Skip to main content

Angiogenesis in Skeletal and Cardiac Muscle

Role of Mechanical Factors

  • Chapter

Abstract

The role that mechanical factors deriving from blood flow play in the growth of blood vessels was most probably mentioned for the first time by John Hunter in his “Treatise on the Blood Flow, Inflammation and Gunshot Wounds,” published in 1794. Hunter was an anatomist who kept a deer herd in Richmond Park. He described enlargement of the carotid arteries in deer, coincident with the development of new antlers, which is known to involve intensive vascular growth. Almost a century later, Thoma (1) demonstrated that ontogenetic growth of vessels is caused by a combination of hemodynamic forces — increased blood flow, blood pressure, and wall tension — and mechanical stretch of vessels owing to the growth of the surrounding tissue. The importance of flow for capillary development was later shown in tadpole tails by Clark (2), who exposed to observation under the microscope the same site over many days, and in wound healing in the rabbit ear chamber (3). Today, the roles in angiogenesis of mechanical factors such as shear stress, circumferential stress, stretch, or physical forces owing to modification of the extracellular matrix are widely studied in tissue culture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thoma, R. (1893) Untersuchungen uber die Histogenese and Histomechanik des Gefssystems. Enkeverlag, Stuttgart.

    Google Scholar 

  2. Clark, E. R. (1918) Studies on the growth of blood vessels in the tail of the frog. Am. J. Anat. 23, 37–88.

    Article  Google Scholar 

  3. Clark, E. R. and Clark, E. L. (1940) Mircroscope observation of the extraendothelial cells of living mammalian blood vessels. Am. J. Anat. 66, 1–49.

    Article  Google Scholar 

  4. Folkman, J. and Shing, Y. (1992) Angiogenesis. J. Biol. Chem. 267, 10,931–10, 934.

    Google Scholar 

  5. Hudlickâ, O. and Tyler, K. R. (1986) Angiogenesis: The Growth of the Vascular System. Academic, London.

    Google Scholar 

  6. D’Amore, P. A. and Thompson, R. W. (1987) Mechanisms of angiogenesis. Ann. Rev. Physiol. 49, 453–464.

    Article  Google Scholar 

  7. Rhodin, J. A. G. and Fujita, H. (1989) Capillary growth in the mesentery of normal young rats. Intravital video and electron microscope analyses. J. Submicrosc. Cytol. Pathol. 21, 1–34.

    PubMed  CAS  Google Scholar 

  8. Sumpio, B. F. (1991) Haemodynamic forces and the biology of endothelium: signal transduction pathways in endothelial cells subjected to physical forces in vitro. J. Vasc. Surg. 13, 744–746.

    Article  PubMed  CAS  Google Scholar 

  9. Patrick, C. W., Jr. and McIntire, L. V. (1995) Shear stress and cyclic strain modulation of gene expression in vascular endothelial cells. Blood Purific. 13, 112–124.

    Article  CAS  Google Scholar 

  10. Wolin, M. S. (1996) Reactive oxygen species and vascular signal transduction mechanisms. Microcirculation 3, 1–17.

    Article  PubMed  CAS  Google Scholar 

  11. Dewey, C. F., Jr., Bussolari, S. R., Gimbrone, M. A. Jr., and Davies, P. F. (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J. Biochem. Eng. 103, 177–185.

    Google Scholar 

  12. Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F., and Gimbrone, M. A. (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl. Acad. Sci. USA 83, 2114–2117.

    Article  PubMed  CAS  Google Scholar 

  13. Ando, J., Nomura, H., and Kamiya, A. (1987) The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc. Res. 33, 62–70.

    Article  PubMed  CAS  Google Scholar 

  14. De Forrest, J. M. and Hollis, T. M. (1980) Relationship between low intensity shear stress, antihistamine formation and aortic albumin uptake. Exp. Mol. Pathol. 32, 217–225.

    Article  Google Scholar 

  15. Davies, P. F. (1989) How do vascular endothelial cells respond to flow? NIPS 4, 22–25.

    Google Scholar 

  16. Hecker, M., Mülsch, A., Bassenge, E., and Busse, R. (1993) Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autacoid release. Am. J. Physiol. 265, H828 - H833.

    PubMed  CAS  Google Scholar 

  17. Noris, M., Morigi, M., Donadelli, R., Aillo, S., Foppolo, M., Todeschini, M., et al. (1995) Nitric oxide synthesis of cultured endothelial cells is modified by flow conditions. Circ. Res. 76, 536–543.

    Article  PubMed  CAS  Google Scholar 

  18. Ziche, M., Morbidelli, L., Masini, E., Granger, H., Geppetti, P., and Ledda, F. (1993) Nitric oxide promotes DNA synthesis and cyclic GMP formation in endothelial cells from postcapillary venules. Biochem. Biophys. Res. Commun. 192, 1198–1203.

    Article  PubMed  CAS  Google Scholar 

  19. Olesen, S. P., Clapham, D. E., and Davies, P. F. (1988) Haemodynamics shear stress activates a K+ current in vascular endothelial cells. Nature 331, 168–170.

    Article  PubMed  CAS  Google Scholar 

  20. Berthiaume, F. and Frangos, J. A. (1990) Fluid flow causes membrane perturbation in cultured human umbilical vein endothelial cells (HUVECs). FASEB J. 4, A835.

    Google Scholar 

  21. Nollert, M. U., Eskin, S. G., and McIntire, L. V. (1990)tShear stress increases inositol triphosphate levels in human endothelial cells. Biochem. Biophys. Res Commun. 170, 281–282.

    Google Scholar 

  22. Brown, L. C., Messick, F. C., Koki, M. P., Hamilton, I. G., and Girard, P. R. (1995) Fluid flow stimulates metalloproteinase production and deposition into extracellular matrix of endothelial cells. FASEB J. 9, A617.

    Google Scholar 

  23. Resnick, N. and Gimbrone, M. A. (1995) Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J. 9, 874–882.

    CAS  Google Scholar 

  24. Davies, P. F. (1995) Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560.

    PubMed  CAS  Google Scholar 

  25. Gupte, A. and Frangos J. A. (1990) Effects of flow on the synthesis and release of fibronectin by endothelial cells. In Vitro 26, 57–60.

    CAS  Google Scholar 

  26. Ausprunck, D. H., Dethlefsen, S. M., and Higgins, E. R. (1991) Distribution of fibronectin, calcium and type IV collagen during development of blood vessels in the chick chorioallantoic membrane, in The Development of the Vascular System ( Feinberg, R. N., Scherer, G.-K., and Auerbach, R., eds.), Karger, Basel, pp. 93–108.

    Google Scholar 

  27. Rongish, B. J., Hinchman, G., Doty, M. K., Baldwin, S., and Tomanek, R. J. (1996) Relationship of the extracellular matrix to coronary neovascularization during development. J. Mol. Cell. Cardiol. 28, 2203–2215.

    Google Scholar 

  28. Sumpio, B. F., Banes, A. J., Levin, A. G., and Johnson, G. (1987) Mechanical stress stimulates aortic endothelial cells to proliferate. J. Vasc. Surg. 6, 252–256.

    PubMed  CAS  Google Scholar 

  29. Sumpio, B., Du, W., Gallagher, G., Gimbrone, M., and Resnick, N. (1995) Regulation of PDGF ß promotor in endothelial cells. FASEB J. 9, A272.

    Google Scholar 

  30. Widmann, M. D., Letsou, G. V., Phan, S., Baldwin, J. C., and Sumpio, B. E. (1992) Isolation and characterization of rabbit cardiac endothelial cells: response to cyclic strain and growth factors in vitro. J. Surg. Res. 53, 331–334.

    Article  PubMed  CAS  Google Scholar 

  31. Lyall, F., Deehan, M. R., Greer, I. A., Boswell, F., Brown, W. C., and McInnes, G. T. (1994) Mechanical stretch increases proto-oncogene expression and phosphoinositide turnover in vascular smooth muscle cells. J. Hypert. 12, 1139–1145.

    Google Scholar 

  32. Iba, T., Maitz, S., Furbert, T., Rosales, O., Widmann, M. D., Spillane, B., et al. (1991) Effect of cyclic stretch on endothelial cells from different vascular beds. Circ. Shock. 35, 193–198.

    PubMed  CAS  Google Scholar 

  33. Iba, T., Sain, T., Sonoda, T., Rosales, O., and Sumpio, B. E. (1991). Stimulation of endothelial secretion of tissue-type plasminogen activator by repetitive stretch. J. Surg. Res. 50, 457–460.

    Google Scholar 

  34. Gullino, P. M., Alessandri, G., and Ziche, M. (1990) Regulatory events in angiogenesis. Front. Diabetes 9, 175–182.

    Google Scholar 

  35. Pepper, M. S., Montesano, R., Mandriota, S. J., Orci, L., and Vassalli, J. D. (1996) Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 49, 138–162.

