Skip to main content

Preclinical Studies of Raloxifene and Related Compounds

  • Chapter
  • 337 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The development of raloxifene (also know as keoxifene) for clinical use was based on a series of preclinical studies that demonstrated it has a highly desirable tissue-specific activity. Results indicated that the therapeutic effects of raloxifene (LY138481 HCl; LY156758) mimicked some of those of estrogen in ovariectomized animals by reducing bone loss and lowering serum cholesterol levels. Conversely, in mammary and uterine tissue, raloxifene acted as an antiestrogen and inhibited estrogen stimulation without inherent agonist activity (Fig. 1). Raloxifene was originally synthesized by Jones, who was looking for an antiestrogen with strong receptor binding (1). Jones hoped to produce a structure that would combine some features of the estradiol molecule with novel modifications to affect a potent estrogen receptor (ER) antagonist.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones CD, Suarez T, Massey EH, Black LJ, Tinsley FC. Synthesis and antiestrogenic activity of [3,4-dihydro-2-(4-methoxyphenyl)-1-naphthalenyl][4-[2-(1-pyrrolidinyl)etho xy]-phenyl]methanone, methanesulfonic acid salt. J Med Chem 1979; 22:962–966.

    Article  CAS  PubMed  Google Scholar 

  2. Grese TA, Cho S, Finley DR, Godfrey AG, Jones CD, Lugar CW, III, et al. Structure-Activity Relationships of selective estrogen receptor modulators: modifications to the 2-arylbenzothiophene core of raloxifene. J Med Chem 1997; 40:146–167.

    Article  CAS  PubMed  Google Scholar 

  3. Grese TA, Sluka JP, Bryant HU, Cullinan GJ, Glasebrook AL, Jones CD, et al. Molecular determinants of tissue selectivity in estrogen receptor modulators. Proc Natl Acad Sci USA 1997; 94:14105–14110.

    Article  CAS  PubMed  Google Scholar 

  4. McDonnell DP, Clemm DL, Hermann T, Goldman ME, Pike JW. Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Molec Endocrinol 1995; 9:659–669.

    Article  CAS  Google Scholar 

  5. Yang NN, Venugopalan M, Hardikar S, Glasebrook A. Identification of an estrogen response element activated by metabolites of 17 beta-estradiol and raloxifene. Science 1996; 273:1222–1225.

    Article  CAS  PubMed  Google Scholar 

  6. Kuiper G, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 1996; 93:5925–2930.

    Article  CAS  PubMed  Google Scholar 

  7. Paech K, Webb P, Kuiper GGJM, Nilsson S, Gustafsson J-A, Kushner PJ, Scanlan TS. Differential ligand activation of estrogen receptors ERα and ERβ at AP1 Sites. Science 1997; 277:1508–1510.

    Article  CAS  PubMed  Google Scholar 

  8. Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 1988; 24:84–86.

    Article  Google Scholar 

  9. Pensler JM, Radosevich JA, Higbee R, Langman CB. Osteoclasts isolated from membranous bone in children exhibit nuclear estrogen and progesterone receptors. J Bone Min Res 1990; 5:797–802.

    Article  CAS  Google Scholar 

  10. Somjen D, Waisman A, Kaye AM. Tissue selective action of tamoxifen methiodide, raloxifene and tamoxifen on creatine kinase B activity in vitro and in vivo. J Ster Biochem Mol Biol 1996; 59:389–396.

    Article  CAS  Google Scholar 

  11. Fiorelli G, Martineti V, Gori F, Benvenuti S, Frediani U, Formigli L, et al. Heterogeneity of binding sites and bioeffects of raloxifene on the human leukemic cell line FLG 29.1. Biochem Biophys Res Commun 1997; 240:573–579.

    Article  CAS  PubMed  Google Scholar 

  12. Sato M, Bryant HU. Raloxifene efficacy in nonreproductive and reproductive tissues in rat models in vivo and in vitro. In vitro Biol Sex Ster Horm Act 1996; 406–421.

