Skip to main content

Seed Physiology and Germination of Grain Legumes

  • Chapter
  • First Online:
Grain Legumes

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 10))

Abstract

An integrative review and analysis of seed germination of grain legumes, combining seed structural morphology, physiology of dormancy and germination metabolism is presented, bridging between disciplines and research approaches. A deeper understanding of the links between seed development, environmental conditions, and processes controlling seed germination and metabolism is attempted, in view of present and future needs for improved grain legume cultivars with greater range of adaptation to more extreme climatic and edaphic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo S, Rachamim E, Zehavi Y et al (2011) Experimental growing of wild pea in Israel and its bearing on Near Eastern plant domestication. Ann Bot 107:1399–1404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abbo S, Pinhasi van-Oss R, Gopher A et al (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci 19:351–360

    Article  CAS  PubMed  Google Scholar 

  • Abdullah WD, Powell AA, Matthews S (1991) Association of differences in seed vigour in long bean (Vigna sesquipedalis L. Fruhw) with testa colour and imbibition damage. J Agr Sci 116:259–264

    Article  Google Scholar 

  • Aitken Y (1939) The problem of hard sees in subterranean clover. Proc Royal Soc Victoria 51:187–213

    Google Scholar 

  • Al-Ani A, Bruzau F, Raymond P et al (1985) Germination, respiration, and adenylate energy charge of seeds at various oxygen partial pressures. Plant Physiol 79:885–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Karaki GN (1998) Seed size and water potential effects on water uptake, germination and growth of lentil. J Agron Crop Sci 181:237–242

    Article  Google Scholar 

  • Alkhalfioui F, Renard M, Vensel WH et al (2007) Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds. Plant Physiol 144:1559–1579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Angelovici R, Fernie AR, Galili G et al (2010) Seed desiccation: a bridge between maturation and germination. Trends Plant Sci 15:211–218

    Article  CAS  PubMed  Google Scholar 

  • Arechavaleta-Medina F, Snyder HE (1981) Water imbibition by normal and hard soybeans. J Am Oil Chem Soc. 58:976–979

    Google Scholar 

  • Angelovici R, Fait A, Fernie AR, et al (2011) A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination. New Phytol 189:148–159

    Article  CAS  PubMed  Google Scholar 

  • Argel PJ, Parton CJ (1999) Overcoming legume hardseededness. In: Loch DS, Ferguson JE (eds) Forage seed production: tropical and sub-tropical species. CAB International, Wallingford, pp 247–267

    Google Scholar 

  • Arrieta V, Besga G, Cordero S (1994) Seed coat permeability and its inheritance in a forage lupin (Lupinus hispanicus). Euphytica 75:173–177

    Article  Google Scholar 

  • Ashworth EN, Obendorf RL (1980) Imbibitional chilling injury in soybean axes: relationship to stelar lesions and seasonal environments. Agron J 72:923–928

    Article  Google Scholar 

  • Asiedu EA, Powell AA (1998) Comparisons of cultivars of cowpea (Vigna unguiculata) differing in seed coat pigmentation. Seed Sci Technol 26:211–222

    Google Scholar 

  • Aswathaiah B (1988) Structures involved in softening of hard seeds in common vetch. Seed Res 16:63–67

    Google Scholar 

  • Bai B, Sikron N, Gendler T et al (2012) Ecotypic variability in the metabolic response of seeds to diurnal hydration-dehydration cycles and its relationship to seed vigor. Plant Cell Physiol 53:38–52

    Article  CAS  PubMed  Google Scholar 

  • Ballard LAT (1961) Studies on dormancy in the seeds of subterranean clover (Trifolium subterraneum L.). II. The interaction of time, temperature and carbondioxide during passage out of dormancy. Austral J Biol Sci 4:173–186

    Google Scholar 

  • Baskin CC (2003) Breaking physical dormancy in seeds—focusing on the lens. New Phytol 158:229–232

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds. Ecology, biogeography and evolution of dormancy and germination, 2nd edn. Academic Press, p 1600

    Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Baskin JM, Baskin CC, Li X (2000) Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Spec Biol 15:139–152

    Article  Google Scholar 

  • Baud S, Boutin JP, Miquel M et al (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 406:151–160

    Article  Google Scholar 

  • Bayuelo-Jimenez JS, Craig R, Lynch JP (2002) Salinity tolerance of Phaseolus species during germination and early seedling growth. Crop Sci 42:1584–1594

    Article  Google Scholar 

  • Behboudian HM, Ma Q, Turner NC et al (2001) Reactions of chickpea to water stress: yield and seed composition. J Sci Food Agr 81:1288–1291

    Article  CAS  Google Scholar 

  • Benamara A, Tallon C, Macherel D (2003) Membrane integrity and oxidative properties of mitochondria isolated from imbibing pea seeds after priming or accelerated ageing. Seed Sci Res 13:35–45

    Article  CAS  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM et al (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Plenum, New York

    Google Scholar 

  • Blöchl A, Peterbauer T, Richter A (2007) Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds. J Plant Physiol 164:1093–1096

    Article  PubMed  CAS  Google Scholar 

  • Blöchl A, Peterbauer T, Hofmann J et al (2008) Enzymatic breakdown of raffinose oligosaccharides in pea seeds. Planta 228:99–110

    Article  PubMed  CAS  Google Scholar 

  • Boesewinkel, FD, Bouman F. (1995) The seed: structure and function. In: Kigel J, Galili G (eds) Seed development and germination. CRC, Boca Raton, pp  1–24

    Google Scholar 

  • Bolingue W, Vu BL, Leprince O et al (2010) Characterization of dormancy behaviour in seeds of the model legume Medicago truncatula. Seed Sci Res 20:97–107

    Article  CAS  Google Scholar 

  • Bond WJ, Honig M, Maze KE (1999) Seed size and seedling emergence: an allometric relationship and some ecological implications. Oecologia 120:132–136

    Article  Google Scholar 

  • Borek S, Nuc K (2011) Sucrose controls storage lipid breakdown on gene expression level in germinating yellow lupine (Lupinus luteus L.) seeds. J Plant Physiol 168:179–803

    Article  CAS  Google Scholar 

  • Borek S, Morkunas I, Ratajczak W et al (2001) Metabolism of amino acids in germinating yellow lupin (Lupinus luteus L.) seeds. III. Breakdown of arginine in sugar-starved organs cultivated in vitro. Acta Physiol Plant 23:141–148

    Article  CAS  Google Scholar 

  • Borek S, Ratajczak W, Ratajczak L (2003) A transfer of carbon atoms from fatty acids to sugars and amino acids in yellow lupine (Lupinus luteus L.) seedlings. J Plant Physiol 160:539–545

    Article  CAS  PubMed  Google Scholar 

  • Borek S, Kubala S, Kubala S (2012) Regulation by sucrose of storage compounds breakdown in germinating seeds of yellow lupine (Lupinus luteus L.), white lupine (Lupinus albus L.) and Andean lupine (Lupinus mutabilis Sweet): I. Mobilization of storage protein. Acta Physiol Plant 34:701–711

    Article  CAS  Google Scholar 

  • Botha FC, Potgieter GP, Botha AM (1992) Respiratory metabolism and gene expression during seed germination. Plant Growth Regul 11:211–224

    Article  CAS  Google Scholar 

  • Boutra T, Sanders FE (2001) Influence of water stress on grain yield and vegetative growth of two cultivars of Phaseolus vulgaris L. J Agron Crop Sci 187:251–257

    Article  Google Scholar 

  • Bradford KJ (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 50:248–260

    Article  CAS  Google Scholar 

  • Brucher H (1988) The wild ancestors of Phaseolus vulgaris in South America. In: Gepts P (ed) Genetic resources of Phaseolus beans. Kluwer, Dordrecht, pp 185–214

    Google Scholar 

  • Bruneau A, Doyle JJ, Herendeen P et al (2013) Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62:217–248

    Article  Google Scholar 

  • Brunel S, Teulat-Merah B, Wagner H et al (2009) Using a model-based framework for analyzing genetic diversity during germination and heterotrophic growth of Medicago truncatula. Ann Bot 103:1103–1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chachalis D, Smith ML (2000) Imbibition behavior of soybean (Glycine max (L.) Merrill accessions with different testa characteristics. Seed Sci Technol 28:321–331

    Google Scholar 

  • Chachalis D, Smith ML (2001) Seed coat regulation of water uptake during imbibition in soybeans (Glycine max (L.) Merrill). Seed Sci Technol 29:401–412

    Google Scholar 

  • Chamberlin MA, Horner HT, Palmer RG (1994) Early endosperm, embryo, and ovule development in Glycine max (L.) Merrill. Intl J Plant Sci 155:421–436

    Article  Google Scholar 

  • Covell S, Ellis RH, Roberts EH et al (1986) The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. J Expt Bot 37:705–715

    Article  Google Scholar 

  • Craufurd PQ, Ellis RH, Summerfield RRJ et al (1996) Development in cowpea (Vigna unguiculata) I. the influence of temperature on seed germination and seedling emergence. Exp Agr 32:1–12

    Article  Google Scholar 

  • Cronk Q, Ojeda I, Pennington RT (2006) Legume comparative genomics: progress in phylogenetics and phylogenomics. Curr Opin Plant Biol 9:99–103

    Article  CAS  PubMed  Google Scholar 

  • Degreef J, Rocha OJ, Vanderborght T et al (2002) Soil seed bank and seed dormancy in wild populations of Lima bean (Fabaceae): considerations for in situ and ex situ conservation. Am J Bot 89:1644–1650

    Article  Google Scholar 

  • Deshpande SS, Cheryan M (1986) Microstructure and water uptake of Phaseolus and winged beans. J Food Sci 51:1218–1223

    Article  Google Scholar 

  • Dickson MH, Boettger MA (1982) Heritability of semi-hard seed induced by low seed moisture in beans (Phaseolus vulgaris L.). J Am Soc Hortic Sci 107:69–71

    Google Scholar 

  • Dierking EC, Bilyeu KD (2009) Raffinose and stachyose metabolism are not required for efficient soybean seed germination. J Plant Physiol 166:1329–1335

    Article  CAS  PubMed  Google Scholar 

  • Donnelly ED, Watson JE, McGuire JA (1972) Inheritance of hard seed in Vicia. J Hered 63:361–365

    Google Scholar 

  • Donohue K (2009) Completing the cycle: maternal effects as the missing link in plant life histories. Phil Trans R Soc B 364:21059–1074

    Article  CAS  Google Scholar 

  • Dracup M, Davies C, Tapscott H (1993) Temperature and water requirements for germination and emergence of lupin. Aust J Exp Agr 33:759–766

    Article  Google Scholar 

  • Duke SH, Kakefuda G (1981) Role of the testa in preventing cellular rupture during imbibition of legume seeds. Plant Phys 67:449–456

    Article  CAS  Google Scholar 

  • Dumur D, Pilbeam CJ, Craigon J (1990) Use of the Weibull function to calculate cardinal temperatures in faba bean. J Expt Bot 41:1423–1430

    Article  Google Scholar 

  • Eastmond PJ, Graham IA (2001) Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci 6:72–78

    Article  CAS  PubMed  Google Scholar 

  • Egli DB, TeKrony DM, Heitholt JJ et al (2005) Air temperature during seed filling and soybean seed germination and vigor. Crop Sci 45:1329–1335

    Article  Google Scholar 

  • Ellis RH, Roberts EH (1982) Desiccation, rehydration, germination, imbibition injury and longevity of pea seeds (Pisum sativum). Seed Sci Technol 10:501–508

    Google Scholar 

  • Ellis RH, Barrett S (1994) Alternating temperatures and rate of seed germination in lentil. Ann Bot 74:519–524

    Article  Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1985) Handbook of seed technology for genebanks. Volume II. Compendium of specific germination information and test recommendations. IBPGR, Rome, pp. 211–667

    Google Scholar 

  • Ellis RH, Covell S, Roberts EH et al (1986) The influence of temperature on seed germination rate of grain legumes. II. Intraspecific variation in chickpea at constant temperatures. J Expt Bot 37:1503–1515

    Article  Google Scholar 

  • Ellis RH, Simon G, Covell S (1987) The influence of temperature on seed germination rate of grain legumes.III. A comparison of five faba bean genotypes at constant temperatures using a new screening method. J Expt Bot 38:1033–1043

    Article  Google Scholar 

  • Esau C (1977) Anatomy of seed plants, 2nd edn. Wiley, New York, p 576

    Google Scholar 

  • Fairbrother TE (1991) Effect of fluctuating temperatures and humidity on the softening rate of hard seed of subterranean clover (Trifolium subterraneum L.). Seed Sci Technol 19:93–105

    Google Scholar 

  • Fait A, Angelovici R, Less H et al (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142:839–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fait A, Fromm H, Walter D et al (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    Article  CAS  PubMed  Google Scholar 

  • Faria JMR, Buitink J, van Lammeren AAM et al (2005) Changes in DNA and microtubules during loss and re-establishment of desiccation tolerance in germinating Medicago truncatula seeds. J Expt Bot 56:2119–2130

    Article  CAS  Google Scholar 

  • Fenner M (1991) The effects of the parent environment on seed germinability. Seed Sci Res 1:75–84

    Google Scholar 

  • Fenner M (1992) Environmental influences of seed size and composition. Hort Rev 13:183–213

    CAS  Google Scholar 

  • Finch-Savage AE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  PubMed  Google Scholar 

  • Finch-Savage AE, Rowse HR, Dent KC (2005) Development of combined imbibitions and hydrothermal threshold models to stimulate maize and chickpea seed germination in variable environments. New Phytol 165:825–838

    Article  CAS  PubMed  Google Scholar 

  • Forbes I, Wells HD (1968) Hard and soft seededness in blue lupine (Lupinus angustifolius L.): inheritance and phenotype classification. Crop Sci 8:195–197

    Article  Google Scholar 

  • Fougereux JA, Dore T, Ladonne F et al (1997) Water stress during reproductive stages affects seed quality and yield of pea (Pisum sativum L.). Crop Sci 37:1247–1252

    Article  Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archeobotanical insights from the Old World. Ann Bot 100:903–924

    Article  PubMed Central  PubMed  Google Scholar 

  • Fuller DQ, Allaby R (2009) Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. Ann Plant Rev 38:238–295

    Google Scholar 

  • Fyfield TP, Gregory PJ (1989) Effects of temperature and water potential on germination, radicle elongation and emergence in mungbean. J Expt Bot 40:667–674

    Article  Google Scholar 

  • Galili G (2011) The aspartate-family pathway of plants: linking production of essential amino acids with energy and stress regulation. Plant Signal Behav 6:192–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallardo M, Delgado M, Sanchez-Call IM et al (1991) Ethylene production and 1-aminocyclopropane-1-carboxylic acid conjugation in thermoinhibited Cicer arietinum L. seeds. Plant Phys 97:122–127

    Article  CAS  Google Scholar 

  • Gallardo K, Signor CL, Thompson RD et al (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gamma-Arachchige NS, Baskin JM, Geneve RL et al (2013). Identification and characterization often new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes. Ann Bot 112:69–84

    Article  Google Scholar 

  • Gan Y, Jayakumar R, Zener RP et al (2006) Selection for seed size and its impact on grain yield and quality in kabuli chickpea. Can J Plant Sci 86:345–352

    Article  Google Scholar 

  • Garnczarska M, Zalewski T, Kempka M (2007) Water uptake and distribution in germinating lupine seeds studied by magnetic resonance imaging and NMR spectroscopy. Physiol Plant 130:23–32

    Article  CAS  Google Scholar 

  • Gepts P, Debouck D (1991) Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). In: Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CIAT, CABI, Wallingford, pp 1–53

    Google Scholar 

  • Gepts P, Beavis WD, Brummer EC et al (2005) Legumes as a model plant family. Genomics for food and feed. Report of the cross-legume advances through genomics conference. Plant Physiol 137:1228–1235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gholami A, Sharafi S, Sharafi A et al (2009) Germination of different seed size of pinto bean cultivars as affected by salinity and drought stress. J Food Agr Environ 7:555–558

    Google Scholar 

  • Gimeno-Gilles C, Lelièvre E, Viau L et al (2009) ABA-mediated inhibition of germination is related to the inhibition of genes encoding cell-wall biosynthetic and architecture: modifying enzymes and structural proteins in Medicago truncatula embryo axis. Mol Plant 2:108–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Globerson D (1978) Germination and dormancy breaking by ethephon in mature and immature seeds of Medicago truncatula and Trifolium subterraneum. Austral J Agr Res 29:43–49

    Article  Google Scholar 

  • Gross Y, Kigel J (1994) Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris). Field Crop Res 36:201–212

    Article  Google Scholar 

  • Gusmao M, Siddique KHM, Flower K, Nesbitt et al (2012) Water deficit during the reproductive period of grass pea (Lathyrus sativus L.) reduced grain yield but maintained seed size. J Agron Crop Sci 198:430–441

    Article  Google Scholar 

  • Hagon MW, Ballard LAT (1970) Reversibility of strophiolar permeability to water in seeds of subterranean clover (Trifolium subterraneum. ). Austral J Biol Sci 23:519–528

    Google Scholar 

  • Hanma A, Denna D (1962) Moisture movement in impermeable snap bean seed. Quart Bull Mich Agr Exp Sta 44:726–730

    Google Scholar 

  • Harlan JR (1992) Crops and man, 2nd edn. ASA USDA, Madison, p 284

    Google Scholar 

  • Harlan JR, de Wet JMJ, Price EG (1973) Comparative evolution of cereals. Evolution 27:311–325

    Article  Google Scholar 

  • Heil JR, McCarthy MJ, Ozilgen M (1992) Magnetic resonance imaging and modeling of water uptake into dry beans. Lebensmittel-Wissenschaft & Technologie 25:280–285

    CAS  Google Scholar 

  • Hernandez-Nistal J, Martin I, Esteban R et al (2010) Abscisic acid delays chickpea germination by inhibiting water uptake and down-regulating genes encoding cell wall remodeling proteins. Plant Growth Regul 61:175–183

    Article  CAS  Google Scholar 

  • Holubowicz R, Taylor AG, Goffinet MC et al (1988) Nature of the semihard seed characteristic in snap beans. J Am Soc Hort Soc 113:248–252

    Google Scholar 

  • Howell KA, Millar AH, Whelan J (2006) Ordered assembly of mitochondria during rice germination begins with pro-mitochondrial structures rich in components of the protein import apparatus. Plant Mol Biol 60:201–223

    Article  CAS  Google Scholar 

  • Hu X, Li T, Wang J et al (2013) Seed dormancy in four Tibetan Plateau Vicia species and characterization of physiological changes in response of seeds to environmental factors. Seed Sci Res 23:133–140

    Article  Google Scholar 

  • Hucl P (1993) Effects of temperature and moisture stress on the germination of diverse common bean genotypes. Can J Plant Sci 73:697–702

    Article  Google Scholar 

  • Humphrey ME, Lambrides CJ, Chapman SC et al (2005) Relationships between hard-seededness and seed weight in mungbean (Vigna radiata) assessed by QTL analysis. Plant Breed 124:292–298

    Article  Google Scholar 

  • Hyde EOC (1954) The function of the hilum in some Papilonaceae in relation to the ripening of the seed and the permeability of the testa. Ann Bot 18:241–256

    Google Scholar 

  • Isemura T, Kaga A, Konishi S et al (2007) Genome dissection of traits related to domestication in Azuki Bean (Vigna angularis) and comparison with other warm-season legumes. Ann Bot 100:1053–1071

    Article  PubMed Central  PubMed  Google Scholar 

  • Isemura T, Kaga A, Tomooka N et al (2010) The genetics of domestication of rice bean (Vigna umbellata). Ann Bot 106:927–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakobsen HB, Martens H, Lyshede OB (1994) Accumulation of metabolites during seed development in Trifolium repens L. Ann Bot 74:409–415

    Article  CAS  Google Scholar 

  • James AT, Lawn RJ, Williams RW et al (1999) Cross fertility of Australian accessions of wild mungbean (Vigna radiata ssp. sublobata) with green gram (V. radiata ssp. radiata) and black gram (V. mungo). Austral J Bot 47:601–610

    Article  Google Scholar 

  • Johansen C, Sexena NP, Chauhan YS et al (1988) Genotypic variation in salinity response of chickpea and pigeonpea. In: Sinha SK (ed) Proceedings of international congress of plant physiology, vol. 2. New Delhi

    Google Scholar 

  • Kaga A, Isemura T, Tomooka N et al (2008) The genetics of domestication of the azuki bean (Vigna angularis). Genet 178:1013–1036

    Article  CAS  Google Scholar 

  • Kannenberg L W, Allard R W (1964) An association between pigment and lignin formation in the seed coat of the Lima bean. Crop Sci 4:621–622

    Article  CAS  Google Scholar 

  • Kaplan L (1965) Archeology and domestication of americam Phaseolus (beans). Econ Bot 19:358–368

    Article  Google Scholar 

  • Kaplan L, Lynch TF (1999) Phaseolus (Fabaceae) in archaeology: AMS radiocarbon dates and their significance for pre-Columbian archaeology. Econ Bot 53:261–267

    Article  Google Scholar 

  • Katznelson J, Carpenter JA (1972) Germination of subterranean clover in Mediterranean summer. Israel J Bot 21:228–242

    Google Scholar 

  • Kaur G, Kumar S, Nayyar H et al (2008) Cold stress injury during the pod-filling phase in chickpea (Cicer arietinum L.): effects on quantitative and qualitative components of seeds. J Agron Crop Sci 194:457–464

    Google Scholar 

  • Kigel J (1995) Seed germination in arid and semi-arid regions. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 645–700

    Google Scholar 

  • Kikuchi K, Koizumi M, Ishida N et al (2006) Water uptake by dry beans observed by micro-magnetic resonance imaging. Ann Bot 98:545–553

    Article  PubMed Central  PubMed  Google Scholar 

  • Kirkbridge JH, Gunn Cr, Weitzman A (2003) Fruits and seeds of genera in the subfamily Faboideae (Fabaceae). Technical Bulletin 1890, USDA

    Google Scholar 

  • Kirma M, Araújo WL, Fernie AR, Galili G (2012) The multifaceted role of aspartate-family amino acids in plant metabolism. J. Expt. Bot 63:4995–5001

    Google Scholar 

  • Kluyver TA, Charles M, Jones G et al (2013) Did greater burial depth increase the seed size of domesticated legumes? J Expt Bot 64:4101–4108

    Article  CAS  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Article  Google Scholar 

  • Kooistra E (1971) Germinability of beans (Phaseolus vulgaris L.) at low temperatures. Euphytica 20:208–213

    Article  Google Scholar 

  • Koizumi M, Kikuchi K, Isobe S et al (2008) Role of seed coat in imbibing soybean seeds observed by micro-magnetic resonance imaging. Ann Bot 102:343–352

    Article  PubMed Central  PubMed  Google Scholar 

  • Kongjaimun A, Kaga A, Tomooka N et al (2012) The genetics of domestication of yardlong bean Vigna unguiculata (L.) Walp. Ann Bot 109:1185–1200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kyle JH, Randall TE (1963) A new concept of the hard seed character in Phaseolus vulgaris L. and its use in breeding and inheritance studies. Proc Am Soc Hort Sci 83:461–475

    Google Scholar 

  • Ladizinski G (1985) The genetics of hard seeds in Lens. Euphytica 34:539–543

    Article  Google Scholar 

  • Legesse N, Powell AA (1992) Comparisons of water uptake and imbibition damage in eleven cowpea cultivars. Seed Sci Technol 20:173–180

    Google Scholar 

  • Legesse N, Powell AA (1996) The association between development of seed coat pigmentation during maturation of grain legumes and reduced rates of imbibition. Seed Sci Technol 24:23–32

    Google Scholar 

  • Lehmann T, Ratajczak L (2008) The pivotal role of glutamate dehydrogenase (GDH) in the mobilization of N and C from storage material to asparagine in germinating seeds of yellow lupine. J Plant Physiol 165:149–58

    Article  CAS  PubMed  Google Scholar 

  • Lersten NR (1982) Tracheid bar and vestured pits in legume seeds (Leguminosae: Papilionoideae). Am J Bot 69:98–107

    Article  Google Scholar 

  • Leymarie J, Benech-Arnold R L, Farrant JM et al (2009) Thermodormancy and ABA metabolism in barley grains. Plant Signal Behav 4:205–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu B, Fujita T, Yan ZE et al (2007) QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot 100:1027–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopes VB, Takai M (1987) Seed germination in Phaseolus vulgaris L. I. Osmotic effect on light sensitivity. Arq Biol Techn 30:641–647

    Google Scholar 

  • Lush WM, Evans LT (1980) The seed coats of cowpeas and other grain legumes: structure in relation to function. Field Crops Res 3:267–286

    Article  Google Scholar 

  • Lush WM, Wien HC (1980) The importance of seed size in early growth of wild and domesticated cowpeas. J Agr Sci 94:177–182

    Article  Google Scholar 

  • Lush WM, Evans LT, Wien HC (1980) Environmental adaptation of wild and domesticated cowpeas (Vigna unguiculata). Field Crops Res 3:173–187

    Google Scholar 

  • Ma F, Cholewa E, Mohamed T et al (2004) Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Ann Bot 94:213–228

    Article  PubMed Central  PubMed  Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance. J Irrig Drainage 103:115–134

    Google Scholar 

  • Maass BL, Usongo MF (2007) Changes in seed characteristics during the domestication of the lablab bean (Lablab purpureus (L.) Sweet). Austral J Agr Res 58:9–19

    Article  Google Scholar 

  • McCleary BV, Matheson NK (1975) Galactomannan structure and β-mannanase and β-mannosidase activity in germinating legume seeds. Phytochemistry 14:1187–1194

    Article  CAS  Google Scholar 

  • McClendon JH, Nolan WG, Wenzler HF (1976) The role of the endosperm in the germination of legumes: galactomannan, nitrogen, and phosphorus changes in the germination of guar (Cyamopsis tetragonoloba). Am J Bot 63:790–797

    Article  CAS  Google Scholar 

  • McDonald MB, Vertucci CW, Roos EE (1988) Seed coat regulation of soybean seed imbibition. Crop Sci 28:987–992

    Article  Google Scholar 

  • McKee GW, Peiffer RA, Mohsenin NN (1977) Seedcoat structure in Coronilla varia L. and its relations to hard seed. Agron J 69:53–58

    Article  Google Scholar 

  • Machado Neto NB, Prioli MR, Gatti AB et al (2006) Temperature effects on seed germination in races of common bean. Acta Sci Agron 28:155–167

    Article  Google Scholar 

  • Macherel D, Benamar A, Avelange-Macherel M et al (2007) Function and stress tolerance of seed mitochondria. Physiol Plant 129:233–241

    Article  CAS  Google Scholar 

  • Marbach I, Mayer AM (1974) Permeability of seed coats to water as related to drying conditions and metabolism of phenolics. Plant Physiol 54:817–820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marbach I, Mayer AM (1975) Changes in catechol oxidase and permeability to water in seed coats of Pisum elatius during seed development and maturation. Plant Physiol 56:93–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marjüshkin VF, Sichkar VI, Michailov VG et al (1987) Inheritance of hardseededness in soybean. Soybean Genet Newsl 14:294–297

    Google Scholar 

  • Marwat KB, Khan MA, Arif M et al (2008) Seed priming improves emergence and yield of soybean. Pakistan J Bot 40:1169–1177

    Google Scholar 

  • Meyer CJ, Steudle E, Peterson CA (2007) Patterns and kinetics of water uptake by soybean seeds. J Expt Bot 58:717–732

    Article  CAS  Google Scholar 

  • Mikolajczyk J (1966) Genetic studies in Lupinus angustifolius. III. Inheritance of the alkaloid content, seed hardness and length of the growing season in blue lupin. Genet Pol 7:181–196

    Google Scholar 

  • Miller SS, Bowman LA, Gijzen M et al (1999) Early development of the seed coat of soybean (Glycine max). Ann Bot 86:297–304

    Article  Google Scholar 

  • Morley FHW (1958) The inheritance and ecological significance of seed dormancy in subterranean clover (Trifolium subterraneum L.). Aust J Biol Sci 11:261–274

    Google Scholar 

  • Morohashi M, Shimokoriyama Y (1975) Development of glycolytic and mitochondrial activities in the early phase of germination of Phaseolus mungo seeds. J Expt Bot 26:932–938

    Article  CAS  Google Scholar 

  • Morohashi Y, Bewley J, Yeung E (1981) Biogenesis of mitochondria in imbibed peanut cotyledons: influence of the axis. J Expt Bot 32:605–613

    Article  Google Scholar 

  • Morrison RM, Asiedu EA, Stuchbury T et al (1995) Determination of lignin and tannin content of cowpea seeds coats. Ann Bot 76:287–290

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Nadeau CD, Ozga JA, Kurepin LV et al (2011) Tissue specific regulation of gibberellins biosynthesis in developing pea seeds. Plant Physiol 156:897–912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura R (1988) Seed abortion and seed size variation within fruits of Phaseolus vugaris: pollen donor and resource limitation effects. Am J Bot 75:1003–1010

    Article  Google Scholar 

  • Nakayama N, Komatsu S (2008) Water uptake by seeds in yellow-seeded soybean cultivars with contrasting imbibition behaviors. Plant Prod Sci 11:415–422

    Article  Google Scholar 

  • Nawa Y, Asahi T (1971) Rapid development of mitochondria in pea cotyledons during the early stage of germination. Plant Physiol 48:671–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nleya T, Ball RA, Vandenberg A (2005) Germination of common bean under constant and alternating cool temperatures. Can J Plant Sci 85:577–588

    Article  Google Scholar 

  • Nonogaki H, Nomaguchi M, Morohashi Y (1995) Endo-β-mannanases in the endosperm of germinated tomato seeds. Physiol Plant 94:328–334

    Article  CAS  Google Scholar 

  • Nonogaki H, Nomaguchi M, Okumoto N et al (1998) Temporal and spatial pattern of the biochemical activation of the endosperm during and following imbibition of tomato seeds. Physiol Plant 102:236–242

    Article  CAS  Google Scholar 

  • Nonogaki H, Gee OH, Bradford KJ (2000) A germination-specific endo-β-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiol 123:1235–1245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okamoto T, Minamikawa T (1998) A vacuolar cysteine endopeptidase (SH-EP) that digests seed storage globulin. Characterization, regulation of gene expression, and post-translational processing. J Plant Physiol 152:675–682

    Article  CAS  Google Scholar 

  • Olivier FC, Annandale JG (1998) Thermal time requirements for the development of green pea (Pisum sativum L.). Field Crop Res 56:301–307

    Article  Google Scholar 

  • Oliveira MA, Matthews S, Powell AA (1984) The role of split seed coats in determining seed vigour in commercial seed lots of soybean, as measured by the electrical conductivity test. Seed Sci Technol 12:659–668

    Google Scholar 

  • Otubo ST, Ramalho MGP, Abreu AFB et al (1996) Genetic control of low temperature tolerance in germination of common bean. Euphytica 89:313–317

    Google Scholar 

  • Parrish DJ, Leopold AC (1977) Transient changes during soybean imbibition. Plant Physiol 59:1111–1115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patrick JW, Offler CE (2001) Compartmentation of transport and transfer events in developing seeds. J Expt Bot 52:551–564

    Article  CAS  Google Scholar 

  • Pena-Valdivia CB, Garcia R, Aguirre JR et al (2002) The effects of high temperature on dormancy and hypocotyls-root growth of wild common bean (Phaseolus vulgaris). Seed Sci Technol 30:231–248

    Google Scholar 

  • Perissé P, Planchuelo AM (2004) Seed coat morphology of Lupinus albus L. and Lupinus angustifolius L. in relation to water uptake. Seed Sci Technol 32:69–77

    Article  Google Scholar 

  • Perisse P, Aiazzi MT, Planchuelo AM (2002) Water uptake and germination of Lupinus albus and Lupinus angustifolius under water stress. Seed Sci Technol 30:289–298

    Google Scholar 

  • Peterbauer T, Lahuta LB, Blöchl A et al (2001) Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. Plant Physiol 127:1764–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petruzelli L, Harren F, Perrone C et al (1995) On the role of ethylene in seed germination and early root growth of Pisum sativum. J Plant Physiol 145:83–86

    Article  Google Scholar 

  • Poggio SL, Satorre EH, Dethiou S et al (2005) Pod and seed numbers as a function of photothermal quotient during the seed set period of field pea (Pisum sativum) crops. Eur J Agron 22:55–69

    Article  Google Scholar 

  • Powell AA (1989) The importance of genetically determined seed coat characteristics to seed quality in grain legumes. Ann Bot 63:169–175

    Google Scholar 

  • Powell AA, Matthews S (1978) The damaging effect of water on dry pea embryos during imbibition. J Expt Bot 29:1215–1229

    Article  Google Scholar 

  • Powell AA, Oliveira MA, Matthews S (1986) Seed vigour in cultivars of dwarf French bean (Phaseolus vulgaris) in relation to testa colour. J Agr Sci 106:419–425

    Article  Google Scholar 

  • Pritchard SL, Charlton WL, Baker A et al (2002) Germination and storage reserve mobilization are regulated independently in Arabidopsis. Plant J 31:639–647

    Article  CAS  PubMed  Google Scholar 

  • Quinlivan BJ (1968) The softening of hard seeds of sand-plain lupin (Lupinus varius L.). Austral J Agr Res 19:507–515

    Article  Google Scholar 

  • Qutob D, Ma F, Peterson CA et al (2008) Structural and permeability properties of the soybean seed coat. Botany 86:219–227

    Article  Google Scholar 

  • Ramsay G (1997) Inheritance and linkage of a gene for testa-imposed seed dormancy in faba bean (Vicia faba L.). Plant Breed 16:287–289

    Article  Google Scholar 

  • Ranathunge K, Shao S, Qutob D et al (2010) Properties of the soybean seed coat cuticle change during development. Planta 231:1171–1188

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak W, Lehmann T, Polcyn W et al (1996) Metabolism of amino acids in germination yellow lupine seeds. I. The decomposition of 14C-aspartate and 14C-glutamate during the imbibition. Acta Physiol Plant 18:13–18

    CAS  Google Scholar 

  • Raveneau MP, Coste F, Moreau-Valancogne P et al (2011) Pea and bean germination and seedling responses to temperature and water potential. Seed Sci Res 2:205–213

    Article  Google Scholar 

  • Raymond P, Al-Ani A, Pradet A (1985) ATP production by respiration and fermentation, and energy charge during aerobiosis and anaerobiosis in twelve fatty and starchy germinating seeds. Plant Physiol 79:879–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reid JSG, Bewley JD (1979) A dual role for the endosperm and its galactomannan reserves in the germinative physiology of Fenugreek (Trigonella foenum-graecum L.), an endospermic leguminous seed. Planta 147:145–150

    Article  CAS  Google Scholar 

  • Reid JSG, Meier H (1972) Function of the aleurone layer during galactomannan mobilization in germinating seeds of fenugreek, crimson clover and lucerne: a correlative biochemical and ultrastructural study. Planta 106:44–60

    Article  CAS  PubMed  Google Scholar 

  • Reid JSG, Meier H (1973) Enzymic activities and galactomannan mobilization in germinating seeds of fenugreek. Secretion of α-galactosidase and β-mannosidase by the aleurone layer. Planta 112:301–308

    Article  CAS  Google Scholar 

  • Riggio-Bevilaqua LR, Roti-Michelozzi G, Modenesi P (1989) The watertight dormancy of Melilotus alba seeds. Can J Bot 67:3453–3456

    Article  Google Scholar 

  • Roach DA, Wulff RD (1987) Maternal effects in plants. Ann Rev Ecol Syst. 18:209–235

    Google Scholar 

  • Rolston MP (1978) Water impermeable seed dormancy. Bot Rev 44:365–395

    Article  CAS  Google Scholar 

  • Ross KA, Zhang L, Arntfield SD (2010) Understanding water uptake from the induced changes occurred during processing: chemistry of Pinto bean and Navy bean seed coats. Int J Food Prop 13:631–647

    Article  CAS  Google Scholar 

  • Russi L, Cocks PS, Roberts EH (1992) Coat thickness and hard-seededness in some Medicago and Trifolium species. Seed Sci Res 2:243–249

    Google Scholar 

  • Sakamoto S, Abe J, Kanazawa A et al (2004) Marker-assisted analysis for soybean hard seededness with isozyme and simple sequence repeat loci. Breed Sci 54:133–139

    Article  CAS  Google Scholar 

  • Santalla M, Menendez-Sevillano MC, Monteagudo AB et al (2004) Genetic diversity of Argentinean common bean and its evolution during domestication. Euphytica 135:75–87

    Article  CAS  Google Scholar 

  • Scully B, Waines JG (1987) Germination and emergence response of common and tepary beans to controlled temperature. Agron J 79:287–291

    Article  Google Scholar 

  • Serrato-Valenti G, Melone L, Ferro M et al (1989) Comparative studies on testa structure of ‘hard-seeded’ and ‘soft-seeded’ varieties of Lupinus angustifolius L. (Leguminosae) and on mechanisms of water entry. Seed Sci Technol 17:563–581

    Google Scholar 

  • Shahi JP, Pandey MP (1982) Inheritance of seed permeability in soybean. Indian J Gen Pl Br. 42:196–199

    Google Scholar 

  • Shao S, Meyer CJ, Ma F et al (2007) The outermost cuticle of soybean seeds: chemical composition and function during imbibitions. J Expt Bot 58:1071–1082

    Article  CAS  Google Scholar 

  • Sievwright CA, Shipe WF (1986) Effect of storage conditions and chemical treatments on firmness, in vitro protein digestibility, condensed tannins, phytic acid and divalent cations of cooked Black Beans (Phaseolus vulgaris). J Food Sci 51:982–987

    Article  CAS  Google Scholar 

  • Soeda Y, Konings MCJM, Vorst O et al (2005) Gene expression programs during Brassica oleracea seed maturation, osmopriming and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol 137:354–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate functions. Ann Rev Ecol Syst 12:253–279

    Article  Google Scholar 

  • Stienswat W, Pollard LH, Campbell WF (1971) Nature of hardseededness in Lima bean (Phaseolus lanatus L.). J Am Soc Hort Sci 96:312–315

    Google Scholar 

  • Tang J, Sokhansanj S, Sosulski FW (1994) Moisture absorption characteristics of laird lentils and hardshell seeds. Cereal Chem 71:423–428

    Google Scholar 

  • Taylor GB (2005) Hardseededness in Mediterranean annual pasture legumes in Australia: a review. Aust J Agr Res 56:645–661

    Article  Google Scholar 

  • Thomson JR (1965) Breaking dormancy in germination tests of Trifolium spp. Proc Int Seed Testing Assoc. 30:905–909