    PubMed  CAS  Google Scholar 

  36. Haudenschild, C. C. (1980) Growth control of endothelial cells in atherogenesis and tumor angiogenesis, in Advances in Microcirculation, vol. 9. ( Altura, B. M., ed.), Karger, Basel, pp. 226–251.

    Google Scholar 

  37. Ingber, D. E. and Folkman, J. (1987) Regulation of endothelial growth factor action–solid state control of extracellular matrix. Prog. Clin. Biol. Res. 249, 273–282.

    PubMed  CAS  Google Scholar 

  38. Lawman, J. B. and Hallam, T. J. (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325, 811–812.

    Article  Google Scholar 

  39. Sumpio, B. F., Banes, A. J., Link, G. W., and Iba, T. (1990) Modulation of endothelial cell phenotype by cyclic stretch: inhibition of collagen production. J. Surg. Res. 48, 415–420.

    Article  PubMed  CAS  Google Scholar 

  40. D’Amore, P. A. and Orlidge, A. (1988) Growth factors and pericytes in microangiography. Diabete Metab. 14, 495–504.

    Google Scholar 

  41. Folkow, B. (1982) Physiological aspects of primary hypertension. Physiol. Rev. 62, 347–504.

    PubMed  CAS  Google Scholar 

  42. Mulvany, M. J. and Aaalkjaer, C. (1990) Structure and function of small arteries. Physiol. Rev. 70, 921–962.

    PubMed  CAS  Google Scholar 

  43. Liebow, A. A. (1963) Situations which lead to changes in vascular patterns. in Handbook of Physiology, Circulation, vol. 2, American Physiolical Society, Bethesda, MD, pp. 1258–1259.

    Google Scholar 

  44. Dethlefsen, S. M., Shepro, D., and D’Amore, P. A. (1996) Comparison of the effects of mechanical stimulation on venous and arterial smooth muscle cells. J. Vasc. Res. 33, 405–413.

    Article  PubMed  CAS  Google Scholar 

  45. Speiser, B Riess, C. F., and Schaper, J. (1991) The extracellular matrix in human myocardium: Part 1: Collagens I, III, IV and VI. Cardioscience 2 225–232.

    Google Scholar 

  46. Glaser, B. M., Kalebic, T., Garbisa, S., Connor, T. B., Jr., and Liotta, L. A. (1983) Degradation of basement membrane components by vascular endothelial cells: role in neovascularisation, in Development of the Vascular System, Ciba Foundation Symposium 100, Pitman, London, pp. 150–162.

    Google Scholar 

  47. Unemori, E. N., Bouhana, K. S., and Werb, E. (1990) Vectorial secretion of extracellular matrix proteins, matrix degrading proteinases and tissue inhibitor of metalloproteinases by endothelial cells. J. Biol. Chem. 265, 445–451.

    PubMed  CAS  Google Scholar 

  48. Moscatelli, D. and Rifkin, D. B. (1988) Membrane and matrix localisation of proteases: a common theme in tumor invasion and angiogenesis. Biochem. Biophys. Acta 948, 67–85.

    Google Scholar 

  49. Ingber, D. E. and Folkman, J. (1989b) How does extracellular matrix control capillary morphogenesis? Cell 58, 803–805.

    Article  PubMed  CAS  Google Scholar 

  50. Form, M. D., Pratt, B. M., and Madri, J. A. (1986) Endothelial cell proliferation during angiogenesis: in vitro modulation by basement membrane components. Lab. Invest. 55, 521–530.

    PubMed  CAS  Google Scholar 

  51. Hausman, G. J., Wright, J. T., and Thomas, G. B. (1991) Vascular and cellular development in fetal adipose tissue: lectin binding studies and immunocytochemistry for laminin and Type IV collagen. Microvasc. Res. 41, 111–125.

    Article  PubMed  CAS  Google Scholar 

  52. Maragoudakis, M. E., Tsopanoglou, N. E., Bastaki, M., and Haralabopoulos, G. (1992) Evaluation of promotors and inhibitors of angiogenesis using basement membrane biosynthesis as an index, in Angiogenesis in Health and Disease, (Maragoudakis, M. E., Gullino, P., and Lelkes, P. I.,), Plenum, NY, pp. 275–285.

    Google Scholar 

  53. Ausprunck, D. H., Dethlefsen, S. M., and Higgins, E. R. (1991) Distribution of fibronectin, calcium and type IV collagen during development of blood vessels in the chick chorioallantoic membrane, in The Development of the Vascular System, ( Feinberg, R. N., Scherer, G.-K., and Auerbach, R., eds.), Karger, Basel, pp. 93–108.

    Google Scholar 

  54. Pepper, M S.,Vassalli, J. D., Montesano, R., and Orci, L. (1987) Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells. J. Cell. Biol. 105 2535–2541.

    Google Scholar 

  55. Johnson, M. D., Kim, H. R. C., Chesler, L., Tsaowu, G., Bouck, N., and Polverini, P. J. (1994) Inhibition of angiogenesis by tissue inhibior of metalloproteinase. J. Cell. Physiol. 160, 194–202.

    Article  PubMed  CAS  Google Scholar 

  56. Ingber, D. (1991) Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J. Cell. Biochem. 47, 236–241.

    Article  PubMed  CAS  Google Scholar 

  57. Strömblad, A. and Cheresh, D. A. (1996) Cell adhesion and angiogenesis. Trends Cell Biol. 6, 462–467.

    Article  PubMed  Google Scholar 

  58. Friedlander, M., Brooks, P.C., Shaffer, R. W., Kincaid, C. M., Varner, J. A., and Cheresh D. A. (1995) Definition of two angiogenic pathways by distinct av integrins. Science 270, 1500–1502.

    Article  PubMed  CAS  Google Scholar 

  59. Woessner, J. F., Jr. (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 5, 2145–2154.

    CAS  Google Scholar 

  60. Orlidge, A. and D’ Amore, P. A. (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell. Biol. 105, 1455–1462.

    Article  PubMed  CAS  Google Scholar 

  61. Kuwabara, T. and Cogan, D. G. (1963) Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Archs. Ophthal. 69, 492–502.

    Article  CAS  Google Scholar 

  62. Crocker, D. J., Murad, T. M., and Geer, J. P. (1970) Role of pericyte in wound healing. An ultrastructural study. Exp. Mol. Path. 13, 51–65.

    Article  CAS  Google Scholar 

  63. Sato, Y. and Rifkin, D. B. (1989) Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-01 like molecule by plasmin co-culture. J. Cell Biol. 109, 309–315.

    Article  PubMed  CAS  Google Scholar 

  64. Sims, D. E. (1986) The pericyte: a review. Tissue Cell 18, 153–174.

    Article  PubMed  CAS  Google Scholar 

  65. Nehls, V., Denzer, K., and Drenckhahn, D. (1992) Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res. 270, 469–474.

    Article  PubMed  CAS  Google Scholar 

  66. Diaz, F. L., Gutierrez, R., and Varela, H. (1992) Behaviour of postcapillary venule pericytes during postnatal angiogenesis. J. Morphol. 213, 33–45.

    Google Scholar 

  67. Egginton, S., Hudlickâ, O., Brown, M. D., Graciotti, L., and Granata, A.-L. (1996) In vivo pericyteendothelial cell interaction during angiogenesis in adult cardiac and skeletal muscle. Microvasc. Res. 51, 213–228.

    Article  PubMed  CAS  Google Scholar 

  68. Lelkes, P. I., Manolopoulos, V., Silverman, M., Zhang, S., Karmiol, S., and Unsworth, B. R. (1996). On the possible role of endothelial cell heterogeneity in angiogenesis, in Molecular, Cellular and Clinical Aspects of Angiogenesis, (Maragoudakis, M., ed.), Plenum Press, New York, pp. 1–17.

    Google Scholar 

  69. Hudlickâ, O., Brown, M. D., and Egginton, S. (1997) Angiogenesis - basic concepts and methodology, in Proceedings of An Introduction to Vascular Biology London, in press.

    Google Scholar 

  70. Heron, M. I. and Rakusan, K. (1995) Proliferating cell nuclear antigen (PCNA) detection of cellular proliferation in hypothyroid and hyperthyroid rat hearts. J. Mol. Cell. Cardiol. 27, 1393–1703.

    Article  PubMed  CAS  Google Scholar 

  71. Egginton, S. (1990) Morphometric analysis of tissue capillary supply. Adv. Comp. Environ. Physiol. 6, 73–141.

    Article  Google Scholar 

  72. Hansen-Smith, F. M., Hudlickâ, O., and Egginton, S. (1996) In vivo angiogenesis in adult rat skeletal muscle: early changes in capillary network architecture and ultrastructure. Cell Tissue Res. 286, 123–136.

    Article  PubMed  CAS  Google Scholar 

  73. Price, R. J. and Skalak, T. C. (1996) Chronic alpha 1-adrenergic blockade stimulates terminal and arcade arteriolar development. Am. J. Physiol. 271, H752 - H759.