    Google Scholar 

  13. Sato M, Kim J, Bryant H. Estrogen, tamoxifen, raloxifene, and nafoxidine have different effects on ovariectomized rats and on rat osteoclasts. J Bone Min Res 1994; 9:A272.

    Google Scholar 

  14. Yang NN, Bryant HU, Hardikar S, Sato M, Galvin RJS, Glasebrook AL, Termine JD. Estrogen and raloxifene stimulate transforming growth factor-β3 gene expression in rat bone: a potential mechanism for estrogen- or raloxifene-mediated bone maintenance. Endocrinology 1996; 137:2075–2084.

    Article  CAS  PubMed  Google Scholar 

  15. Sato M. Comparative X-ray densitometry of bones from ovariectomized rats. Bone 1995; 17:157S–162S.

    CAS  PubMed  Google Scholar 

  16. Lindsay R. Prevention and treatment of osteoporosis. Lancet 1993; 341:801–805.

    Article  CAS  PubMed  Google Scholar 

  17. Dempster DW, Lindsay R. Pathogenesis of osteoporosis. Lancet 1993; 351:797–801.

    Article  Google Scholar 

  18. Kimmel DB. Quantitative histologic changes in the proximal tibial growth cartilage of aged female rats. Cell Mater 1991; S1:11–18.

    Google Scholar 

  19. Black L, Sato M, Rowley E, Magee D, Bekele A, Williams D, et al. Raloxifene (LY139481 HCI) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J Clin Invest 1994; 93:63–69.

    Article  CAS  PubMed  Google Scholar 

  20. Evans GL, Bryant HU, Magee DE, Turner RT. Raloxifene inhibits bone turnover and prevents further cancellous bone loss in adult ovariectomized rats with established osteopenia. Endocrinology 1996; 137:4139–4144.

    Article  CAS  PubMed  Google Scholar 

  21. Sato M, Rippy MK, Bryant HU. Raloxifene, tamoxifen, nafoxidine, or estrogen effects on reproductive and nonreproductive tissues in ovariectomized rats. FASEB J 1996; 10:905–912.

    CAS  PubMed  Google Scholar 

  22. Sato M, Kim J, Short LL, Slemenda CW, Bryant HU. Longitudinal and cross-sectional analysis of raloxifene effects on tibiae from ovariectomized aged rats. J Pharmacol Exp Ther 1995; 272:1252–1259.

    CAS  PubMed  Google Scholar 

  23. Turner CH, Sato M, Bryant HU. Raloxifene preserves bone strength and bone mass in ovariectomized rats. Endocrinology 1994; 135:2001–2005.

    Article  CAS  PubMed  Google Scholar 

  24. Fisher B, Costantino J, Remond C. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N Engl J Med 1989; 320:479–484.

    CAS  PubMed  Google Scholar 

  25. Fisher B, Redmond C, Wickerham L. Systemic therapy in patients with node-negative breast cancer. A commentary based on two National Surgical Adjuvant Breast and Bowel Project (NSABP) clinical trials. Ann Intern Med 1989; 111:703–712.

    CAS  PubMed  Google Scholar 

  26. Kedar RP, Bourne TH, Powles TJ, Collins WP, Ashley SE, Cosgrove DO, Campbell S. Effects of tamoxifen on uterus and ovaries of postmenopausal women in a randomised breast cancer prevention trial. Lancet 1994; 343:1318–1321.

    Article  CAS  PubMed  Google Scholar 

  27. Fisher B, Costantino JP, Redmond CK, Fisher ER, Wickerham DL, Cronin WM. Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst 1994; 86:527–537.

    Article  CAS  PubMed  Google Scholar 

  28. Hulka BS. Epidemiologic analysis of breast and gynecologic cancers. Prog Clin Biol Res 1997; 396:17–29.

    CAS  PubMed  Google Scholar 

  29. Greven KM, Corn BW. Endometrial cancer. Curr Probl Cancer 1997; 21:65–127.

    Article  CAS  PubMed  Google Scholar 

  30. Farber E. Cell proliferation as a major risk factor for cancer: a concept of doubtful validity. Cancer Res 1995; 55:3759–3762.

    CAS  PubMed  Google Scholar 

  31. Kleinman D, Karas M, Danilenko M, Arbell A, Roberts CT, LeRoith D, et al. Stimulation of endometrial cancer cell growth by tamoxifen is associated with increased insulin-like growth factor (IGF)-I induced tyrosine phosphorylation and reduction in IGF binding proteins. Endocrinology 1996; 137:1089–1095.

    Article  CAS  PubMed  Google Scholar 

  32. Anzai Y, Holinka CF, Kuramoto H, Gurpide E. Stimulatory effects of 4-hydroxytamoxifen on proliferation of human endometrial adenocarcinoma cells (Ishikawa line). Cancer Res 1989; 49:2362–2365.

    CAS  PubMed  Google Scholar 

  33. Simard J, Sanchez R, Poirier D, Gauthier S, Singh SM, Merand Y, et al. Blockade of the stimulatory effect of estrogens, OH-tamoxifen, OH-toremifene, droloxifene, and raloxifene on alkaline phosphatase activity by the antiestrogen EM-800 in human endometrial adenocarcinoma Ishikawa cells. Cancer Res 1997; 57:3494–3497.

    CAS  PubMed  Google Scholar 

  34. Fournier B, Haring S, Kaye AM, Somjen D. Stimulation of creatine kinase specific activity in human osteoblast and endometrial cells by estrogens and antiestrogens and its modulation by calciotropic hormones. J Endocrinol 1996; 150:275–285.

    Article  CAS  PubMed  Google Scholar 

  35. Howe SR, Gottardis MM, Everitt JI, Goldsworthy TL, Wolf DC, Walker C. Rodent model of reproductive tract leiomyomata: establishment and characterization of tumor-derived cell lines. Am J Pathol 1995; 146:1568–1579.

    CAS  PubMed  Google Scholar 

  36. ACOG. Uterine Leiomyomata. ACOG Tech Bul 1994; 192:1–9.

    Google Scholar 

  37. Friedman AJ, Hoffman DI, Comite F, Browneller RW, Miller JD. Treatment of leiomyomata uteri with leuprolide acetate depot: a double-blind, placebo-controlled, multicenter study. The Leuprolide Study Group. Obstet Gynecol 1991; 77:720–725.

    CAS  PubMed  Google Scholar 

  38. Cramer SF, Patel A. The frequency of uterine leiomyomas. Am J Clin Pathol 1990; 94:435–438.

    CAS  PubMed  Google Scholar 

  39. Howe SR, Gottardis MM, Everitt JI, Walker C. Estrogen stimulation and tamoxifen inhibition of leiomyoma cell growth in vitro and in vivo. Endocrinology 1995; 136:4996–5003.

    Article  CAS  PubMed  Google Scholar 

  40. Fuchs-Young R, Howe S, Hale L, Miles R, Walker C. Inhibition of estrogen-stimulated growth of uterine leiomyomas by selective estrogen receptor modulators. Mol Carcinog 1996; 17:151–159.

    Article  CAS  PubMed  Google Scholar 

  41. Fuchs-Young R, Burroughs KD, Everitt J, Davis B, Walker C (1998) Discrimination of the tissue-specific biologic activity of therapeutic antiestrogens in vivo. Keystone Symposia – Molecular & Cellular Biology, pp 425.

    Google Scholar 

  42. Walker CL, Burroughs KD, Davis B, Sowell K, Everitt JI, Fuchs-Young R. Preclinical evidence for therapeutic efficacy of selective estrogen receptor modulators for uterine leiomyoma. J Soc Gynecol Invest 2000; 7:249–256.

    Article  CAS  Google Scholar 

  43. Porter KB, Tsibris JC, Porter GW, Fuchs-Young R, Nicosia SV, O’Brien WF, Spellacy WN. Effects of raloxifene in a guinea pig model for leiomyomas. Am J Obstet Gynecol 1998; 179:1283–1287.

    Article  CAS  PubMed  Google Scholar 

  44. Gottardis MM, Ricchio ME, Satyaswaroop PG, Jordam VC. Effect of steroidal and nonsteroidal antiestrogens on the growth of a tamoxifen-stimulated human endometrial carcinoma (EnCa101) in athymic mice. Cancer Res 1990; 50:3189–3192.

    CAS  PubMed  Google Scholar 

  45. Jordan VC, Gottardis MM, Satyaswaroop PG. Tamoxifen-stimulated growth of human endometrial carcinoma. Ann NY Acad Sci 1991; 622:439–446.

    Article  CAS  PubMed  Google Scholar 

  46. Fuchs-Young R, Glasebrook AL, Short LL, Draper MW, Rippy MK, Cole HW, et al. Raloxifene is a tissue-selective agonist/antagonist that functions through the estrogen receptor. Ann NY Acad Sci 1995; 355–360.

    Google Scholar 

  47. Fuchs-Young R, Magee DE, Cole HW. (1995) Raloxifene is a tissue-specific antiestrogen that blocks tamoxifen or estrogen-stimulated uterotrophic effects. Program of the 77th Annual Meeting of The Endocrine Society, Washington, DC.

    Google Scholar 

  48. Al-Jamal JH, Dubin NH. The effect of raloxifene on the uterine weight response in immature mice exposed to 17beta-estradiol, 1,1,1-trichloro-2, 2-bis(p-chlorophenyl)ethane, and methoxychlor. Am J Obstet Gynecol 2000; 182:1099–1102.

    Article  CAS  PubMed  Google Scholar 

  49. Ashby J, Odum J, Foster JR. Activity of raloxifene in immature and ovariectomized rat uterotrophic assays. Regul Toxicol Pharmacol 1997; 25:226–231.

    Article  CAS  PubMed  Google Scholar 

  50. Sundstrom SA, Komm BS, Xu Q, Boundy V, Lyttle R. The stimulation of uterine complement component C3 gene expression by antiestrogens. Endocrinology 1990; 126:1449–1456.

    Article  CAS  PubMed  Google Scholar 

  51. Sato M, Bryant HU, Iversen P, Helterbrand J, Smietana F, Bemis K, et al. Advantages of raloxifene over alendronate or estrogen on nonreproductive and reproductive tissues in the long-term dosing of ovariectomized rats. J Pharmacol Exp Ther 1996; 279:298–305.

    CAS  PubMed  Google Scholar 

  52. Jordan C, Phelps E, Lindgren U. Effects of anti-estrogens on bone in castrated and intact female rats. Br Cancer Res Treat 1987; 10:31–35.

    Article  CAS  Google Scholar 

  53. Sourla A, Luo S, Labrie C, Belanger A, Labrie F. Morphological changes induced by 6- month treatment of intact and ovariectomized mice with tamoxifen and the pure antiestrogen EM-800. Endocrinology 1997; 138:5605–5617.

    Article  CAS  PubMed  Google Scholar 

  54. Carthew P, Edwards RE, Nolan BM, Martin EA, Smith LL. Tamoxifen associated uterine pathology in rodents: relevance to women. Carcinogenesis 1996; 17:1577–1582.

    Article  CAS  PubMed  Google Scholar 

  55. Li D, Dragan Y, Jordan VC, Wang M, Pitot HC. Effects of chronic administration of tamoxifen and toremifene on DNA adducts in rat liver, kidney, and uterus. Cancer Res 1997; 57:1438–1441.

    CAS  PubMed  Google Scholar 

  56. Thomas T, Kiang DT. Additive growth-inhibitory effects of Dl-alpha-difluoromethylornithine and antiestrogens on MCF-7 breast cancer cell line. Biochem Biophys Res Comm 1987; 148:1338–1345.

    Article  CAS  PubMed  Google Scholar 

  57. Westley B, May FEB, Brown AMC, Krust A, Chambon P, Lippmann ME, Rochefort H. Effects of antiestrogens on the estrogen-regulated pS2 RNA and the 52- and 160-kilodalton proteins in MCF7 cells and two tamoxifen-resistant sublines. J Biol Chem 1984; 259:10030–10035.

    CAS  PubMed  Google Scholar 

  58. Poulin R, Labrie F. Stimulation of cell proliferation and estrogenic response by Adrenal C19- !delta5-steroids in the ZR-75-1 human breast cancer cell line. Cancer Res 1986; 46:4933–4937.

    CAS  PubMed  Google Scholar 

  59. Clemens J, Bennett D, Black L, Jones C. Effects of a new antiestrogen, keoxifene (LY156759), on growth of carcinogen-induced mammary tumors and on LH and prolactin levels. Life Sci 1983; 32:2869–2875.

    Article  CAS  PubMed  Google Scholar 

  60. Daniel CW, Silberstein GB, Strickland P. Direct action of 17B-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res 1987; 47:6052–6057.

    CAS  PubMed  Google Scholar 

  61. Gottardis MM, Jordan VC. Antitumor actions of keoxifene and tamoxifen in the N-Nitrosomethylurea- induced rat mammary carcinoma model. Cancer Res 1987; 47:4020–4024.

    CAS  PubMed  Google Scholar 

  62. Anzano MA, Byers SW, Smith JM, Peer CW, Mullen LT, Brown CC, et al. Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Res 1994; 54:4614–4617.

    CAS  PubMed  Google Scholar 

  63. Anzano MA, Peer CW, Smith JM, Mullen LT, Shrader MW, Logsdon DL, et al. Chemoprevention of mammary carcinogenesis in the rat: combined use of raloxifene and 9-cis-retinoic acid. J Natl Cancer Inst 1996; 88:123–125.

    Article  CAS  PubMed  Google Scholar 

  64. Barrett-Connor E, Bush TL. Estrogen and coronary heart disease in women. J Am Med Assn 1991; 265:1861–1867.

    Article  CAS  Google Scholar 

  65. Levy H, Boas EP. Coronary artery disease in women. J Am Med Assn 1936; 107:97.

    Google Scholar 

  66. Stampfer MJ, Colditz GA. Estrogen replacement therapy and coronary heart disease: a quantitative assessment of the epidemiologic evidence. Prev Med 1991; 20:47–63.

    Article  CAS  PubMed  Google Scholar 

  67. Baysal K, Losordo DW. Estrogen receptors and cardiovascular disease. Clin Exp Pharmacol Physiol 1996; 23:537–548.

    Article  CAS  PubMed  Google Scholar 

  68. Nabulsi A, Folsom A, White A, Patsch W, Heiss G, Wu K, Szklo M. Association of hormone- replacement therapy with various cardiovascular risk factors in postmenopausal women. N Engl J Med 1993; 15:1069–1075.

    Article  Google Scholar 

  69. Colditz GA, Hankinson SE, Hunter DJ, Willett WC, Manson JE, Stampfer MJ, et al. The use of estrogens and progestins and the risk of breast cancer in postmenopausal women. N Engl J Med 1995; 332:1589–1593.

    Article  CAS  PubMed  Google Scholar 

  70. Smith DC, Prentice R, Thompson DJ, Herrmann WL. Association of exogenous estrogen and endometrial carcinoma. N Engl J Med 1975; 293:1164–1167.

    CAS  PubMed  Google Scholar 

  71. Jick H, Watkins RN, Hunter JR, Dinan BJ, Madsen S, Rothman KJ, Walker AM. Replacement estrogens and endometrial cancer. N Engl J Med 1979; 300:218–222.

    Article  CAS  PubMed  Google Scholar 

  72. Lundeen SG, Carver JM, McKean ML, Winneker RC. Characterization of the ovariectomized rat model for the evaluation of estrogen effects on plasma cholesterol levels. Endocrinology 1997; 138:1552–1558.