    Google Scholar 

  • Toh S, Imamura A, Watanabe A, et al (2008) High temperature induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol 146:1368–1385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toledo MZ, Cavariani C, França-Neto JB et al (2010) Imbibition damage in soybean seeds as affected by initial moisture content, cultivar and production location. Seed Sci Technol 38:399–408

    Article  Google Scholar 

  • Tran VN, Cavanagh AK (1984) Structural aspects of dormancy. In: Murray DR (ed) Seed physiology. Vol. II. Academic, Sydney, pp 1–44

    Google Scholar 

  • Tully RE, Musgrave ME, Leopold AC (1981) The seed coat as a control of imbibitional chilling injury. Crop Sci 21:312–7

    Article  Google Scholar 

  • Uzun A, Sozen E, Acikgoz E (2013) Seed dormancy and germination of Vicia sativa subsp. nigra and Vicia sativa subsp. macrocarpa. Seed Sci Technol 41:137–142

    Article  Google Scholar 

  • van Assche JA, Vandelook FEA (2010) Combinational dormancy in winter annual Fabaceae. Seed Sci Res 20:237–242

    Article  Google Scholar 

  • van Assche JA, Debucquoy KLA, Rommens WAF (2003) Seasonal cycles in the germination capacity of buried seeds of some Leguminosae. New Phytol 158:315–323

    Article  Google Scholar 

  • van Dongen JT, Ammerlaan AMH, Wooterlood M et al (2003) Structure of developing pea seed coat and the post phloem transport pathway of nutrients. Ann Bot 91:729–737

    Article  PubMed  CAS  Google Scholar 

  • Varriano-Marston E, Jackson GM (1981) Hard to cook phenomenon in beans: structural changes during storage and imbibition. J Food Sci 46:1379–1385

    Article  Google Scholar 

  • Verdier J, Dessaint F, Schneider C et al (2013) A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat. J Expt Bot 64:459–470

    Article  CAS  Google Scholar 

  • Verma VD, Ram HH (1987) Genetics of seed impermeability in soyabean. J Agr Sci 108:305–310

    Article  Google Scholar 

  • Wang HL, Grusak MA (2005). Structure and development of Medicago truncatula pod wall and seed coat. Ann Bot 95:737–747

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang WQ, Møller IM, Song SQ (2012) Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J Proteomics 77:68–86

    Article  CAS  PubMed  Google Scholar 

  • Watson DP (1948) Structure of the testa and its relation to germinationin the Papilionaceae tribes Trifoliae and Loteae. Ann Bot 12:385–409

    Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Ann Rev Plant Biol 56:253–79

    Article  CAS  Google Scholar 

  • Weedin N (2007) Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘Domestication Syndrome’ for legumes? Ann Bot 100:1017–1025

    Article  CAS  Google Scholar 

  • Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Expt Bot 62:3289–3309

    Article  CAS  Google Scholar 

  • Welbaum, GE, Tissaoui T, Bradford KJ (1990) Water relations of seed development and germination in muskmelon. III. Sensitivity of germination to water potential and early seedling growth. Plant Physiol 92:1029–1037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Werker E. (1997) Seed anatomy. Gebrüder Borntraeger, Stuttgart

    Google Scholar 

  • Werker E, Marbach I, Mayer AM (1979) Relation between the anatomy of the testa, water permeability and the presence of phenolics in the genus Pisum. Ann Bot 43:765–771

    CAS  Google Scholar 

  • Westoby M, Jurado E, Leishman M (1992) Comparative evolutionary ecology of seed size. Trends Ecol Evol 7:368–372

    Article  CAS  PubMed  Google Scholar 

  • White JW, Montes R C (1993) The influence of temperature on seed germination in cultivars of common bean. J Expt Bot 44:1795–1800

    Article  Google Scholar 

  • Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid MATK gene resolves many well-supported subclades within the family. Am J Bot 91:1846–1862

    Article  CAS  PubMed  Google Scholar 

  • Wyatt JE (1977) Seed coat and water absorption properties of seed of near-isogenic snap bean lines differing in seed coat color. J Am Soc Hort Sci 102:478–480

    Google Scholar 

  • Yang R, Guo Q, Gu Z (2013) GABA shunt and polyamine degradation pathway on gamma-aminobutyric acid accumulation in germinating faba bean (Vicia faba L.) under hypoxia. Food Chem 136:152–159

    Article  CAS  PubMed  Google Scholar 

  • Yeung CE, Cavey MJ (1990) Cellular endosperm formation in Phaseolus vulgaris. I. Light and scanning electron microscopy. Can J Bot 66:1209–1216

    Article  Google Scholar 

  • Yomo H, Varner JE (1973) Control of the formation of amylases and proteases in the cotyledons of germinating peas. Plant Physiol 51:708–713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young JA, Evans RA, Kay BL (1970) Germination characteristics of range legumes. J Range Manag 23:98–103

    Article  Google Scholar 

  • Zaiter H, Baydoun E, Sayyed-Hallak M (1994) Genotypic variation in the germination of common bean in response to cold temperature stress. Plant Soil 163:95–101

    Google Scholar 

  • Zeng LW, Cocks PS, Kailis SG et al (2005) The role of fractures and lipids in the seed coat in the loss of hardseededness of six Mediterranean legume species. J Agr Sci 143:43–55

    Article  Google Scholar 

  • Zhang S, Hu J, Zhang Y, Xie XJ KA (2007) Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Austral J Agr Res 58:811–815

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean basin, 4th edn. Oxford University Press, Oxford, p 264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Kigel Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kigel, J., Rosental, L., Fait, A. (2015). Seed Physiology and Germination of Grain Legumes. In: De Ron, A. (eds) Grain Legumes. Handbook of Plant Breeding, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2797-5_11

Download citation

Publish with us

Policies and ethics