    PubMed  CAS  Google Scholar 

  74. Hudlickâ, O., Brown, M. D., and Egginton, S. (1992) Angiogenesis in skeletal and cardiac muscle. Physiol. Rev. 72, 369–417.

    PubMed  Google Scholar 

  75. Schaper, W., Görge, G., Winkler, B., and Schaper, J. (1988) The collateral circulation of the heart. Prog. Cardiovasc. Dis. 31, 57–77.

    Article  PubMed  CAS  Google Scholar 

  76. White, F. C. and Bloor, C. M. (1992) Coronary vascular remodeling and coronary resistance during chronic ischemia. Am. J. Cardiovasc. Pathol. 4, 193–202.

    PubMed  CAS  Google Scholar 

  77. Kasalicky, J., Ressl, J., Urbanova, D., Widimsky, J., Ostadal, B., Pelouch, V., et al. (1977) Relative organ blood flow in rats exposed to intermittent high altitude hypoxia. Pflügers Arch. 368, 111–115.

    Article  PubMed  CAS  Google Scholar 

  78. Tyml, K. (1991) Heterogeneity of microvascular flow in rat skeletal muscle is reduced by contraction and by hemodilution. Int. J. Microcirc. Clin. Exp. 10, 75–86.

    PubMed  CAS  Google Scholar 

  79. Berg, B. R. and Sarelius, I. H. (1995) Functional capillary organization in striated muscle. Am. J. Physiol. 268, H1215 - H1222.

    PubMed  CAS  Google Scholar 

  80. Anderson, S. I. Hudlickâ, O., and Brown M. D. (1997) Capillary red blood cell flow and activation of white blood cells in chronic muscle ischemia in the rat. Am. J. Physiol.,in press.

    Google Scholar 

  81. Dawson, J. M. and Hudlickâ, O. (1993) Can changes in microcirculation explain capillary growth in skeletal muscleInt. J. Exp. Pathol. 74, 65–71.

    PubMed  CAS  Google Scholar 

  82. Duling, B. R. and Desjardins, C. (1987) Capillary hematocrit: what does it mean? NIPS 2, 66–69.

    Google Scholar 

  83. Heroux, O. and Pierre, J. S. (1957) Effect of cold acclimation on vascularisation of ears, heart, liver and muscles of white rats. Am. J. Physiol. 188, 163–168.

    PubMed  CAS  Google Scholar 

  84. Sillau, A. H., Aquin, L., Lechner, A. J., and Hui, M. V. (1980) Increased capillary supply in skeletal muscle of guinea pigs acclimated to cold. Respir. Physiol. 42, 233–245.

    Google Scholar 

  85. Wickler, S. J. (1981) Capillary supply of skeletal muscles from acclimatized white-footed mice Peromyseus. Am. J. Physiol. 241, R357 - R361.

    CAS  Google Scholar 

  86. Johnston, I. A. (1982) Capillarisation, oxygen diffusion distances and mitochondrial content of carp muscles following acclimation to summer and winter temperatures. Cell Tissue Res. 222 325–337.

    Google Scholar 

  87. Egginton, S. and Hoofd, L. (1994) Effects of low temperature on calculated intracellular oxygen tension in fish skeletal muscle. J. Physiol. 479P, 6.

    Google Scholar 

  88. Folkow, B. and Neil, E. (1971) Circulation. Oxford University Press, New York, London.

    Google Scholar 

  89. Turek, Z., Grandtner, M., and Kreuzer, F. (1972) Cardiac hypertrophy, capillary and muscle fiber density, muscle fiber diameter, capillary radius and diffusion distance in the myocardium of growing rats adapted to a simulated altitude of 3500m. Pflügers Arch. 335, 19–28.

    Article  PubMed  CAS  Google Scholar 

  90. Pietschmann, M. and Bartels, H. (1985) Cellular hyperplasia and hypertrophy, capillary proliferation and myoglobin concentration in the heart of newborn and adult rats at high altitude. Respir. Physiol. 59, 347–360.

    Article  PubMed  CAS  Google Scholar 

  91. Tornling, G. (1982) Capillary neoformation in the heart of dipyridamole treated rats. Acta Pathol. Microbiol. Scand. sec A. 90, 269–271.

    CAS  Google Scholar 

  92. Mattfeldt, T. and Mall, G. (1983) Dipyrimadole-induced capillary endothelial proliferation in the rat heart: a morphometric investigation. Cardiovasc. Res. 17 229–237.

    Google Scholar 

  93. Ziada, A. M. A. R., Hudlickâ, O., Tyler, K. R., and Wright A. J. A. (1984) The effect of long term vasodilation on capillary growth and performance in rabbit heart and skeletal muscle. Cardiovasc. Res. 18, 724–732.

    Article  PubMed  CAS  Google Scholar 

  94. Tillmanns, H., Steinhausen, M., Leinberger, H., Thederan, H., and Kübler, W. (1982) The effect of coronary vasodilators on the microcirculation of the ventricular myocardium, in Microcirculation of the Heart ( Tillmanns, H., Kübler, W., and Zebe, H., eds.), Springer Verlag, Berlin, Heidelberg, pp. 305–312.

    Chapter  Google Scholar 

  95. Hudlickâ, O. (1994) Mechanical factors involved in the growth of the heart and its blood vessels. Cell. Mol. Biol. Res. 40, 143–152.

    PubMed  Google Scholar 

  96. Mandache, E., Unge, G., Appelgren, L. E., and Ljungqvist, A. (1973) The proliferation activity of the heart tissues in various forms of experimental cardiac hypertrophy studied by electron microscope autoradiography. Virchow’s Arch. Cell. Pathol. 12, 112–122.

    CAS  Google Scholar 

  97. Brown, M. D., Egginton, S., and Hudlickâ, O. (1996) Appearance of the capillary endothelial glycocalyx in chronically stimulated rat skeletal muscles in relation to angiogenesis. Exp. Physiol. 81, 1043–1046.

    PubMed  CAS  Google Scholar 

  98. Pearce, S., Hudlickâ, O., and Egginton, S. (1995) Early stages in activity-induced angiogenesis in rat skeletal muscles: incorporation of bromodeoxyuridine into cells of the interstitium. J. Physiol. 483, 146 P.

    Google Scholar 

  99. Brown, M. D., Hudlickâ, O., Weiss, J. B., Bate, A., and Silgram, H. (1996) Prazosin-induced capillary growth in rat skeletal muscle: link with endothelial-cell-stimulating angiogenic factor. Int. J. Microcirc. Clin. Exp. 16, 207.

    Article  Google Scholar 

  100. Zhou, A.-L., Egginton, S., and Hudlickâ, O. (1996) Ultrastructural evidence for a novel mechanism of capillary growth in rat skeletal muscle. J. Physiol. 491, 28 P.

    Google Scholar 

  101. van Groningen, J. P.,Weninck, A. C., and Testers, L. H. (1991). Myocardial capillaries increase in number by splitting of existing vessels. Acta Embryologica 184, 65–70.

    Google Scholar 

  102. Gullino, P. M. (1992) Microenvironment and angiogenic response. EXS 61, 125–128.

    PubMed  CAS  Google Scholar 

  103. Pearce, S. C. and Hudlickâ, O. (1995) Possible involvement of prostaglandins in capillary growth in chronically stimulated skeletal muscles. Microcirculation 2, 98.

    Google Scholar 

  104. Hudlickâ, O., Brown, M. D., and Silgram, H. (1996) Role of nitric oxide in capillary proliferation in chronically stimulated rat skeletal muscle. Int. J. Microcirc. Clin. Exp. 16 (Suppl. 1), 92.

    Google Scholar 

  105. Messina, E. J., Sun, D., Koller, A., Wolin, M. S., and Kaley, G. (1992) Role of endothelium derived prostaglandins in hypoxia-elicited arteriolar dilation in rat skeletal muscle. Circ. Res. 71, 790–796.

    Article  PubMed  CAS  Google Scholar 

  106. Maspers, M. Bjornberg, J., and Mellander, S. (1990) Relation between capillary pressure and vascular tone over the range from maximum dilatation to maximum constriction in cat skeletal muscle. Acta Physiol. Scand. 140, 73–83.

    CAS  Google Scholar 

  107. Fronek, K. and Zweifach, B. W. (1975) Microvascular pressure distribution in skeletal muscle and the effect of vasodilation. Am. J. Physiol. 228, 791–796.

    PubMed  CAS  Google Scholar 

  108. Tillmanns, T. H., Steinhausen, M., Therderan, H., and Parekh, N. (1977) In vivo microscopic studies of the ventricular microcirculation of the rat heart. J. Mol. Cell Cardiol. 9 (Suppl.), 57–58.

    Article  Google Scholar 

  109. Tillmanns, T H, Dart, A. M., Parekh, N., Neumann, F. J., Moller, P., Zimmerman, R., et al. (1984) Calcium antagonists (nifedipine) and coronary vasodilators (dipyridamole) - different effects on small coronary resistance vessels. Int. J. Microcirc. Clin. Exp. 3, 342.

    Google Scholar 

  110. Wachtlovâ, A., Rakusan, K., and Poupa, O (1965) The coronary terminal vascular bed in the heart of the hare (Lepidus europeus) and the rabbit (Orytolagus domesticus). Physiol. Bohemoslov 14, 328–331.

    Google Scholar 

  111. Wachtlovâ, M., Rakusan, K., Roth, Z., and Poupa, O. (1967) The terminal bed of the myocardium in the wild rat (Rattus Norvegicus) and the laboratory rat (Rattus Norvegicus Lab.). Physiol. Bohemoslov 16, 548–554.

    PubMed  Google Scholar 

  112. Wright, A. J. A. and Hudlickâ, O. (1981) Capillary growth and changes in heart performance induced by chronic bradycardial pacing in the rabbit. Circ. Res. 49, 469–478.

    Article  PubMed  CAS  Google Scholar 

  113. Hudlickâ, O., Wright, A. J. A., Hoppeler, H., and Uhlmann, E (1988) The effect of chronic bradycardial pacing on the oxidative capacity in rabbit hearts. Respir. Physiol. 72, 1–12.

    Article  PubMed  Google Scholar 

  114. Brown, M. D., Davies, M. K., Hudlickâ, O., and Townsend, P. (1994) Long-term bradycardia by electrical pacing: a new method for studying heart rate reduction. Cardiovasc. Res. 28, 1774–1779.

    Article  PubMed  CAS  Google Scholar 

  115. Brown, M. D. and Hudlickâ, O. (1992) Capillary growth in the heart. EXS 61, 389–394

    PubMed  CAS  Google Scholar 

  116. Hudlickâ, O., West, D., Kumar, S., El Khelly, F., and Wright, A. J. A. (1989) Can growth of capillaries in the heart and skeletal muscle be explained by the presence of an angiogenic factor ? Br. J. Exp. Path. 70, 237–246.

    Google Scholar 

  117. Tillmanns, T, Ikeda, S., Hansen, H., Samara, J. S., Fauvel, J. H., and Bing, R. J. (1974) Microcirculation in the ventricule of the dog and turtle. Circ. Res. 34, 561–569.

    Article  PubMed  CAS  Google Scholar 

  118. Folkman, J. and Moscona, A. (1978) Role of cell shape in growth control. Nature 273, 345–349.

    Article  PubMed  CAS  Google Scholar 

  119. Koch, A. E., Halloran, M., Haskell, C. J., Shah, M. R., and Polerini, P. J. (1995) Angiogenesis mediated by soluble forms of E selectin and vascular cell adhesion molecule-1. Nature 376, 517–519.

    Google Scholar 

  120. Hassler, O. and Stroinska-Kusinova, B. (1976) The angioarchitecture of normal, hypertrophic and denervated muscle. A study in the rat, using microangiography and the scanning electron microscope. Pathol. Eur. 11, 57–61.

    PubMed  CAS  Google Scholar 

  121. James, N. T. (1981) A stereological analysis of capillaries in normal and hypertrophic muscle. J. Morph. 168, 43–49.

    Article  PubMed  CAS  Google Scholar 

  122. Degens, H., Turek, Z., Hoofd, L. J. C., Van de Hoff, M. A., and Binkhorst, R. A. (1992) The relationship between capillarisation and fibre types during compensatory hypertrophy of the plantaris muscle in the rat. J. Anat. 180, 455–463.

    PubMed  Google Scholar 

  123. Egginton S., and Hudlickâ, O. (1992) Effect of long-term overload on capillary supply, blood flow and performance in rat fast muscle. J. Physiol. 454, 9 P.

    Google Scholar 

  124. Holly, R. G., Barnett, J. G., Ashmore, C. R., Taylor, R. G., and Mole, P. A. (1980) Stretch induced growth in chicken wing muscles: a new model of stretch hypertrophy. Am. J. Physiol. 238, C62 - C71.

    PubMed  CAS  Google Scholar 

  125. Snyder, G. K. and Coelho, J. R. (1989) Microvascular development in chick anterior latissimus dorsi following hypertrophy. J. Anat. 162, 215–224.

    PubMed  CAS  Google Scholar 

  126. Armstrong, R. B., Ianuzzo, C. D., and Laughlin, M. H. (1986) Blood flow and glycogen use in hypertrophied rat muscles during exercise. J. Appl. Physiol. 61, 685–687.

    Google Scholar 

  127. Egginton, S., Hudlickâ, O., Walter, H., Brown, M. D., Weiss, J. B., and Bate, A. (1997) Is angiogenesis in stretch-overloaded rat skeletal muscle linked with increased blood flow and performances (manuscript in preparation).

    Google Scholar 

  128. Zhou, A.-L. and Egginton, S. (1997) Capillary growth in overloaded rat skeletal muscle: an ultrastructural study. J. Physiol. 499, 39 P.

    Google Scholar 

  129. Hudlickâ, O. and Brown, M. D. (1994) Growth of blood vessels in normal and diseased hearts. The rap. Res. 15, 93–145.

    Google Scholar 

  130. Brown, M. D. and Hudlickâ, O. (1991) Capillary supply and cardiac performance in the rabbit after chronic dobutamine treatment. Cardiovasc. Res. 25 909–915.

    Google Scholar 

  131. Wachtlovâ, M. and Parizkovâ, J. (1972) Comparison of capillary density in skeletal muscles of animals differing in respect of their physical activity: the hare (Lepus europaeus), the domestic rabbit (Oryctolagus domesticus), the brown rat (Rattus norvegicus) and the trained and untrained rat. Physiol. Bohemoslov 21, 489–495.

    PubMed  Google Scholar 

  132. Gunn, H. M. (1981) Potential blood supply to muscles in horses and dogs and its relation to athletic ability. Am. J. Vet. Res. 42, 679–684.

    PubMed  CAS  Google Scholar 

  133. Hudlickâ, O. (1990) The response of muscle to enhanced and reduced activity. Bailliere’s Clin. Endocrinol. Metab. 4, 417–439.

    Article  PubMed  Google Scholar 

  134. Hermansen, L. and Wachtlova, M. (1971) Capillary density of skeletal muscle in well-trained and untrained men. J. Appl. Physiol. 30, 860–863.

    PubMed  CAS  Google Scholar 

  135. Andersen, P. and Henriksson, J. (1977) Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J. Physiol. 270, 677–690.

    PubMed  CAS  Google Scholar 

  136. Saltin, B. and Gollnick, P. D. (1983) Skeletal muscle adaptability: significance for metabolism and performance, in Handbook of Physiology ( Peachey, L. D., Adrian, R. H., and Geiger, S. R., eds.), American Physiological Society, Bethesda, MD, pp. 555–631.

    Google Scholar 

  137. Denis, C., Chatard, J. C., Dormois, D., Linossier, M. T., Geyssant, A., and Lacour, J. R. (1986) Effects of endurance training on capillary supply of human skeletal muscles in two age groups (20 and 60 years). J. Physiol. 81, 379–385.

    Google Scholar 

  138. Zumstein, A., Mathieu, O., Howald, H., and Hoppeler, H. (1983) Morphometric analysis of the capillary supply in skeletal muscles of trained and untrained subjects–its limitations in muscle biopsies. Pflügers Arch. 397, 277–283.

    Article  PubMed  CAS  Google Scholar 

  139. Nygaard, E. (1982) Skeletal muscle fibre characteristics in young women. Acta Physiol. Scand. 112, 299–304.

    Article  Google Scholar 

  140. Larsson, L. and Forsberg, A. (1980) Morphological muscle characteristics in rowers. Can. J. Sports Sci. 5, 239–244.

    CAS  Google Scholar 

  141. Schantz, P., Henriksson, J., and Jansson, E. (1983) Adaption of human skeletal muscle to endurance training of long duration. Clin. Physiol. 3, 141–151.

    Article  PubMed  CAS  Google Scholar 

  142. Ljungqvist, A., Tornling, G., Unge, G., Jurdahl, B., and Larsson, B. (1984) Capillary growth in the heart and skeletal muscle during dipyridamole treatment and exercise. Prog. Appl. Microcirc. 4, 9–15.

    Google Scholar 

  143. Hoppeler, H., Lindstedt, S. L., Uhlmann, E., Niesel, A., Cruz-Orive, L. M., and Weibel, E. R. (1984) Oxygen consumption and the composition of skeletal muscle tissue after training and inactivation in the european woodmouse (Apodemus Sylvaticus). J. Comp. Physiol. B. 155, 51–61.

    Article  Google Scholar 

  144. Parson, D., Musch, T. I., Moore, R. L., Hailet, G. C., and Ordway, G. A. (1985) Dynamic exercise training in foxhounds II. Analysis of skeletal muscle. J. Appl. Physiol. 59, 190–197.

    Google Scholar 

  145. Mai, J. V., Edgerton, V. R., and Barnard, R. J. (1970) Capillarity of red, white and intermediate muscle fibres in trained and untrained guinea-pigs. Experientia 26, 1222–1223.

    Article  PubMed  CAS  Google Scholar 

  146. Ingjer, F. (1979) Effects of endurance training on muscle fibre ATPase activity, capillary supply and mitochondria in man J. Physiol. 294, 419–432.

    PubMed  CAS  Google Scholar 

  147. Romanul, F. C. (1965) Capillary supply and metabolism of muscle fibres. Arch. Neurol. 12, 497–509.

    Article  PubMed  CAS  Google Scholar 

  148. Gray, S.D. and Renkin, E. M. (1978) Microvascular supply in relation to fiber metabolic type in mixed skeletal muscles of rabbits. Microvasc. Res. 16, 406–425.

    Article  PubMed  CAS  Google Scholar 

  149. Laughlin, M. H. and Armstrong, R. B. (1982) Muscular blood flow distribution patterns as a function of running speed in rats. Am. J. Physiol. 243, H296 — H306.

    Google Scholar 

  150. Sexton, W. L. and Laughlin, M. H. (1994) Influence of endurance exercise training on distribution of vascular adaptations in rat skeletal muscle. Am. J. Physiol. 266, H483 — H490.

    PubMed  CAS  Google Scholar 

  151. Daub, W. D., Green, H. Y., Houston, M. E., Thomson, J. A., Fraser, I. G., and Ranney, D. A. (1982) Cross-adaptive responses to different forms of leg training: skeletal muscle biochemistry and histochemistry. Can. J. Physiol. Pharmacol. 60, 628–635.

    Google Scholar 

  152. Schantz, P. (1982) Capillary supply in hypertrophied human skeletal muscle. Acta Physiol. Scand. 114, 635–637.

    Article  PubMed  CAS  Google Scholar 

  153. Schantz, P. (1983) Capillary supply in heavy-resistance trained non-postural human skeletal muscle. Acta Physiol. Scand. 117, 153–156.

    Article  PubMed  CAS  Google Scholar 

  154. Tesch, P. A., Thorsson, A., and Kaiser, P. (1984) Muscle capillary supply and fiber type characteristics in weight and power lifters. J. Appl. Physiol. 56, 35–38.

    PubMed  CAS  Google Scholar 

  155. Luthi, J. M., Howald, H., Claasen, H., Rosler, K., Voek, P., and Hoppeler, H. (1986) Structural changes in skeletal muscle tissue with heavy resistance exercise. Int. J. Sports Med. 7, 123–127.

    Article  PubMed  CAS  Google Scholar 

  156. Gute, D Laughlin, M. H., and Amann, J. F. (1994) Regional changes in capillary supply in skeletal muscle of interval-trained-sprint and low-intensity, endurance-trained rats. Microcirculation 1 183–193.

    Google Scholar 

  157. Laughlin, M. H. and McAllister, R. M. (1992) Exercise training-induced coronary vascular adaptation. J. Appl. Physiol. 73, 2209–2225.

    PubMed  CAS  Google Scholar 

  158. Tomanek, R. J. (1994) Exercise-induced coronary angiogenesis: a review. Med. Sci. Sports Exerc. 26, 1245–1251.

    PubMed  CAS  Google Scholar 

  159. Anversa, P Levicky, V., Beghi, C., McDonald, S. L and Kikkawa, Y. (1983) Morphometry of exercise-induced right ventricular hypertrophy in the rat. Circ. Res. 52 57–64.

    Google Scholar 

  160. Tomanek, R. J. (1970) Effects of age on the extent of the myocardial capillary bed. Anat. Rec. 167, 55–62.

    Article  PubMed  CAS  Google Scholar 

  161. Zhou, J. Sun, D., Kaley, G., and Kumar, A. (1996) Endothelial nitric oxide synthase gene expression is up-regulated by chronic exercise in rat microvessels. FASEB J 10, A39.

    Google Scholar 

  162. Shen, W., Zhang, X. Y., Zhao, G., Wolin, M. S., Sessa, W., and Hintze, T. H. (1995) Nitric oxide production and NO synthase gene expression contribute to vascular regulation during exercise. Med. Sci. Sports Exerc. 27, 1125–1134.

    PubMed  CAS  Google Scholar 

  163. Greer, K. A., Anderson, D. R., Hammond, R. L., and Stephenson, L. W. (1996) Skeletal muscle as a myocardial substitute. Proc. Soc. Exp. Biol. Med. 211, 297–305.

    PubMed  CAS  Google Scholar 

  164. Adrian, E. D. and Bronk, D. A. (1929) The discharge of impulses in motor nerve fibres. J. Physiol. 67, 119–151.

    Google Scholar 

  165. Salmons, S. and Vrbovâ, G. (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J. Physiol. 210, 535–549.

    Google Scholar 

  166. Brown, M. D., Cotter, M. A., Hudlickâ, O., and Vrbova, G. (1976) The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflügers Arch. 361, 241–250.

    Article  PubMed  CAS  Google Scholar 

  167. Hudlickâ, O., Dodd, C., Renkin, E. M., and Gray, S. D. (1982) Early changes in fiber profiles and capillary density in long-term stimulated muscles. Am. J. Physiol. 243, H528 — H535.

    PubMed  Google Scholar 

  168. Hudlickâ, O., Tyler, K. R., Wright, A. J. A., and Ziadam AM AR (1984) Growth of capillaries in skeletal muscles. Progr. Appl. Microcirc. 5, 44–61.

    Google Scholar 

  169. Salmons, S., Jarvis, J. C., Sutherland, H., Gilroy, S. J., and Kwende, M. M. N. (1996) Optimizing the properties of fuctional skeletal muscle grafts. J. Muscle Res. Cell Motil. 17, 97.

    Google Scholar 

  170. Hudlickâ, O. and Tyler, K. R. (1984) The effect of long-term intermittent high frequency stimulation on capillary density and fibre profiles in rabbit fast muscles. J. Physiol. 353, 435–445.

    PubMed  Google Scholar 

  171. Hudlickâ, O., Tyler, K. R., Srihari, T., Heilig, A., and Pette, D. (1982) The effect of different patterns of long-term stimulation on contractile properties and myosin light chains in rabbit fast muscles. Pflügers Arch. 393, 164–170.

    Article  PubMed  Google Scholar 

  172. Lucas, C. M., Havenith, M. G., V andervenn, F. H., Habets, J., V andernagel, T., Schrijversvanschendel, J. M.,et al. (1992) Changes in canine latissimus dorsi muscle during 24-wk of continuous electrical stimulation. J. Appl. Physiol. 72, 828–835.

    Google Scholar 

  173. Eloakley, R. M., Jarvis, J. C., Barman, D., Greenhalgh, D. L., Currie, J., Downham, D. Y., et al. (1995) Factors affecting the integrity of latissimus dorsi muscle grafts: implications for cardiac assistance from skeletal muscle. J. Heart Lung Transplant. 14, 359–365.

    CAS  Google Scholar 

  174. Ianuzzo, C. D., Lanuzzo, S. E., Carson, N., Feild, M., Locke, M., Gu., J., et al. (1996) Cardiomyoplastydegeneration of the assisting skeletal muscle. J. Appl. Physiol. 80, 1205–1213.

    PubMed  CAS  Google Scholar 

  175. Hudlickâ, O., Egginton, S., Brown, M. D., and Okyayuz-Baklouti, I. (1994) effect of torbafylline on muscle blood flow, performance and capillary supply in ischemic muscles subjected to varying levels of activity. Can. J. Physiol. Pharm. 72, 811–817.

    Google Scholar 

  176. Pette, D., Muller, W., Leisner, E., and Vrbova, G. (1976) Time dependent effects on contractile properties, fibre population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulated fast twitch muscles of the rabbit. Pflugers Archiv. 364, 103–112.

    Article  PubMed  CAS  Google Scholar 

  177. Lexell, J., Jarvis, J., Downham, D, and Salmons, S. (1992) Quantitative morphology of stimulation–induced damage in rabbit fast-twitch skeletal muscles. Cell Tissue Res. 269, 195–204.

    Article  PubMed  CAS  Google Scholar 

  178. Bailey, W. F., Magno, M. G., Buckman, P. D., Dimeo, F., Langan, T., Armenti, V. T., and Mannion, J. D. (1993) Chronic stimulation enhances extramyocardial collateral blood flow after a cardiomyplasty. Ann. Thorac. Surg. 56, 1045–1053.

    Google Scholar 

  179. Frischknecht, R. and Vrbovâ, G. (1991) Adaptation of rat extensor digitorum longus to overload and increased activity. Pflügers Arch. 419, 319–326.

    Article  PubMed  CAS  Google Scholar 

  180. Osbaldeston, N. J., Lee, D. M., Cox, V. M., Hesketh, J. E., Morrison, J. F. J., Blair, G. E., and Goldspink, D. F. (1995) The temporal and cellular expression of c-fos and c-jun in mechanically stimulated rabbit latissimus dorsi muscle. Biochem. J. 308, 465–471.

    PubMed  CAS  Google Scholar 

  181. Goldspink, D. F., Cox, V. M., Smith, S. K., Eaves, L. A., Osbaldeston, N. J., Lee, D. M., and Mantle, D. (1995) Muscle growth in respone to mechanical stimuli. Am. J. Physiol. 31, E288 - E297.

    Google Scholar 

  182. Hudlickâ, O. (1967) Blood flow and oxygen consumption in muscles after section of ventral roots. Circ. Res. 20, 570–577.

    Article  PubMed  Google Scholar 

  183. Hudlickâ, O. and Renkin, E. M. (1968) Blood flow and blood tissue diffusion of 86Rb in denervated and tenotomized muscle udergoing atrophy. Microvasc. Res. 1, 147–157.

    Article  Google Scholar 

  184. Atherton, G. W., Cabric, M., and James, N. T. (1982) Stereological analyses of capillaries in muscles of dystrophic mice. Virchows Arch. A Pathol. Anat. 397, 347–382.

    CAS  Google Scholar 

  185. Carry, M. R., Ringel, S. P., and Starcevich, J. M. (1986) Distribution of capillaries in normal and diseased human skeletal muscle. Muscle Nerve 9, 445–454.

    Article  PubMed  CAS  Google Scholar 

  186. Hansen-Smith, F. M., Carlson, B. M., and Irwin, K. L. (1980) Revascularization of the freely grafted extensor digitorum longus muscle in the rat. Am. J. Anat. 158, 65–82.

    Article  PubMed  CAS  Google Scholar 

  187. Tomanek, R. J. (1990) Response of the coronary vasculature to myocardial hypertrophy. J. Am. Coll. Cardiol. 15, 528–533.

    Article  PubMed  CAS  Google Scholar 

  188. Hudlickâ, O. and Brown, M. D. (1996) Postnatal growth of the heart and its blood vessels. J. Vasc. Res. 33, 266–287.

    Article  PubMed  Google Scholar 

  189. Wiener, J., Giacomelli, F., Loud, A. V., and Anversa, P. (1979) Morphometry of cardiac hypertrophy induced by experimental renal hypertension. Am. J. Cardiol. 44, 919–929.

    Article  PubMed  CAS  Google Scholar 

  190. Breisch, E. A., White, F. C., Nimmo, L. E., and Bloor, C. M. (1986) Cardiac vasculature and flow during pressure-overload hypertrophy. Am. J. Physiol. 251, H1031 - H1037.

    PubMed  CAS  Google Scholar 

  191. Tomanek, R. J., Palmer, P. J., Peiffer, G. L., Schreiber, K. L., Eastham, C. L., and Marcus, M. L. (1986) Morphometry of canine coronary arteries, arterioles and capillaries during hypertension and left ventricular hypertrophy. Circ. Res. 58, 38–46.

    Google Scholar 

  192. Tomanek, R. J., Wessel, T. J., and Harrison, D. G. (1991) Capillary growth and geometry during longterm hypertension and myocardial hypertrophy in dogs. Am. J. Physiol. 261, H1011 - H1018.

    Google Scholar 

  193. White, F. C., Nakatini, Y, Nimmo, L., and Bloor, C. M. (1992) Compensatory angiogenesis during progressive right ventricular hypertrophy. Am. J. Cardiovasc. Pathol. 4, 51–68.

    PubMed  CAS  Google Scholar 

  194. Crisman, R. P., Rittman, B., and Tomanek, R. J. (1985) Exercise induced myocardial capillary growth in the spontaneously hypertensive rat. Microvasc. Res. 30, 185–194.

    Article  PubMed  CAS  Google Scholar 

  195. Rakusan, K., Flanagan, M. F., Geva, T., Southern, J., and Vanpraagh, R. (1992) Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation 86, 38–46.

    Google Scholar 

  196. Tomanek, R. J. (1992) Age as a modulator of coronary capillary angiogenesis. Circulation 86,320–321.

    Google Scholar 

  197. Tomanek, R. J., Searls, J. C., and Lachenbruch, P. A. (1982) Quantitative changes in the capillary bed during developing peak and stabilized hypertrophy in a spontaneously hypertensive rat. Circ. Res. 51, 295–304.

    Google Scholar 

  198. Anversa, P., Melissari, M., Beghi, C., and Olivetti, G. (1984) Structural compensatory mechanisms in rat heart in early spontaneous hypertension. Am. J. Physiol. 246, H739 - H746.

    PubMed  CAS  Google Scholar 

  199. Rakusan, K. (1987) Microcirculation in the stressed heart, in The Stressed Heart (Legato, M. J., ed.), Martinus Nijhoff, Boston, pp. 107–123.

    Google Scholar 

  200. Henquell, L., Odoroff, C. L., and Honig, C. R. (1977) Intercapillary distance and capillary reserve in hypertrophied rat hearts beating in situ. Circ. Res. 41, 400–408.

    Article  PubMed  CAS  Google Scholar 

  201. Marsicano, T. H., Duran, W. N., Edwards, C. H., and Anderson, R. W. (1977) Effect of left ventricular hypertrophy on myocardial capillary perfusion. Surg. Forum 28, 240–241.

    PubMed  CAS  Google Scholar 

  202. Batra, S., Rakusan, K., and Campbell, S. E. (1991) Geometry of capillary networks in hypertrophied rat heart. Microvasc. Res. 41, 29–40.

    Article  PubMed  CAS  Google Scholar 

  203. Bucher, F. (1971) Qualitative morphology of heart failure. Methods Achiev. Exp. Pathol. 5, 60–120.

    Google Scholar 

  204. Kayar, S. R. and Banchero, N. (1985) Volume overload hypertrophy elicited by cold and its effects on myocardial capillarity. Resp. Physiol. 59, 1–14.

    Article  CAS  Google Scholar 

  205. Rakusan, K., Moravec, B., and Hatt, P. Y. (1980) Regional capillary supply in the normal and hypertrophied rat heart. Microvasc. Res. 20, 319–326.

    Google Scholar 

  206. Thomas, D. P., Phillips, St. J., and Bove, A. A. (1984) Myocardial morphology and blood flow distribution in chronic volume overload hypertrophy in dogs. Basic Res. Cardiol. 79, 379–388.

    Google Scholar 

  207. Camilleri, J. P., Michel, J. B., Ossondo, M., and Barres, D. (1984) Morphometric analysis of the perfused capillary bed in the rat subendocardial myocardium during carbochrome induced dilatation and developing cardiac hypertrophy. Int. J. Microcirc. Clin. Exper. 3, 428.

    Google Scholar 

  208. Shipley, R. A., Shipley, L. J., and Wearn, J. T. (1937) Capillary supply in normal and hypertrophied hearts of rabbits. J. Exp. Med. 65, 29–42.

    Google Scholar 

  209. Wright, A. J. A., Hudlickâ, O., and Brown, M. D. (1989) Beneficial effect of chronic bradycardial pacing on capillary growth and heart performance in volume overload heart hypertrophy. Circ. Res. 64, 1205–1212.

    Article  PubMed  CAS  Google Scholar 

  210. Poupa, O., Korecky, B., Kroftta, K., Rakusan, K., and Prochazka, J. (1964) The effect of anaemia during the early postnatal period on vascularisation of the myocardium and its resistance to anoxia. Physiol. Bohemoslov 13, 281–287.

    PubMed  CAS  Google Scholar 

  211. Olivetti, G., Lagrasta, C., Quaini, F., Ricci, R., Moccia, G., Capasso, J. M., and Anversa, P. (1989) Capillary growth in anaemia induced ventricullar wall remodelling in the rat heart. Circ. Res. 65, 1182–1192.

    Article  PubMed  CAS  Google Scholar 

  212. Rakusan, K., Korecky, B., and Mezl, V. (1983) Cardiac hypertrophy and/or hyperplasia. Persp. Cardiovasc. Res. 7, 103–109.

    Google Scholar 

  213. Anversa, P., Capasso, J. M., Sonnenblick, E. H and Olivetti, G. (1990) Mechanisms of myocyte and capillary growth in the infarcted heart. Eur. Heart J. 11(Suppl. B),123–132.

    Google Scholar 

  214. Anversa, P Beghi. C., Kikkawa, Y., and Olivetti, G. (1986) Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circ. Res. 58 26–37.

    Google Scholar 

  215. Turek, Z., Grandtner, M., Kubat, K., Ringnalda, B. E., and Kreuzer, F. (1978) Arterial blood gases, muscle fibre diameters and intercapillary distance in cardiac hypertrophy of rats with an old myocardial infarction. Pflügers Arch. 376, 209–215.

    Article  PubMed  CAS  Google Scholar 

  216. Wüsten, B., Flameng, W., Turschmann, W., and Schaper, W. (1975) [Coronary dilation reserve in experimental cardiac hypertrophy]. [German] Verhandlungen der Deuts. Gesellsch. fur Kreislauff. 41 136–139.

    Google Scholar 

  217. Ljungqvist, A. and Unge, G. (1973) The proliferative activity of the myocardial tissue in various forms of experimental cardiac hypertrophy. Acta Pathol. Microbiol. Scand. sec A. 81, 235–240.

    Google Scholar 

  218. Rakusan, K., Wicker, P., Samad, A., Healy, B., and Turek Z. (1987) Failure of swimming exercise to improve capillarisation in cardiac hypertrophy of renal hypertensive rats. Circ. Res. 61, 641–647.

    Article  PubMed  CAS  Google Scholar 

  219. Tomanek, R. J., Gisolfi, C. V., Bauer, C. A., and Palmer, P. J. (1988) Coronary vasodilator reserve, capillarity and mitochondria in trained hypertensive rats. J. Appl. Physiol. 64, 1179–1185.

    Google Scholar 

  220. Tomanek, R. J. (1989) Sympathetic nerves modify mitochondrial and capillary growth in normotensive and hypertensive rats. J. Mol. Cell Cardiol. 21, 755–764.

    Article  PubMed  CAS  Google Scholar 

  221. Canby, C. A. and Tomanek, R. J. (1989) Role of lowering arterial pressure on maximal coronary flow with and without regression of cardiac hypertrophy. Am. J. Physiol. 257, H1110 - H1118.

    PubMed  CAS  Google Scholar 

  222. Amann, K., Greber, D., Gharehbaghi, H., Wiest, G., Lange, B., Ganten, U., et al. (1992) Effects of nifedipine and monoxidine on cardiac structure in spontaneously hypertensive rats. Stereological studies on myocytes, capillaries, arteries and cardiac interstitium. Am. J. Hypertens. 5, 76–83.

    Google Scholar 

  223. Turek, Z., Kubat, K., Kazda, S., Hoodf, L., and Rakusan, K. (1987) Improved myocardial capillarization in spontaneously hypertensive rats treated with nifedipine. Cardiovasc. Res. 21, 725–729.

    Article  PubMed  CAS  Google Scholar 

  224. Brown, M. D., Cleasby, M. J., and Hudlickâ, O. (1990) Capillary supply of hypertrophied rat hearts after chronic treatment with the bradycardic agent alinidine. J. Physiol. 427, 40 P.

    Google Scholar 

  225. Hearse, D. J. and Yellon, D. M. (1982) The three-dimensional geometry of regional myocardial ischemia: the role of the coronary microcirculation in determining patterns of injury, in Microcirculation of the Heart ( Tillmanns, H., Kubler, W., and Zebe, Z., eds.), Springer-Verlag, Berlin, pp. 149–161.

    Google Scholar 

  226. Jennings, R. B., Kloner, R. A., Ganote, C. E., Hawkins, H. K., and Reimer, K. A. (1982) Changes in capillary fine structure and function in acute myocardial ischemic injury, in Microcirculation of the Heart ( Tillmanns, H., Kubler, W., and Zebe, Z., eds.), Springer-Verlag, Berlin, pp. 87–95.

    Chapter  Google Scholar 

  227. Reynolds, J. M. and McDonagh, P. F. (1989) Early in reperfusion, leukocytes alter perfused coronary capillarity and vascular resistance. Am. J. Physiol. 256, H982–H989

    Google Scholar 

  228. Casscells, W., Kimura, H., Sanchez, J. A., Yu, Z. X., and Ferrans, V. J. (1990) Immunohistochemical study of fibronectin in experimental myocardial infarction. Am. J. Pathol. 137, 801–810.

    PubMed  CAS  Google Scholar 

  229. DeBrabander, M., Schaper, W., and Verheyen, F. (1973) Regenerative changes in the porcine heart after gradual and chronic coronary artery occlusion. Beitr. Path. Bd. 149, 170–185.

    Article  CAS  Google Scholar 

  230. Weihrauch, D., Mohri, M., Schaper, W., and Schaper, J. (1992) Neovascularization in ischemic myocardium. J. Mol. Cell. Cardiol. 24 (Suppl V), S75.

    Article  Google Scholar 

  231. Olivetti, G., Ricci, R., Beghi, C., Guideri, G., and Anversa, P. (1986) Respone of the border zone to myocardial infarction in rats. Am. J. Pathol. 125, 476–483.

    PubMed  CAS  Google Scholar 

  232. Przyklenk, K. and Groom, A. C. (1983) Microvascular evidence for a transition zone around a chronic myocardial infarct in the rat. Can. J. Physiol. Pharmacol. 61, 1516–1522.

    Article  PubMed  CAS  Google Scholar 

  233. Chilian, W. H., Wangler, R. D., Peters, K. G., Tomanek, R. J., and Marcus, M. L. (1985) Thyroxine-induced left ventricular hypertrophy in the rat: anatomical and physiological evidence for angiogenesis. Circ. Res. 57, 591–598.

    Article  PubMed  CAS  Google Scholar 

  234. Breisch, E. A., White, F. C., Hammond, H. K., Flynn, S., and Bloor, C. M. (1989) Myocardial characteristics of thyroxine stimulated hypertrophy. A structural and functional study. Basic Res. Cardiol. 84, 345–358.

    Article  PubMed  CAS  Google Scholar 

  235. Schaper, W. (1971) The Collateral Circulation of the Heart. North Holland Publishing Co., Amsterdam.

    Google Scholar 

  236. Sasayama, S. and Fujita, M. (1992) Recent insights into coronary collateral circulation. Circulation 85, 1197–1204.

    Article  PubMed  CAS  Google Scholar 

  237. Scheel, K. W. and Williams, S. E. (1985) Hypertrophy and coronary and collateral vascularity in dogs with severe chronic anaemia. Am.J. Physiol. 249, H1031 - H1037.

    PubMed  CAS  Google Scholar 

  238. Chilian, W. M., Mass, H. J., Williams, S. E., Layne, S. M., Smith, E. E., and Scheel, K. W. (1990) Microvascular occlusions promote coronary collateral growth. Am. J. Physiol. 258, H1103 - H1111.

    PubMed  CAS  Google Scholar 

  239. Smith, P. (1989) Effect of hypoxia upon the growth and sprouting activity of cultured aortic endothelium from the rat. J. Cell Sci. 92, 505–512.

    PubMed  Google Scholar 

  240. Olivetti, G., Capasso, J. M., Sonnenblick, E. H., and Anversa, P. (1990) Side-to-side slippage of myocytes participates in ventricular wall remodelling acutely after myocardial infarction in rats. Circ. Res. 67, 23–34.

    Article  PubMed  CAS  Google Scholar 

  241. Eghbali, M. and Weber, K. T. (1990) Collagen and the myocardium: fibrillar structure, biosynthesis and degradation in relation to hypertrophy and its regression. Mol. Cell. Biochem. 96, 1–14.

    Article  PubMed  CAS  Google Scholar 

  242. Weber, K. T., Anversa, P., Armstrong, P. W., Brilla, C. G., Burnett, J. C., Cruickshank, J. M., et al. (1992) Remodeling and reparation of the cardiovascular system. J. Am. Coll. Cardiol. 20, 3–16.

    Article  PubMed  CAS  Google Scholar 

  243. Factor, S. M., Flomenbaum, M., Zhao, M. J., Eng, C., and Robinson, T. F. (1988) The effects of acutely increased ventricular cavity pressure on intrinsic myocardial connective tissue. J. Am. Coll. Cardiol. 12, 1582–1589.

    Google Scholar 

  244. Sato, S., Ashraf, M., Millard, R. W., Fujiwara, H., and Schwartz, A. (1983) Connective tissue changes in early ischemia of porcine myocardium: an ultrastructural study. J. Mol. Cell. Cardiol. 15, 261–275.

    Article  PubMed  CAS  Google Scholar 

  245. Zhao, M. J., Zhang, H., Robinson, T. F., Factor, S. M., Sonnenblick, E. H., and Eng, C. (1987) Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional (“stunned”) but viable myocardium. J. Am. Coll. Cardiol. 10, 1322–1334.

    Article  PubMed  CAS  Google Scholar 

  246. Whittaker, P., Boughner, D. R., and Kloner, R. A. (1989) Analysis of healing after myocardial infarction using polarized light microscopy. Am. J. Pathol. 143, 879–893.

    Google Scholar 

  247. Whittaker, P., Boughner, D. R., and Kloner, R. A. (1991) Role of collagen in acute myocardial infarct expansion. Circulation 84, 2123–2134.

    Article  PubMed  CAS  Google Scholar 

  248. Contard, F., Koteliansky, V., Marotte, F., Dubus, I., Rappaport, L., and Samuel, J. L. (1991) Specific alterations in the distribution of extracellular matrix components within rat myocardium during the development of pressure overload. Lab. Invest. 64, 65–75.

    PubMed  CAS  Google Scholar 

  249. Knowlton, A. A., Connelly, C. M., Romo, G. M., Mamuya, W., Apstein, C. S., and Breche, R. (1992) Rapid expression of fibronection in the rabbit heart after myocardial infarction with and without reperfusion. J. Clin. Invest. 89, 1060–1068.

    Article  PubMed  CAS  Google Scholar 

  250. Cleutjens, J. P. M., Smits, J. F. M., and Daemen, M. J. A. P. (1992) Type I and III collagen mRNA and protein increase in the infarcted and non-infarcted rat heart after myocardial infarction. J. Mol. Cell. Cardiol. 24 (Suppl. V), S50.

    Article  Google Scholar 

  251. Nicosia, R. F., Belser, P., Bonanno, E., and Diven, J. (1991) Regulation of angiogenesis in vitro by collagen metabolism. In Vitro Cell Dev. Biol. 27A, 961–966.

    Article  Google Scholar 

  252. Michel, J. B., Salzmann, J. L., Ossondo-Nlom, M., Bruneval, P., Barres, D., and Camilleri, J. P. (1986) Morphometric analysis of collagen network and plasma perfused capillary bed in the myocardium of rats during evolution of cardiac hypertrophy. Basic Res. Cardiol. 81, 142–154.

    Article  PubMed  CAS  Google Scholar 

  253. Yao, J. and Eghbali, M. (1992) Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ. Res. 71, 831–839.

    Article  PubMed  CAS  Google Scholar 

  254. Rossi, M. A. and Peres, L. C. (1992) Effect of captopril on the prevention and regression of myocardial cell hypertrophy and interstitial fibrosis in pressure overload hypertrophy. Am. Heart J. 124, 700–709.

    Article  PubMed  CAS  Google Scholar 

  255. Zeydel, M., Puglia, K., Eghbali, M., Fant, J., Seifer, S., and Blumenfeld, O. O. (1991) Properties of heart fibroblasts of adult rats in culture. Cell Tissue Res. 265, 353–359.

    Article  PubMed  CAS  Google Scholar 

  256. Caulfield, J. B. and Borg, T. K. (1979) The collagen network of the heart. Lab. Invest. 40, 364–372.

    PubMed  CAS  Google Scholar 

  257. Robinson, T. F., Cohen-Gould, L., Factor, S. M., Eghbali, M., and Blumenfeld, O. O. (1988) Structure and function of connective tissue in cardiac muscle: collagen types I and III in endomysial struts and pericellular fibres. Scann. Electron. Microsc. 2, 1005–1015.

    CAS  Google Scholar 

  258. Villareal, F. J. and Dillmann, W. F. (1992) Cardiac hypertrophy-induced changes in mRNA levels for TGF-beta 1, fibronectin and collagen. Am. J. Physiol. 262, H1861 - H1866.

    Google Scholar 

  259. Nicosia, R. F., Bonnano, E., and Smith, M. R. (1992) Fibronectin-mediated elongation of microvessels during angiogenesis in vitro. In Vitro Cell Dev. Biol. 28, 151A.

    Google Scholar 

  260. Courtoy, P. J. and Boyles, J. (1983) Fibronectin in the microvasculature: localization in the in the pericyte-endothelial interstitium. J. Ultrastruct. Res. 83, 258–273.

    Article  PubMed  CAS  Google Scholar 

  261. Odedra, R. and Weiss, J. B. (1991) Low molecular weight angiogenesis factors. Pharmac. Ther. 49, 111–124.

    Article  CAS  Google Scholar 

  262. Weiss, J. B. and McLaughlin, B. (1992) Involvement of low molecular mass angiogenic factors (ESAF) in the activation of latent matrix metalloproteinases, in Angiogenesis in Health and Disease ( Maragondakis, M. E., Gullino, P., and Lelkes, P. L.), Plenum, New York, pp. 243–252.

    Chapter  Google Scholar 

  263. Hudlickâ, O., Brown, M. D., Walter, H., Weiss, J. B., and Bate, A. (1995) Factors involved in capillary growth in the heart. Mol. Cell. Biochem. 147, 57–68.

    Article  PubMed  Google Scholar 

  264. Clausen, J. P. (1977) Effect of physical training on cardiomuscular adjustments to exercise. Physiol. Rev. 57, 779–815.

    PubMed  CAS  Google Scholar 

  265. Snell, P. G., Martin, W. H., Buckey J. C., and Blomqvist, C. G. (1987) Maximal vascular leg conductance in trained and untrained men. J. Appl. Physiol. 62, 606–610.

    Google Scholar 

  266. Sinoway, L. I., Shenberger, J., Wilson, J., McLaughlin, D., Musch, T., and Zelis, R. (1987) A 30-day forearm work protocol increases maximal forearm blood flow. J. Appl. Physiol. 62, 1063–1067.

    PubMed  CAS  Google Scholar 

  267. Lash, J. M. and Bohlen, H. G. (1992) Functional adaptations of rat skeletal muscle arterioles to aerobic exercise training. J. Appl. Physiol. 72, 2052–2062.

    PubMed  CAS  Google Scholar 

  268. Adair, T. H., Hang, J., Wells, M. L., Magee, F. D., and Montani, J. P. (1995) Long-term electrical stimulation of rabbit skeletal muscle increases growth of paired arteries and veins. Am. J. Physiol. 269, H717 - H724.

    PubMed  CAS  Google Scholar 

  269. Brown, M. D. and Hudlickâ, O. (1995) Vascular conductance and capillary supply in heart and skeletal muscle in response to altered activity. Microcirculation 2, 98.

    Google Scholar 

  270. Dawson, J. D. and Hudlickâ, O. (1989) The effect of long-term activity on the microvasculature of rat glycolytic skeletal muscle. Int. J. Microcirc. Clin. Exp. 8, 53–69.

    PubMed  CAS  Google Scholar 

  271. Hansen-Smith, F. M., Egginton, S., Owens, G. K., and Hudlickâ, O. (1995) Growth of arterioles in chronically stimulated muscles. J. Physiol. 489, 165 P.

    Google Scholar 

  272. Dusseau, J. W. and Hutchins, P. M. (1979) Stimulation of arteriolar number by salbutamol in spontaneously hypertensive rats. Am. J. Physiol. 236, H134 - H140.

    PubMed  CAS  Google Scholar 

  273. Skalak, T. C. and Price, R. J. (1996) The role of mechanical stresses in microvascular remodeling. Microcirculation 3, 143–165.

    Article  PubMed  CAS  Google Scholar 

  274. Brown, M. D. and Hudlickâ, O. (1997) Exercise, training and coronary angiogenesis, in Coronary Angiogenesis (Rakusan, K., ed.), Jai Press Inc., CT, in press.

    Google Scholar 

  275. Breisch, E. A., White, F. C., Nimmo, L. E., McKirnan, M. D., and Bloor, C. M. (1986) Exercise-induced cardiac hypertrophy: a correlation of blood flow and microvasculature. J. Appl. Physiol. 60, 1259–1267.

    PubMed  CAS  Google Scholar 

  276. White, F. C. and Bloor, C. M. (1995) Coronary growth, not angiogenesis, is the dominant response increasing coronary vascular bed cross-sectional area induced by exercise training. FASEB J. 9, A909.

    Google Scholar 

  277. Torry, R. J., Connell, P. M., O’Brien, D. M., Chilian, W. M., and Tomanek, R. J. (1991) Sympathectomy stimulates capillary but not precapillary growth in hypertrophic hearts. Am. J. Physiol. 260, H1515 — H1521.

    Google Scholar 

  278. Anversa, P. and Capasso, J. M. (1991) Loss of intermediate-sized coronary arteries and capillary proliferation after left ventricular failure in rats. Am. J. Physiol. 260, H1552 — H1560.

    PubMed  CAS  Google Scholar 

  279. Schwartzkopf, B Motz, W., Frenzel, H Vogt, M., Knauer, S., and Strauer, B. E. (1993) Structural and functional alterations of the intermyocardial coronary arterioles in patients with arterial hypertension. Circulation 88 993–1003.

    Google Scholar 

  280. Tomanek, R. J. and Tony, R. J. (1994). Growth of the coronary vasculature in hypertrophy. Cell. Mol. Biol. Res. 40, 129–136.

    PubMed  CAS  Google Scholar 

  281. Pepler, W. and Meyer, B. (1960) Interarterial coronary anasomoses and coronary artery pattern; a comparative study of South African Bantu and European hearts. Circulation 22, 14–23.

    Article  PubMed  CAS  Google Scholar 

  282. Villari, B Hess, O. M., Meier, C., Pucillo, A., Gaglione, A., Turina, M., and Krayenbuehl, H. P. (1992) Regression of coronary artery dimensions after succesful aortic valve replacement. Circulation 85 972–978.

    Google Scholar 

  283. White, F. C., Roth, D. M., and Bloor, C. M. (1990) Coronary vascular remodelling during chronic ischaemia. Circulation 82 (Suppl. IV), 378.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, M.D., Hudlická, O. (2002). Angiogenesis in Skeletal and Cardiac Muscle. In: Fan, TP.D., Kohn, E.C. (eds) The New Angiotherapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-126-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-126-8_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9657-4

  • Online ISBN: 978-1-59259-126-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics