Skip to main content

Development of a Model to Assess Masking Potential for Marine Mammals by the Use of Air Guns in Antarctic Waters

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 875))

Abstract

We estimated the long-range effects of air gun array noise on marine mammal communication ranges in the Southern Ocean. Air gun impulses are subject to significant distortion during propagation, potentially resulting in a quasi-continuous sound. Propagation modeling to estimate the received waveform was conducted. A leaky integrator was used as a hearing model to assess communication masking in three species due to intermittent/continuous air gun sounds. Air gun noise is most probably changing from impulse to continuous noise between 1,000 and 2,000 km from the source, leading to a reduced communication range for, e.g., blue and fin whales up to 2,000 km from the source.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrew RK, Howe BM, Mercer JA, Dzieciuch MA (2002) Ocean ambient sound: comparing the 1960s with the 1990s for a receiver off the California coast. Acoust Res Lett Online 3:65–70. doi:10.1121/1.1461915

    Article  Google Scholar 

  • Breitzke M, Bohlen T (2010) Modelling sound propagation in the Southern Ocean to estimate the acoustic impact of seismic research surveys on marine mammals. Geophys J Int 181:818–846. doi:10.1111/j.1365-246X.2010.04541.x

    Google Scholar 

  • Castellote M, Clark CW, Lammers MO (2012) Acoustic and behavioural changes by fin whales (Balaenoptera physalus) in response to shipping and airgun noise. Biol Conserv 147:115–122. doi:10.1016/j.biocon.2011.12.021

    Article  Google Scholar 

  • Clark CW, Ellison WT, Southall BL, Hatch L, Van Parijs SM, Frankel A, Ponirakis D (2009) Acoustic masking in marine ecosystems: intuitions, analysis, and implication. Mar Ecol Prog Ser 395:201–222. doi:10.3354/meps08402

    Article  Google Scholar 

  • Erbe C (2000) Detection of whale calls in noise: performance comparison between a beluga whale, human listeners, and a neural network. J Acoust Soc Am 108:297–303

    Article  CAS  PubMed  Google Scholar 

  • Erbe C, King AR (2009) Modeling cumulative sound exposure around marine seismic. J Acoust Soc Am 125:2443–2451. doi:10.1121/1.3089588

    Article  PubMed  Google Scholar 

  • Gordon JCD, Gillespie D, Potter J, Franzis A, Simmonds MP, Swift R (1998) The effects of seismic surveys on marine mammals. In: Tasker M, Weir C (eds) Proceedings of the seismic and marine mammals workshop, London, 23–25 June 1998, pp 1–18

    Google Scholar 

  • Gordon JCD, Gillespie D, Potter J, Frantzis A, Simmonds MP, Swift R, Thompson D (2003) A review of the effects of seismic surveys on marine mammals. Mar Technol Soc J 37:16–34. doi:10.4031/002533203787536998

    Article  Google Scholar 

  • Gray H, Van Waerebeek K (2011) Postural instability and akinesia in a pantropical spotted dolphin, Stenella attenuata, in proximity to operating airguns of a geophysical seismic vessel. J Nat Conserv 19:363–367. doi:10.1016/j.jnc.2011.06.005

    Article  Google Scholar 

  • Di Iorio L, Clark CW (2009) Exposure to seismic survey alters blue whale acoustic communication. Biol Lett 6:334–335. doi:10.1098/rsbl.2009.0967

    Article  PubMed Central  Google Scholar 

  • Kastelein RA, Hoek L, de Jong CAF, Wensveen PJ (2010) The effect of signal duration on the underwater detection thresholds of a harbor porpoise (Phocoena phocoena) for single frequency-modulated tonal signals between 0.25 and 160 kHz. J Acoust Soc Am 128:3211–3222. doi:10.1121/1.3493435

    Article  PubMed  Google Scholar 

  • McDonald MA, Hildebrand JA, Wiggins SM (2006) Increases in deep ocean ambient noise in the Northeast Pacific west of San Nicolas Island, California. J Acoust Soc Am 120:711–718. doi:10.1121/1.2216565

    Article  PubMed  Google Scholar 

  • Melcón ML, Cummins AJ, Kerosky SM, Roche LK, Wiggins SM, Hildebrand JA (2012) Blue whales respond to anthropogenic noise. PLoS ONE 7:e32681. doi:10.1371/journal.pone.0032681

    Article  PubMed Central  PubMed  Google Scholar 

  • Richardson WJ, Greene CR Jr, Malme CI, Thomson DI (1995) Marine mammals and noise. Academic, San Diego, CA

    Google Scholar 

  • Risch D, Corkeron PJ, Ellison WT, Van Parijs SM (2012) Changes in humpback whale song occurrence in response to an acoustic source 200 km away. PLoS ONE 7:e29741. doi:10.1371/journal.pone.0029741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Samaran F, Guinet C, Adam O, Motsch JF, Cansi Y (2010) Source level estimation of two blue whale subspecies in southwestern Indian Ocean. J Acoust Soc Am 127:3800–3808. doi:10.1121/1.3409479

    Article  PubMed  Google Scholar 

  • Širović A, Hildebrand JA, Wiggins SM (2007) Blue and fin whale call source levels and propagation range in the Southern Ocean. J Acoust Soc Am 122:1208–1215. doi:10.1121/1.2749452

    Article  PubMed  Google Scholar 

  • Southall BL, Bowles AE, Ellison WT, Finneran JJ, Gentry RL, Greene CR Jr, Kastak D, Ketten DR, Miller JH, Nachtigall PE, Richardson WJ, Thomas JA, Tyack PL (2007) Marine mammal noise exposure criteria: initial scientific recommendations. Aquat Mamm 33:411–521

    Article  Google Scholar 

  • Streever B, Ellison WT, Frankel AS, Racca R, Angliss R, Clark CW, Fleishman E, Guerra M, Leu M, Oliveira S, Sformo T, Southall B, Suydam R (2012) Early progress and challenges in assessing aggregate sound exposure and associated effects on marine mammals. In: Proceedings of the international conference on health, safety, and environment in oil and gas exploration and production, Society of Petroleum Engineers/Australian Petroleum Production and Exploration Association, Perth, WA, Australia, 11–13 Sept 2012

    Google Scholar 

  • Urick RJ (1983) Principles of underwater sound, 3rd edn. Peninsula, Los Altos, CA

    Google Scholar 

  • Weilgart LS (2007) The impacts of anthropogenic ocean noise on cetaceans and implications for management. Can J Zool 85:1091–1116. doi:10.1139/Z07-101

    Article  Google Scholar 

  • Wenz G (1962) Acoustic ambient noise in the ocean: spectra and sources. J Acoust Soc Am 34:1936–1956

    Article  Google Scholar 

  • Wright A, Hatch L, Aguilar Soto N, Baldwin AL, Bateson M, Beale CM, Clark C, Deak T, Edwards EF, Fernández A, Godinho A, Hatch LT, Kakuschke A, Lusseau D, Martineau D, Romero LM, Weilgart LS, Wintle BA, Notarbartolo-di-Sciara G, Martin V (2007) Anthropogenic noise as a stressor in animals: a multidisciplinary perspective. Int J Comp Psychol 20:250–273

    Google Scholar 

  • Yazvenko SB, McDonald TL, Blokhin SA, Johnson SR, Meier SK, Melton HR, Newcomer MW, Nielson RM, Vladimirov VL, Wainwright PW (2007) Distribution and abundance of western gray whales during a seismic survey near Sakhalin Island, Russia. Environ Monit Assess 134:45–73. doi:10.1007/s10661-007-9809-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was funded and supported by German Federal Environment Agency (UBA) Project No. 3711 19 121. We thank Ana Širović and Flore Samaran for providing the vocalizations. We are also indebted to Sina Danehl, Ole Meyer-Klaeden, and Abbo van Neer for contributions to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dähne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this paper

Cite this paper

Wittekind, D. et al. (2016). Development of a Model to Assess Masking Potential for Marine Mammals by the Use of Air Guns in Antarctic Waters. In: Popper, A., Hawkins, A. (eds) The Effects of Noise on Aquatic Life II. Advances in Experimental Medicine and Biology, vol 875. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2981-8_156

Download citation

Publish with us

Policies and ethics