

Publish with us

Policies and ethics