Skip to main content

Polynucleotide Immunization for Cancer Therapy

  • Chapter
Book cover Cancer Gene Therapy

Part of the book series: Contemporary Cancer Research ((CCR))

  • 1013 Accesses

Abstract

The limitations of conventional cancer therapy (surgery, radiation, and chemotherapy) combined with a better understanding of the molecular mechanisms regulating the immune system have led to increasing attention focused on the development of immunotherapies for cancer. Active immunotherapy approaches seek to eliminate tumor cells by eliciting immune responses directed against tumor-associated antigens. Gene transfer techniques have expanded the potential opportunities in this area by providing new methods for stimulating the immune response. Among the array of techniques under development for clinical application, nucleic acid or polynucleotide vaccines have emerged as a novel and effective method of inducing tumor antigen-specific immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenberg, S. A., Zhai, Y., Yang, J. C., et al. (1998) Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J. Natl. Cancer Inst. 90, 1894–1900.

    PubMed  CAS  Google Scholar 

  2. Conry, R. M., Khazaeli, M. B., Saleh, M. N., et al. (1999) Phase I trial of a recombinant vaccinia virus encoding carcinoembryonic antigen in metastatic adenocarcinoma: comparison of intradermal vs subcutaneous administration. Clin. Cancer Res. 5, 2330–2337.

    PubMed  CAS  Google Scholar 

  3. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., and Schreiber, R. D. (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998.

    PubMed  CAS  Google Scholar 

  4. Wolff, J. A, Malone, R. W., Williams, P., et al. (1990) Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.

    PubMed  CAS  Google Scholar 

  5. Hansen, E., Fernandes, K., Goldspink, G., Butterworth, P., Umeda, P. K., and Chang, K. C. (1991) Strong expression of foreign genes following direct injection into fish muscle. FEBS Lett. 290, 73–76.

    PubMed  CAS  Google Scholar 

  6. Jiao, S., Williams, P., Berg, R. K., et al. (1992) Direct gene transfer into nonhuman primate myofibers in vivo. Hum. Gene Ther. 3, 21–33.

    PubMed  CAS  Google Scholar 

  7. Danko, I. and Wolff, J. A. (1994) Direct gene transfer into muscle. Vaccine 12, 1499–1502.

    PubMed  CAS  Google Scholar 

  8. Wolff, J. A., Dowty, M. E., Jiao, S., et al. (1992) Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubules and caveolae of mammalian skeletal muscle. J. Cell Sci. 103, 1249–1259.

    PubMed  CAS  Google Scholar 

  9. Wolff, J. A., Ludtke, J. J., Acsadi, G., Williams, P., and Jani, A. (1992) Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet. 1, 363–369.

    PubMed  CAS  Google Scholar 

  10. Ulmer, J. B., Donnelly, J. J., Parker, S. E., et al. (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749.

    PubMed  CAS  Google Scholar 

  11. Tang, D. C., DeVit, M., and Johnston, S. A. (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356, 152–154.

    PubMed  CAS  Google Scholar 

  12. Williams, R. S., Johnston, S. A., Riedy, M., DeVit, M. J., McElligott, S. G., and Sanford, J. C. (1991) Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc. Natl. Acad. Sci. USA 88, 2726–2730.

    PubMed  CAS  Google Scholar 

  13. Barry, M. A. and Johnston, S. A. (1997) Biological features of genetic immunization. Vaccine 15, 788–1791.

    PubMed  CAS  Google Scholar 

  14. Fynan, E. F., Webster, R. G., Fuller, D. H., Haynes, J. R., Santoro, J. C., and Robinson, H. L. (1993) DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc. Natl. Acad. Sci. USA 90, 11,478–11,482.

    PubMed  CAS  Google Scholar 

  15. Ross, H. M., Weber, L. W., Wang, S., et al. (1997) Priming for T-cell-mediated rejection of established tumors by cutaneous DNA immunization. Clin. Cancer Res. 3, 2191–2196.

    PubMed  CAS  Google Scholar 

  16. Cui, Z., Baizer, L., and Mumper, R. J. (2003) Intradermal immunization with novel plasmid DNA-coated nanoparticles via a needle-free injection device. J. Biotechnol. 102, 105–115.

    PubMed  CAS  Google Scholar 

  17. Eriksson, K. and Holmgren, J. (2002) Recent advances in mucosal vaccines and adjuvants. Curr. Opin. Immunol. 14, 666–672.

    PubMed  CAS  Google Scholar 

  18. Rocha-Zavaleta, L., Alejandre, J. E., and Garcia-Carranca, A. (2002) Parenteral and oral immunization with a plasmid DNA expressing the human papillomavirus 16-L1 gene induces systemic and mucosal antibodies and cytotoxic T lymphocyte responses. J. Med. Virol. 66, 86–95.

    PubMed  CAS  Google Scholar 

  19. Darji, A., Guzman, C. A., Gerstel, B., et al. (1997) Oral somatic transgene vaccination using attenuated S. typhimurium. Cell. 91, 765–775.

    PubMed  CAS  Google Scholar 

  20. Niethammer, A. G., Primus, F. J., Xiang, R., et al. (2001) An oral DNA vaccine against human carcinoembryonic antigen (CEA) prevents growth and dissemination of Lewis lung carcinoma in CEA transgenic mice. Vaccine 20, 421–429.

    PubMed  CAS  Google Scholar 

  21. Pertl, U., Wodrich, H., Ruehlmann, J. M., Gillies, S. D., Lode, H. N., and Reisfeld, R. A. (2003) Immunotherapy with a posttranscriptionally modified DNA vaccine induces complete protection against metastatic neuroblastoma. Blood 101, 649–654.

    PubMed  CAS  Google Scholar 

  22. Sizemore, D. R., Branstrom, A. A., and Sadoff, J. C. (1995) Attenuated Shigella as a DNA delivery vehicle for DNAmediated immunization. Science 270, 299–302.

    PubMed  CAS  Google Scholar 

  23. Pan, Z. K., Weiskirch, L. M., and Paterson, Y. (1999) Regression of established B16 F10 melanoma with a recombinant Listeria monocytogenes vaccine. Cancer Res. 59, 5264–5269.

    PubMed  CAS  Google Scholar 

  24. White, S. A., LoBuglio, A. F., Arani, R. B., et al. (2000) Induction of anti-tumor immunity by intrasplenic administration of a carcinoembryonic antigen DNA vaccine. J. Gene Med. 2, 135–140.

    PubMed  CAS  Google Scholar 

  25. Pertmer, T. M., Roberts, T. R., and Haynes, J. R. (1996) Influenza virus nucleoprotein-specific immunoglobulin G subclass and cytokine responses elicited by DNA vaccination are dependent on the route of vector DNA delivery. J. Virol. 70, 6119–6125.

    PubMed  CAS  Google Scholar 

  26. Feltquate, D. M., Heaney, S., Webster, R. G., and Robinson, H. L. (1997) Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J. Immunol. 158, 2278–2284.

    PubMed  CAS  Google Scholar 

  27. Qiu, P., Ziegelhoffer, P., Sun, J., and Yang, N. S. (1996) Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther. 3, 262–268.

    PubMed  CAS  Google Scholar 

  28. Conry, R. M., LoBuglio, A. F., Wright, M., et al. (1995) Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 55, 1397–1400.

    PubMed  CAS  Google Scholar 

  29. Lietner, W. W., Ying, H., and Restifo, N. P. (2000) DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 18, 765–777.

    Google Scholar 

  30. Lundstrom, K. (2002) Alphavirus vectors as tools in cancer gene therapy. Technol. Cancer Res. Treat. 1, 83–88.

    PubMed  CAS  Google Scholar 

  31. Rayner, J. O., Dryga, S. A., and Kamrud, K. I. (2002) Alphavirus vectors and vaccination. Rev. Med. Virol. 12, 279–296.

    PubMed  CAS  Google Scholar 

  32. Herweijer, H., Latendresse, J. S., Williams, P., et al. (1995) A plasmid-based self-amplifying Sindbis virus vector. Hum. Gene Ther. 6, 1161–1167.

    PubMed  CAS  Google Scholar 

  33. Doe, B., Selby, M., Barnett, S., Baenziger, J., and Walker, C. M. (1996) Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells. Proc. Natl. Acad. Sci. USA 93, 8578–8583.

    PubMed  CAS  Google Scholar 

  34. Iwasaki, A., Torres, C. A., Ohashi, P. S., Robinson, H. L., and Barber, B. H. (1997) The dominant role of bone marrow-derived cells in CTL induction following plasmid DNA immunization at different sites. J. Immunol. 159, 11–14.

    PubMed  CAS  Google Scholar 

  35. Fu, T. M., Ulmer, J. B., Caulfield, M. J., et al. (1997) Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol. Med. 3, 362–371.

    PubMed  CAS  Google Scholar 

  36. Corr, M., von Damm, A., Lee, D. J., and Tighe, H. (1999) In vivo priming by DNA injection occurs predominantly by antigen transfer. J. Immunol. 163, 4721–4727.

    PubMed  CAS  Google Scholar 

  37. Condon, C., Watkins, S. C., Celluzzi, C. M., Thompson, K., and Falo, L. D. Jr. (1996) DNA-based immunization by in vivo transfection of dendritic cells. Nat. Med. 2, 1122–1128.

    PubMed  CAS  Google Scholar 

  38. Casares, S., Inaba, K., Brumeanu, T. D., Steinman, R. M., and Bona, C. A. (1997) Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II-restricted viral epitope. J. Exp. Med. 186, 1481–1486.

    PubMed  CAS  Google Scholar 

  39. Ossendorp, F., Mengede, E., Camps, M., Filius, R., and Melief, C. J. (1998) Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 187, 693–702.

    PubMed  CAS  Google Scholar 

  40. Hung, K., Hayashi, R., Lafond-Walker, A., Lowenstein, C., Pardoll, D., and Levitsky, H. (1998) The central role of CD4(+) T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368.

    PubMed  CAS  Google Scholar 

  41. Klinman, D. M., Yi, A. K., Beaucage, S. L., Conover, J., and Krieg, A. M. (1996) CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc. Natl. Acad. Sci. USA 93, 2879–2883.

    PubMed  CAS  Google Scholar 

  42. Ashkar, A. A. and Rosenthal, K. L. (2002) Toll-like receptor 9, CpG DNA and innate immunity. Curr. Mol. Med. 2, 545–556.

    PubMed  CAS  Google Scholar 

  43. Agrawal, S. and Kandimalla, E. R. (2002) Medicinal chemistry and therapeutic potential of CpG DNA. Trends Mol. Med. 8, 114–121.

    PubMed  CAS  Google Scholar 

  44. Dalpke, A., Zimmermann, S., and Heeg, K. (2002) Immunopharmacology of CpG DNA. Biol. Chem. 383, 1491–1500.

    PubMed  CAS  Google Scholar 

  45. Davila, E., Velez, M. G., Heppelmann, C. J., and Celis, E. (2002) Creating space: an antigen-independent, CpG-induced peripheral expansion of naïve and memory T lymphocytes in a full T-cell compartment. Blood 100, 2537–2545.

    PubMed  CAS  Google Scholar 

  46. Ying, H., Zaks, T. Z., Wang, R. F., et al. (1999) Cancer therapy using a self-replicating RNA vaccine. Nat. Med. 5, 823–827.

    PubMed  CAS  Google Scholar 

  47. Leitner, W. W., Hwang, L. N., deVeer, M. J., et al. (2003) Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat. Med. 9, 33–39.

    PubMed  CAS  Google Scholar 

  48. Alexopoulou, L., Holt, A. C., Medizhitov, R., and Flavell, R. A. (2001) Recognition of double-stranded RNA and activation of NF-kappa B by Toll like receptor 3. Nature 413, 732–738.

    PubMed  CAS  Google Scholar 

  49. Zinckgraf, J. W. and Silbart, L. K. (2003) Modulating gene expression using DNA vaccines with different 3′-UTRs influences antibody titer, seroconversion and cytokine profiles. Vaccine 21, 1640–1649.

    PubMed  CAS  Google Scholar 

  50. Xin, K. Q., Ooki, T., Jounai, N., et al. (2003) A DNA vaccine containing inverted terminal repeats from adenoassociated virus increases immunity to HIV. J. Gene Med. 5, 438–445.

    PubMed  CAS  Google Scholar 

  51. Hanke, T., Neumann, V. C., Blanchard, T. J., et al. (1999) Effective induction of HIV-specific CTL by multi-epitope using gene gun in a combined vaccination regime. Vaccine 17, 589–596.

    PubMed  CAS  Google Scholar 

  52. Smith, B. F., Baker, H. J., Curiel, D. T., Jiang, W., and Conry, R. M. (1998) Humoral and cellular immune responses of dogs immunized with a nucleic acid vaccine encoding human carcinoembryonic antigen. Gene Ther. 5, 865–868.

    PubMed  CAS  Google Scholar 

  53. Ito, 0K., Ito, K., Shinohara, N., and Kato, S. (2003) DNA immunization via intramuscular and intradermal routes using a gene gun provides different magnitudes and durations on immune response. Mol. Immunol. 39, 847–854.

    PubMed  CAS  Google Scholar 

  54. Tuting, T., Gambotto, A., Robbins, P. D., Storkus, W. J., and DeLeo, A. B. (1999) Co-delivery of T helper 1-biasing cytokine genes enhances the efficacy of gene gun immunization of mice: studies with the model tumor antigen betagalactosidase and the BALB/c Meth A p53 tumor-specific antigen. Gene Ther. 6, 629–636.

    PubMed  CAS  Google Scholar 

  55. Leitner, W. W., Seguin, M. C., Ballou, W. R., et al. (1997) Immune responses induced by intramuscular or gene gun injection of protective deoxyribonucleic acid vaccines that express the circumsporozoite protein from Plasmodium berghei malaria parasites. J. Immunol. 159, 6112–6119.

    PubMed  CAS  Google Scholar 

  56. Gregoriadis, G., Bacon, A., Caparros-Wanderley, W., and McCormack, B.(2002) A role for liposomes in genetic vaccination. Vaccine 20(Suppl. 5), B1–B9.

    PubMed  CAS  Google Scholar 

  57. Singh, M., Briones, M., Ott, G., and O’Hagan, D. (2000) Cationic microparticles: a potent delivery system for DNA vaccines. Proc. Natl. Acad. Sci. USA 97, 811–816.

    PubMed  CAS  Google Scholar 

  58. Drabick, J. J., Glasspool-Malone, J., King, A., and Malone, R. W. (2001) Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol. Ther. 3, 249–255.

    PubMed  CAS  Google Scholar 

  59. Paster, W., Zehetner, M., Kalat, M., Schuller, S., and Schweighoffer, T. (2003) In vivo plasmid DNA electroporation generates exceptionally high levels of epitope-specific CD8+ T-cell responses. Gene Ther. 10, 717–724.

    PubMed  CAS  Google Scholar 

  60. Hung, C. F. and Wu, T. C. (2003) Improving DNA vaccine potency via modification of professional antigen presenting cells. Curr. Opin. Mol. Ther. 5, 20–24.

    PubMed  CAS  Google Scholar 

  61. Xiang, R., Primus, F. J., Ruehlmann, J. M., et al. (2001) A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T cell-mediated protective immunity against colon cancer in carcinoembryonic antigen-transgenic mice. J. Immunol. 167, 4560–4565.

    PubMed  CAS  Google Scholar 

  62. Hung, C. F., Hsu, K. F., Cheng, W. F., et al. (2001) Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res. 61, 1080–1088.

    PubMed  CAS  Google Scholar 

  63. Boyle, J. S., Brady, J. L., and Lew, A. M. (1998) Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature 392, 408–411.

    PubMed  CAS  Google Scholar 

  64. Su, Z., Vieweg, J., Weizer, A. Z., et al. (2002) Enhanced induction of telomerase-specific CD4 (+) T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res. 62, 5041–5048.

    PubMed  CAS  Google Scholar 

  65. Ji, H., Wang, T. L., Chen, C. H., et al. (1999) Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors. Hum. Gene Ther. 10, 2727–2740.

    PubMed  CAS  Google Scholar 

  66. Xiang, R., Lode, H. N., Chao, T. H., et al. (2000) An autologous oral DNA vaccine protects against murine melanoma. Proc. Natl. Acad. Sci USA 97, 5492–5497.

    PubMed  CAS  Google Scholar 

  67. Rice, J., Buchan, S., and Stevenson, F. K. (2002) Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen. J. Immunol. 169, 3908–3918.

    PubMed  CAS  Google Scholar 

  68. Cid-Arregui, A., Juarez, V., and zur Hausen, H. (2003) A synthetic E7 gene of human papillomavirus type 16 that yields enhanced expression of the protein in mammalian cells and is useful for DNA immunization studies. J. Virol. 77, 4928–4937.

    PubMed  CAS  Google Scholar 

  69. Scheerlinck, J. P., Casey, G., McWaters, P., et al. (2001) The immune response to a DNA vaccine can be modulated by co-delivery of cytokine genes using a DNA prime-protein boost strategy. Vaccine 19, 4053–4060.

    PubMed  CAS  Google Scholar 

  70. Conry, R. M., Widera, G., LoBuglio, A. F., et al. (1996) Selected strategies to augment polynucleotide immunization. Gene Ther. 3, 67–74.

    PubMed  CAS  Google Scholar 

  71. Irvine, K. R., Rao, J. B., Rosenberg, S. A., and Restifo, N. P. (1996) Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases. J. Immunol. 156, 238–245.

    PubMed  CAS  Google Scholar 

  72. Biragyn, A., Surenhu, M., Yang, D., et al.(2001) Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J. Immunol. 167, 6644–6653.

    PubMed  CAS  Google Scholar 

  73. Kim, J. J., Yang, J. S., Dentchev, T., Dang, K., and Weiner, D. B. (2000) Chemokine gene adjuvants can modulate immune responses induced by DNA vaccines. J. Interferon Cytokine Res. 20, 487–498.

    PubMed  CAS  Google Scholar 

  74. Kim, T. W. Hung, C. F., Ling, M., et al. (2003) Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J. Clin. Invest. 112, 109–117.

    PubMed  CAS  Google Scholar 

  75. Cappello, P., Triebel, F., Iezzi, M., et al. (2003) LAG-3 Enables DNA vaccination to persistently prevent mammary carcinogenesis in HER-2/neu transgenic BALB/c mice. Cancer Res. 63, 2518–2525.

    PubMed  CAS  Google Scholar 

  76. He, Y., Pimenov, A. A., Nayak, J. V., Plowey, J., Falo, L. D. Jr., and Huang, L. (2002) Intravenous injection of naked DNA encoding secreted FLT3 ligand dramatically increases the number of dendritic cells and natural killer cells in vivo. Hum. Gene Ther. 11, 547–554.

    Google Scholar 

  77. Fong, C. L. and Hui, K. M. (2002) Generation of potent and specific cellular immune responses via in vivo stimulation of dendritic cells by pNGVL3-hFLex plasmid DNA and immunogenic peptides. Gene Ther. 9, 1127–1138.

    PubMed  CAS  Google Scholar 

  78. Weber, L. W., Bowne, W. B., Wolchok, J. D., et al. (1998) Tumor immunity and autoimmunity induced by immunization with homologous DNA. J. Clin. Invest. 102, 1258–1264.

    PubMed  CAS  Google Scholar 

  79. Su, J. M., Wei, Y. Q., Tian, L., et al. (2003) Active immunogene therapy of cancer with vaccine on the basis of chicken homologous matrix metalloproteinase-2. Cancer Res. 63, 600–607.

    PubMed  CAS  Google Scholar 

  80. Hawkins, W. G., Gold, J. S., Blachere, N. E., et al. 2002) Xenogeneic DNA immunization in melanoma models for minimal residual disease. J. Surg. Res. 102, 137–143.

    Google Scholar 

  81. Wei, Y. Q., Huang, M. J., Yang, L., et al. (2001) Immunogene therapy of tumors with vaccine based upon Xenopus homologous vascular endothelial growth factor as a model antigen. Proc. Natl. Acad. Sci. USA 98, 11,545–11,550.

    PubMed  CAS  Google Scholar 

  82. Fong, L., Brockstedt, D., Benike, C., et al. (2001) Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J. Immunol. 167, 7150–7156.

    PubMed  CAS  Google Scholar 

  83. Ramshaw, I. A. and Ramsay, A. J. (2000) The prime-boost strategy: exciting prospects for improved vaccination. Immunol. Today 21, 163–165.

    PubMed  CAS  Google Scholar 

  84. Irvine, K. R., Chamberlain, R. S., Shulman, E. P., et al. (1997) Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors. J. Natl. Cancer Inst. 89, 1595–1601.

    PubMed  CAS  Google Scholar 

  85. Woodberry, T., Gardner, J., Elliott, S. L., et al. (2003) Prime boost vaccination strategies: CD8 T cell numbers, protection, and Th1 bias. J. Immunol. 170, 2599–2604.

    PubMed  CAS  Google Scholar 

  86. Meng, W. S, Butterfield, L. H., Ribas, A., et al. (2001) Alpha-Fetoprotein specific tumor immunity induce by plasmid prime-adenovirus boost genetic vaccination. Cancer Res. 61, 8782–8786.

    PubMed  CAS  Google Scholar 

  87. Pasquini, S., Peralta, S., Missiaglia, E., Carta, L., and Lemoine, N. R. (2002) Prime-boost vaccines encoding an intracellular idiotype/GM-CSF fusion protein induce protective cell-mediated immunity in murine pre-B cell leukemia. Gene Ther. 9, 503–510.

    PubMed  CAS  Google Scholar 

  88. Chen, C. H., Wang, T. L., Hung, C. F., Pardoll, D. M., and Wu, T. C. (2000) Boosting with recombinant vaccinia increases HPE-16 E7-specific T cell precursor frequencies of HPV-16 E7-expressing DNA vaccines. Vaccine 18,2015–2022.

    PubMed  CAS  Google Scholar 

  89. Otten, G., Schaefer, M., Greer, C., et al. (2003) Induction of broad and potent anti-human immunodeficiency virus immune responses in rhesus macaques by priming with a DNA vaccine and boosting with protein-adsorbed polylactide coglycolide microparticles. J. Virol. 77, 6087–6092.

    PubMed  CAS  Google Scholar 

  90. Conry, R. M., LoBuglio, A. F., Loechel, F., et al. (1995) A carcinoembryonic antigen polynucleotide vaccine has in vivo antitumor activity. Gene Ther. 2, 59–65.

    PubMed  CAS  Google Scholar 

  91. Graham, R. A., Burchell, J. M., Beverley, P., and Taylor-Papadimitriou, J. (1996) Intramuscular immunisation with MUC1 cDNA can protect C57 mice challenged with MUC1-expressing syngeneic mouse tumour cells. Int. J. Cancer 65, 664–670.

    PubMed  CAS  Google Scholar 

  92. Bergman, P. J., McKnight, J., Novosad, A., et al. (2003) Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin. Cancer Res. 9, 1284–1290.

    PubMed  CAS  Google Scholar 

  93. Kim, J. J., Yang, J. S., Dang, K., Manson, K. H., and Weiner, D. B. (2001) Engineering enhancement of immune responses to DNA-based vaccines in a prostate cancer model in rhesus macaques through the use of cytokine gene adjuvants. Clin. Cancer Res. 7, 882s–889s.

    PubMed  CAS  Google Scholar 

  94. Conry, R. M., White, S. A., Fultz, P. N., et al. (1998) Polynucleotide immunization of nonhuman primates against carcinoembryonic antigen. Clin. Cancer Res. 4, 2903–2912.

    PubMed  CAS  Google Scholar 

  95. Song, K., Chang, Y., and Prud’homme, G. J. (2000) IL-12 plasmid-enhanced DNA vaccination against carcinoembryonic antigen (CEA) studied in immune-gene knockout mice. Gene Ther. 7, 1527–1535.

    PubMed  CAS  Google Scholar 

  96. Dranoff, G. (2003) Coordinated tumor immunity. J. Clin. Invest. 111, 1116–1118.

    PubMed  CAS  Google Scholar 

  97. Curcio, C., Di Carlo, E., Clynes, R., et al. (2003) Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. J. Clin. Invest. 111, 1161–1170.

    PubMed  CAS  Google Scholar 

  98. Wang, R., Doolan, D. L., Le, T. P., et al. (1998) Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 28, 476–480.

    Google Scholar 

  99. Wang, R., Epstein, J., Baraceros, F. M., et al. (2001) Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in humans by a malaria DNA vaccine. Proc. Natl. Acad. Sci. USA 98, 10,817–10,822.

    PubMed  CAS  Google Scholar 

  100. Roy, M. J., Wu, M. S., Barr, L. J., et al. (2000) Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19, 764–778.

    PubMed  CAS  Google Scholar 

  101. MacGregor, R. R., Ginsberg, R., Ugen, K. E., et al. (2002) T-cell responses induced in normal volunteers immunized with a DNA-based vaccine containing HIV-1 env and rev. AIDS 16, 2137–2143.

    PubMed  CAS  Google Scholar 

  102. Calarota, S., Bratt, G., Nordlund, S., et al. (1998) Cellular cytotoxic response induced by DNA vaccination in HIV-1-infected patients. Lancet 351, 1320–1325.

    PubMed  CAS  Google Scholar 

  103. Conry, R. M., Curiel, D. T., Strong, T. V., et al. (2002) Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clin. Cancer Res. 8, 2782–2787.

    PubMed  CAS  Google Scholar 

  104. Rosenberg, S. A., Yang, J. C., Sherry, R. M., et al. (2003) Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum. Gene Ther. 14, 709–714.

    PubMed  CAS  Google Scholar 

  105. Timmerman, J. M., Singh, G., Hermanson, G., et al. (2002) Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res. 62, 5845–5852.

    PubMed  CAS  Google Scholar 

  106. Timmerman, J. M. and Levy, R. (2000) The history of the development of vaccines for the treatment of lymphoma. Clin. Lymphoma 1, 129–139.

    PubMed  CAS  Google Scholar 

  107. Bendandi, M., Gocke, C. D., Kobrin, C. B., et al. (1999) Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nat. Med. 5, 1171–1177.

    PubMed  CAS  Google Scholar 

  108. Klencke, B., Matijevic, M., Urban, R. G., et al. (2002) Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a phase I study of ZYC101. Clin. Cancer Res. 8, 1028–1037.

    PubMed  CAS  Google Scholar 

  109. Sheets, E. E., Urban, R. G., Crum, C. P., et al. (2003) Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am. J. Obstet. Gynecol. 188, 916–926.

    PubMed  CAS  Google Scholar 

  110. Stevanovic, S. (2002) Identification of tumour-associated T-cell epitopes for vaccine development.Nat. Rev. Cancer 2, 514–520.

    PubMed  CAS  Google Scholar 

  111. Nelson, P. S. (2002) Identifying immunotherapeutic targets for prostate carcinoma through the analysis of gene expression profiles. Ann. NY Acad. Sci. 975, 232–246.

    PubMed  CAS  Google Scholar 

  112. Schultze, J. L. and Vonderheide, R. H. (2001) From cancer genomics to cancer immunotherapy: toward second-generation tumor antigens. Trends Immunol. 22, 516–523.

    PubMed  CAS  Google Scholar 

  113. Chen, Y. T. (2000) Cancer vaccine: identification of human tumor antigens by SEREX. Cancer J. 6(Suppl. 3), S208–S217.

    PubMed  Google Scholar 

  114. Naour, F. L., Brichory, F., Beretta, L., and Hanash, S. M. (2002) Identification of tumor-associated antigens using proteomics. Technol. Cancer Res. Treat. 1, 257–262.

    PubMed  Google Scholar 

  115. Niethammer, A. G., Xiang, R., Becker, J. C., et al. (2002) A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat. Med. 8, 1369–1375.

    PubMed  CAS  Google Scholar 

  116. McConkey, S. J., Reece, W. H., Moorthy, V. S., et al. 2003) Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat. Med. 9, 729–735.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Strong, T.V. (2005). Polynucleotide Immunization for Cancer Therapy. In: Curiel, D.T., Douglas, J.T. (eds) Cancer Gene Therapy. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59259-785-7_12

Download citation

Publish with us

Policies and ethics