    Article  CAS  PubMed  Google Scholar 

  73. Sullivan JM, Fowlkes LP. Estrogens, menopause, and coronary artery disease. Cardiol Clin 1996; 14:105–116.

    CAS  PubMed  Google Scholar 

  74. Yla-Herttuala S, Luoma J, Kallionpaa H, Laukkanen M, Lehtolainen P, Viita H. Pathogenesis of atherosclerosis. Maturitas 1996; 23(Suppl):S47–49.

    Article  PubMed  Google Scholar 

  75. Schwartz J, Freeman R, Frishman W. Clinical pharmacology of estrogens: cardiovascular actions and cardioprotective benefits of replacement therapy in postmenopausal women. J Clin Pharmacol 1995; 35:314–329.

    CAS  PubMed  Google Scholar 

  76. Frolik CA, Bryant HU, Black EC, Magee DE, Chandrasekhar S. Time-dependent changes in biochemical bone markers and serum cholesterol in ovariectomized rats: effects of raloxifene HC1, tamoxifen, estrogen, and alendronate. Bone 1996; 18:621–627.

    Article  CAS  PubMed  Google Scholar 

  77. Kauffman RF, Bensch WR, Roudebush RE, Cole HW, Bean JS, Phillips DL, et al. Hypocholesterolemic activity of raloxifene (LY139481): pharmacological characterization as a selective estrogen receptor modulator. J Pharmacol Exp Ther 1997; 280:146–153.

    CAS  PubMed  Google Scholar 

  78. Bjarnason NH, Haarbo J, Byrjalsen I, Kauffman RF, Christiansen C. Raloxifene inhibits aortic accumulation of cholesterol in ovariectomized, cholesterol-fed rabbits. Circulation 1997; 96:1964–1969.

    CAS  PubMed  Google Scholar 

  79. Figtree GA, Lu Y, Webb CM, Collins P. Raloxifene acutely relaxes rabbit coronary arteries in vitro by an estrogen receptor-dependent and nitric oxide-dependent mechanism. Circulation 1999; 100:1095–1101.

    CAS  PubMed  Google Scholar 

  80. Zuckerman SH, Bryan N. Inhibition of LDL oxidation and myeloperoxidase dependent tyrosyl radical formation by the selective estrogen receptor modulator raloxifene (LY139481 HCL). Atherosclerosis 1996; 126:65–75.

    Article  CAS  PubMed  Google Scholar 

  81. Montano MM, Kraus WL, Katzenellenbogen BS. Identification of a novel transferable cis element in the promoter of an estrogen-responsive gene that modulates sensitivity to hormone and antihormone. Mol Endocrinol 1997; 11:330–341.

    Article  CAS  PubMed  Google Scholar 

  82. Onoe Y, Miyaura C, Ohta H, Nozawa S, Suda T. Expression of estrogen receptor beta in rat bone. Endocrinology 1997; 138:4509–4512.

    Article  CAS  PubMed  Google Scholar 

  83. Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. Tissue distribution and quantitative analysis of estrogen receptor- alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 1997; 138:4613–4621.

    Article  CAS  PubMed  Google Scholar 

  84. Pace P, Taylor J, Suntharalingam S, Coombes RC, Ali S. Human estrogen receptor beta binds DNA in a manner similar to and dimerizes with estrogen receptor alpha. J Biol Chem 1997; 272:25832–25838.

    Article  CAS  PubMed  Google Scholar 

  85. Cowley SM, Hoare S, Mosselman S, Parker MG. Estrogen receptors alpha and beta form heterodimers on DNA. J Biol Chem 1997; 272:19858–19862.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fuchs-Young, R. (2009). Preclinical Studies of Raloxifene and Related Compounds. In: Jordan, V.C., Furr, B.J. (eds) Hormone Therapy in Breast and Prostate Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59259-152-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-152-7_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-471-5

  • Online ISBN: 978-1-59259-152-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics